¼¼°èÀÇ Àç»ý Å×·¹ÇÁÅ»»ê ½ÃÀå
Recycled Terephthalic Acid
»óǰÄÚµå : 1777505
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 379 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,195,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,585,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Àç»ý Å×·¹ÇÁÅ»»ê ¼¼°è ½ÃÀåÀº 2030³â±îÁö 28¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 23¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â Àç»ý Å×·¹ÇÁÅ»»ê ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 3.3%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 28¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ °¡¼öºÐÇØ ÇÁ·Î¼¼½º´Â CAGR 3.1%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 16¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¿­ºÐÇØ ÇÁ·Î¼¼½º ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 3.9%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 6¾ï 1,860¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 6.1%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ Àç»ý Å×·¹ÇÁÅ»»ê ½ÃÀåÀº 2024³â¿¡´Â 6¾ï 1,860¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGR 6.1%·Î 2030³â±îÁö 5¾ï 4,490¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 1.3%¿Í 2.6%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 1.9%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°è Àç»ý Å×·¹ÇÁÅ»»ê ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ Á¤¸®

Àç»ý Å×·¹ÇÁÅ»»êÀÌ Áö¼Ó°¡´ÉÇÑ ÇÃ¶ó½ºÆ½°ú ¼¶À¯ÀÇ °ÔÀÓ Ã¼ÀÎÀú°¡ µÇ°í ÀÖ´Â ÀÌÀ¯´Â ¹«¾ùÀϱî?

Àç»ý Å×·¹ÇÁÅ»»ê(rTPA)Àº Àü ¼¼°èÀûÀ¸·Î ÇÃ¶ó½ºÆ½ ¹× ¼¶À¯ »ê¾÷¿¡¼­ ¼øÈ¯ °æÁ¦¿¡ ´ëÇÑ ³ë·ÂÀ» ÃßÁøÇÏ´Â µ¥ ÀÖ¾î ¸Å¿ì Áß¿äÇÑ ¿ä¼Ò·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ÇÃ¶ó½ºÆ½ ¿À¿°°ú ȯ°æ Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ¿ì·Á°¡ Ä¿Áö¸é¼­ Æú¸®¿¡Æ¿·» Å×·¹ÇÁÅ»·¹ÀÌÆ®(PET)¿¡ ÀÇÁ¸ÇÏ´Â »ê¾÷°è´Â ÀÌ»êȭź¼Ò ¹èÃâ·®°ú È­¼® ÀÚ¿ø¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙÀ̱â À§ÇØ Á¡Á¡ ´õ ÀçȰ¿ë ´ëüǰÀ¸·Î ´«À» µ¹¸®°í ÀÖ½À´Ï´Ù. rTPA´Â ÁÖ·Î ¼ÒºñÀÚ »ç¿ë ÈÄ PET Æó±â¹°¿¡¼­ ¾ò¾îÁö¸ç, È­ÇÐÀû ÀçȰ¿ë °øÁ¤À» ÅëÇØ °í¼øµµ Å×·¹ÇÁÅ»»êÀ» ȸ¼öÇÏ¿© PET ¼öÁö Á¦Á¶¿¡ Àç»ç¿ëµË´Ï´Ù. rTPA·ÎÀÇ ÀüȯÀº Æ÷ÀåÀç, ¼¶À¯ ¹× ±âŸ ÇÃ¶ó½ºÆ½ ±â¹Ý ÀÀ¿ë ºÐ¾ß¿¡¼­ ´õ ³ôÀº ÀçȰ¿ë·üÀ» ¿ä±¸ÇÏ´Â Àǹ«Àû ±ÔÁ¦¿¡ ÀÇÇØ ÃËÁøµÇ°í ÀÖ½À´Ï´Ù. ƯÈ÷ À½·á »ê¾÷Àº rTPA äÅÃÀÇ ÃÖÀü¼±¿¡ ÀÖÀ¸¸ç, ¼¼°è ÁÖ¿ä ºê·£µåµéÀº Áö¼Ó°¡´É¼º ¸ñÇ¥¸¦ ´Þ¼ºÇϱâ À§ÇØ ÇÃ¶ó½ºÆ½ º´¿¡ »ó´çÇÑ ºñÀ²ÀÇ Àç»ý ¼ÒÀ縦 »ç¿ëÇϱâ·Î ¾à¼ÓÇß½À´Ï´Ù. ¶ÇÇÑ, PET ±â¹Ý Æú¸®¿¡½ºÅÍ ¼¶À¯¿¡ Å©°Ô ÀÇÁ¸Çϰí ÀÖ´Â ¼¶À¯ ¾÷°è´Â ģȯ°æÀûÀÌ°í ¼º´É Áß½ÉÀÇ ¼¶À¯¸¦ ¸¸µé±â À§ÇØ rTPA¸¦ ºü¸£°Ô µµÀÔÇϰí ÀÖ½À´Ï´Ù. Àü ¼¼°èÀûÀ¸·Î ÇÃ¶ó½ºÆ½ Æó±â¹° °ü¸®°¡ ½Ã±ÞÇÑ °úÁ¦·Î ¶°¿À¸£°í ÀÖ´Â °¡¿îµ¥, rTPA´Â »ê¾÷°è°¡ º¸´Ù Áö¼Ó°¡´ÉÇÑ »ý»ê ¸ðµ¨·Î ÀüȯÇÏ´Â µ¥ ÇʼöÀûÀÎ ¿ªÇÒÀ» ÇÒ Áغñ°¡ µÇ¾î ÀÖ½À´Ï´Ù.

±â¼ú Çõ½ÅÀº rTPA »ý»êÀÇ È¿À²¼º°ú È®À强À» ¾î¶»°Ô Çâ»ó½Ã۰í Àִ°¡?

È­ÇÐÀû ÀçȰ¿ë ±â¼úÀÇ ¹ßÀüÀ¸·Î rTPA »ý»êÀÇ È¿À²¼º, È®À强 ¹× ǰÁúÀÌ Å©°Ô Çâ»óµÇ¾î ¹öÁø Å×·¹ÇÁÅ»»êÀ» ´ëüÇÒ ¼ö ÀÖ´Â ´ë¾ÈÀÌ µÇ¾ú½À´Ï´Ù. ±âÁ¸ÀÇ ±â°èÀû ÀçȰ¿ë ¹æ¹ýÀº ¿ëµµ¿¡ µû¶ó È¿°úÀûÀÌÁö¸¸, PET Æú¸®¸Ó »ç½½À» ¿­È­½ÃŰ´Â °æ¿ì°¡ ¸¹¾Æ ÀçȰ¿ë Àç·áÀÇ Ç°Áú°ú ¿ëµµ¸¦ Á¦ÇÑÇÕ´Ï´Ù. ¹Ý¸é, È¿¼Ò °¡¼öºÐÇØ, ´çºÐÇØ, ¸Þź¿Ã ºÐÇØ, ¼ö¿­ °øÁ¤°ú °°Àº ÇØÁßÇÕ ±â¼úÀº PET Æó±â¹°À» °í¼øµµ Å×·¹ÇÁÅ»»êÀ» Æ÷ÇÔÇÑ ´Ü·®Ã¼ ¼ººÐÀ¸·Î ºÐÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °øÁ¤À» ÅëÇØ ÀçȰ¿ë ¼ÒÀç´Â ¹öÁø ¼ÒÀç¿Í µ¿ÀÏÇÑ È­ÇÐÀû, ¹°¸®Àû Ư¼ºÀ» À¯ÁöÇÏ¿© °í¼º´É ¼ÒÀç°¡ ÇÊ¿äÇÑ ¿ëµµ¿¡ ÀûÇÕÇÕ´Ï´Ù. ¶ÇÇÑ, AI¸¦ Ȱ¿ëÇÑ ¼±º° ¹× Á¤Á¦ ½Ã½ºÅÛÀ» ÅëÇØ È¥ÇÕ Æó±â¹° È帧¿¡¼­ PET¸¦ ºÐ¸®ÇÏ´Â ´É·ÂÀÌ °­È­µÇ¾î ¿ø·áÀÇ ¼øµµ°¡ Çâ»óµÇ°í rTPAÀÇ ¼öÀ²ÀÌ Áõ°¡Çß½À´Ï´Ù. ¶ÇÇÑ, ºí·ÏüÀÎÀ» ±â¹ÝÀ¸·Î ÇÑ Àç·á ÃßÀû¼º ÅëÇÕµµ È®»êµÇ°í ÀÖÀ¸¸ç, Á¦Á¶¾÷ü¿Í ¼ÒºñÀÚ´Â rTPA ±â¹Ý Á¦Ç°ÀÇ ÁøÀ§ ¿©ºÎ¿Í Áö¼Ó°¡´É¼ºÀ» È®ÀÎÇÒ ¼ö ÀÖ½À´Ï´Ù. È­ÇÐÀû ÀçȰ¿ë ÀÎÇÁ¶ó°¡ È®´ëµÇ°í ±â¼ú ¹ßÀüÀ¸·Î rTPA »ý»ê °øÁ¤ÀÌ °è¼Ó °³¼±µÊ¿¡ µû¶ó Àç»ý Å×·¹ÇÁÅ»»êÀÇ Ã¤ÅÃÀÌ È®´ëµÇ°í ¿©·¯ »ê¾÷ ºÐ¾ß·ÎÀÇ ÅëÇÕÀÌ ´õ¿í °¡¼ÓÈ­µÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

Àç»ý Å×·¹ÇÁÅ»»êÀ¸·ÎÀÇ ÀüȯÀ» ÃËÁøÇÏ´Â ½ÃÀå µ¿ÇâÀº?

ȯ°æ ±ÔÁ¦¿Í ±â¾÷ÀÇ Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ PET ±â¹Ý Á¦Ç°¿¡ ÀÇÁ¸ÇÏ´Â »ê¾÷¿¡¼­ rTPA¸¦ äÅÃÇÏ´Â ÁÖ¿ä ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. °¢±¹ Á¤ºÎ´Â ÇÃ¶ó½ºÆ½ Æó±â¹° °¨Ãà, »ý»êÀÚÃ¥ÀÓÀçȰ¿ëÁ¦µµ(EPR) È®´ë, ¼ÒºñÀÚ Æ÷ÀåÀç ÀçȰ¿ë Àǹ«È­ µî¿¡ ´ëÇÑ ±ÔÁ¦¸¦ °­È­Çϰí ÀÖÀ¸¸ç, ±â¾÷µéÀº Áö¼Ó°¡´ÉÇÑ ´ë¾ÈÀ¸·Î rTPA¸¦ ¿ä±¸Çϰí ÀÖ½À´Ï´Ù. ÆÐ¼Ç ¾÷°èµµ rTPA ¼ö¿ä¸¦ °ßÀÎÇÏ´Â Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖÀ¸¸ç, ÁÖ¿ä ºê·£µåµéÀº Àç»ý PET¸¦ »ç¿ëÇÑ Ä£È¯°æ Æú¸®¿¡½ºÅ׸£ Ä÷º¼ÇÀ» Ãâ½ÃÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÇÃ¶ó½ºÆ½ ¿À¿°¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ÀνÄÀÌ ³ô¾ÆÁö¸é¼­ ÀçȰ¿ë ¿ø·á¸¦ »ç¿ëÇÑ Á¦Ç°À» ¼±È£ÇÏ´Â °æÇâÀÌ °­ÇØÁö°í ÀÖÀ¸¸ç, ÁÖ¿ä ±â¾÷µéÀº CSR(±â¾÷ÀÇ »çȸÀû Ã¥ÀÓ) Àü·«ÀÇ ÀÏȯÀ¸·Î rTPA¸¦ °ø±Þ¸Á¿¡ Æ÷ÇÔ½ÃŰ·Á Çϰí ÀÖ½À´Ï´Ù. ¼ÒºñÀÚ ¼Õ¿¡ µé¾î°£ PET º´À» ´Ù½Ã ½Äǰ¿ë PET Æ÷ÀåÀç·Î µÇµ¹¸®±â À§ÇÑ º´ ´ë º´ ÀçȰ¿ëÀÌ È®´ëµÇ°í ÀÖ´Â °Íµµ °íǰÁú rTPA¿¡ ´ëÇÑ ¼ö¿ä¸¦ ´õ¿í Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ ¾÷°è¿¡¼­´Â ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀÌ rTPA ±â¹Ý Æú¸®¿¡½ºÅ׸£ ¼¶À¯¸¦ ³»ÀåÀç¿Í ½ÃÆ® Ç¥ÇÇ¿¡ »ç¿ëÇÔÀ¸·Î½á ¼º´É ±âÁØÀ» À¯ÁöÇϸ鼭 Áö¼Ó°¡´É¼º ¸ñÇ¥¸¦ ´Þ¼ºÇϱâ À§ÇØ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù. »ê¾÷°è°¡ ¼øÈ¯ °æÁ¦ÀÇ ¿øÄ¢À» ¿ì¼±½ÃÇÏ´Â °æÇâÀÌ °­È­µÇ°í ÀÖ´Â °¡¿îµ¥, rTPA´Â Á¦Ç°ÀÇ ±â´É¼º°ú ³»±¸¼ºÀ» À¯ÁöÇϸ鼭 ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÁÙÀ̰íÀÚ ÇÏ´Â ±â¾÷µé¿¡°Ô Àü·«ÀûÀÎ ¼ÒÀç°¡ µÇ°í ÀÖ½À´Ï´Ù.

Àç»ý Å×·¹ÇÁÅ»»ê ½ÃÀåÀÇ ÁÖ¿ä ¼ºÀå ÃËÁø¿äÀÎÀº ¹«¾ùÀΰ¡?

¼¼°è Àç»ý Å×·¹ÇÁÅ»»ê ½ÃÀåÀÇ ¼ºÀåÀº È­ÇÐÀû ÀçȰ¿ë ±â¼úÀÇ ¹ßÀü, ¼øÈ¯ °æÁ¦ ¸ðµ¨À» ÃËÁøÇÏ´Â ±ÔÁ¦ Àǹ«È­, Áö¼Ó°¡´ÉÇÑ Á¦Ç°¿¡ ´ëÇÑ ¼ÒºñÀÚ ¼ö¿ä Áõ°¡ µî ¿©·¯ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. PET º´ ÀçȰ¿ë ÇÁ·Î±×·¥ÀÇ È®´ë¿Í Æó¼âÇü ÀçȰ¿ë ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ·Î ÀÎÇØ »ó¾÷¿ë °íǰÁú rTPAÀÇ °¡¿ë¼ºÀÌ Å©°Ô Áõ°¡Çß½À´Ï´Ù. ¶ÇÇÑ, ¼¶À¯ »ê¾÷ÀÌ Áö¼Ó°¡´ÉÇÑ Æú¸®¿¡½ºÅÍ ¼¶À¯·Î ÀüȯÇÔ¿¡ µû¶ó ÀÇ·ù, ½ºÆ÷Ã÷¿þ¾î, °¡Á¤¿ë ¼¶À¯ Á¦Ç°¿¡ rTPAÀÇ »õ·Î¿î ½ÃÀå ±âȸ°¡ »ý°Ü³µ½À´Ï´Ù. °¡º±°í ÀçȰ¿ë °¡´ÉÇÑ ¼ÒÀ縦 Áß½ÃÇÏ´Â ÀÚµ¿Â÷ »ê¾÷Àº rTPA ±â¹Ý Æú¸®¿¡½ºÅ׸£ ºÎǰ¿¡ ´ëÇÑ ¼ö¿ä¸¦ ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ±â¾÷µéÀº rTPA ±â¹Ý Á¦Ç°ÀÇ ½Å·Ú¼ºÀ» ³ôÀ̰í Áö¼Ó°¡´É¼º ÀÎÁõ ¿ä°ÇÀ» ÃæÁ·Çϱâ À§ÇØ ºí·ÏüÀÎ ¹× Á¦Ç° ¼ö¸íÁÖ±â ÃßÀû°ú °°Àº µðÁöÅÐ Åõ¸í¼º µµ±¸¸¦ Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. »ê¾÷°è°¡ Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ³ë·ÂÀ» °è¼Ó È®´ëÇϰí ÇÃ¶ó½ºÆ½ Æó±â¹° °ü¸®¿¡ ´ëÇÑ ¼¼°è Á¤Ã¥ÀÌ °­È­µÊ¿¡ µû¶ó Àç»ý Å×·¹ÇÁÅ»»ê ½ÃÀåÀº °ßÁ¶ÇÑ ¼ºÀå¼¼¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹»óµÇ¸ç ÇÃ¶ó½ºÆ½ ¹× ¼¶À¯ Á¦Ç° Á¦Á¶ÀÇ Áö¼Ó°¡´ÉÇÑ ¹Ì·¡·Î ³ª¾Æ°¥ ¼ö ÀÖ´Â ±æÀ» ¿­¾îÁÙ °ÍÀÔ´Ï´Ù.

ºÎ¹®

ÇÁ·Î¼¼½º(°¡¼öºÐÇØ ÇÁ·Î¼¼½º, ¿­ºÐÇØ ÇÁ·Î¼¼½º, ±âŸ ÇÁ·Î¼¼½º), ¿ëµµ(¼¶À¯ ¿ëµµ, Çʸ§ ¿ëµµ, ¼öÁö ¿ëµµ, ±âŸ ¿ëµµ), ÃÖÁ¾ ¿ëµµ(Æ÷Àå ÃÖÁ¾ ¿ëµµ, ¼¶À¯ ÃÖÁ¾ ¿ëµµ, ÀÚµ¿Â÷ ÃÖÁ¾ ¿ëµµ, °Ç¼³ ÃÖÁ¾ ¿ëµµ, ±âŸ ÃÖÁ¾ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM ¹× ¾÷°èº° SLM Äõ¸®¸¦ µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Recycled Terephthalic Acid Market to Reach US$2.8 Billion by 2030

The global market for Recycled Terephthalic Acid estimated at US$2.3 Billion in the year 2024, is expected to reach US$2.8 Billion by 2030, growing at a CAGR of 3.3% over the analysis period 2024-2030. Hydrolysis Process, one of the segments analyzed in the report, is expected to record a 3.1% CAGR and reach US$1.6 Billion by the end of the analysis period. Growth in the Pyrolysis Process segment is estimated at 3.9% CAGR over the analysis period.

The U.S. Market is Estimated at US$618.6 Million While China is Forecast to Grow at 6.1% CAGR

The Recycled Terephthalic Acid market in the U.S. is estimated at US$618.6 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$544.9 Million by the year 2030 trailing a CAGR of 6.1% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 1.3% and 2.6% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 1.9% CAGR.

Global Recycled Terephthalic Acid Market - Key Trends & Drivers Summarized

Why Is Recycled Terephthalic Acid Becoming a Game-Changer in Sustainable Plastics and Textiles?

Recycled terephthalic acid (rTPA) has emerged as a crucial component in the global push toward circular economy practices in the plastics and textiles industries. As concerns over plastic pollution and environmental sustainability grow, industries reliant on polyethylene terephthalate (PET) are increasingly turning to recycled alternatives to reduce their carbon footprint and dependence on virgin fossil-based resources. rTPA is primarily obtained from post-consumer PET waste, which undergoes chemical recycling processes to recover high-purity terephthalic acid for reuse in PET resin production. This shift toward rTPA is being driven by regulatory mandates that require higher recycled content in packaging, textiles, and other plastic-based applications. The beverage industry, in particular, has been at the forefront of adopting rTPA, with leading global brands pledging to incorporate significant percentages of recycled content in plastic bottles to meet sustainability goals. Additionally, the textile industry, which heavily relies on PET-based polyester fibers, is rapidly embracing rTPA to create eco-friendly, performance-driven fabrics. With global plastic waste management becoming an urgent priority, rTPA is poised to play an essential role in enabling industries to transition toward more sustainable production models.

How Are Technological Innovations Enhancing the Efficiency and Scalability of rTPA Production?

The advancement of chemical recycling technologies has significantly improved the efficiency, scalability, and quality of rTPA production, making it a viable alternative to virgin terephthalic acid. Traditional mechanical recycling methods, while effective for some applications, often degrade PET polymer chains, limiting the quality and usability of the recycled material. In contrast, depolymerization techniques, including enzymatic hydrolysis, glycolysis, methanolysis, and hydrothermal processes, enable the breakdown of PET waste into its monomer components, including high-purity terephthalic acid. These processes ensure that the recycled material retains the same chemical and physical properties as its virgin counterpart, making it suitable for applications requiring high-performance materials. Additionally, AI-powered sorting and purification systems have enhanced the ability to separate PET from mixed waste streams, improving feedstock purity and increasing the yield of rTPA. The integration of blockchain-based material traceability is also gaining traction, allowing manufacturers and consumers to verify the authenticity and sustainability of rTPA-based products. As chemical recycling infrastructure expands and technological advancements continue to refine rTPA production processes, the adoption of recycled terephthalic acid is expected to scale up, further accelerating its integration across multiple industries.

What Market Trends Are Driving the Shift Toward Recycled Terephthalic Acid?

The increasing focus on environmental regulations and corporate sustainability commitments has been a key driver behind the adoption of rTPA in industries reliant on PET-based products. Governments worldwide are imposing stricter mandates on plastic waste reduction, extended producer responsibility (EPR), and mandatory recycled content in consumer packaging, prompting companies to seek rTPA as a sustainable alternative. The fashion industry is also playing a significant role in driving rTPA demand, with leading brands launching eco-friendly polyester collections made from recycled PET. Additionally, the rise of consumer awareness regarding plastic pollution has led to a growing preference for products made with recycled content, pushing companies to integrate rTPA into their supply chains as part of their corporate social responsibility (CSR) strategies. The expansion of bottle-to-bottle recycling initiatives, where post-consumer PET bottles are converted back into food-grade PET packaging, is further boosting demand for high-quality rTPA. In the automotive sector, manufacturers are incorporating rTPA-based polyester fibers into interior fabrics and seat upholstery, aligning with sustainability goals while maintaining performance standards. As industries increasingly prioritize circular economy principles, rTPA is becoming a strategic material for companies looking to reduce environmental impact without compromising product functionality and durability.

What Are the Key Growth Drivers of the Recycled Terephthalic Acid Market?

The growth in the global recycled terephthalic acid market is driven by several factors, including advancements in chemical recycling technologies, regulatory mandates promoting circular economy models, and increasing consumer demand for sustainable products. The expansion of PET bottle recycling programs and investment in closed-loop recycling infrastructure has significantly increased the availability of high-quality rTPA for commercial applications. Additionally, the textile industry’s shift toward sustainable polyester fibers has created new market opportunities for rTPA in apparel, sportswear, and home textiles. The automotive sector’s emphasis on lightweight, recyclable materials is further fueling demand for rTPA-based polyester components. Moreover, companies are leveraging digital transparency tools, such as blockchain and product lifecycle tracking, to enhance the credibility of rTPA-based products and meet sustainability certification requirements. As industries continue to scale up their sustainability initiatives and global policies tighten around plastic waste management, the recycled terephthalic acid market is expected to witness robust growth, paving the way for a more sustainable future in plastics and textiles manufacturing.

SCOPE OF STUDY:

The report analyzes the Recycled Terephthalic Acid market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Process (Hydrolysis Process, Pyrolysis Process, Other Processes); Application (Fibers Application, Films Application, Resins Application, Other Applications); End-Use (Packaging End-Use, Textile End-Use, Automotive End-Use, Construction End-Use, Other End-Uses)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 37 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â