¼¼°èÀÇ Áý´Ü°ËÁø ½ÃÀå
Population Screening
»óǰÄÚµå : 1777453
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 467 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,204,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,612,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Áý´Ü°ËÁø ¼¼°è ½ÃÀåÀº 2030³â±îÁö 353¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 272¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â Áý´Ü°ËÁø ¼¼°è ½ÃÀåÀº 2024-2030³â ºÐ¼® ±â°£ µ¿¾È CAGR 4.5%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 353¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ±¹°¡º° °ËÁøÀº CAGR 5.1%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á±îÁö 257¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÁÖº° °ËÁø ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 2.9%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 74¾ï ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 8.2%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ Áý´Ü°ËÁø ½ÃÀåÀº 2024³â¿¡ 74¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 73¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 8.2%¸¦ ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 1.8%¿Í 3.5%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 2.6%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

Áý´Ü°ËÁø ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

Áý´Ü°ËÁøÀ̶õ ¹«¾ùÀ̸ç, ¿Ö °øÁß º¸°Ç¿¡ Áß¿äÇѰ¡?

Áý´Ü°ËÁøÀº ¹«Áõ»ó °³ÀÎÀÇ Áúº´, À¯ÀüÀû »óÅÂ, À§Çè ¿äÀÎÀ» Á¶±â¿¡ ¹ß°ßÇϱâ À§ÇØ °í¾ÈµÈ °øÁߺ¸°ÇÀÇ »çÀü ¿¹¹æÀû Á¢±Ù¹ýÀÔ´Ï´Ù. Áõ»óÀÌ ÀÖ´Â °³ÀÎÀÇ »óŸ¦ È®ÀÎÇÏ´Â Áø´Ü °Ë»ç¿Í ´Þ¸®, Áý´Ü°ËÁø´Â Áõ»óÀÌ ³ªÅ¸³ª±â Àü¿¡ °Ç°­ ¹®Á¦¸¦ ¹ß°ßÇÏ¿© Á¶±â °³ÀÔ, Ä¡·á °á°ú °³¼±, ÀÇ·á ºñ¿ë Àý°¨À» °¡´ÉÇÏ°Ô ÇÏ´Â °ÍÀ» ¸ñÇ¥·Î ÇÕ´Ï´Ù. ÀϹÝÀûÀÎ ¿¹·Î´Â ¾Ï °ËÁø(À¯¹æÃÔ¿µ¼ú, ´ëÀå³»½Ã°æ, HPV °Ë»ç), ´ë»ç ÀÌ»ó ¹× À¯ÀüÀÚ ÀÌ»ó ½Å»ý¾Æ °ËÁø, ½ÉÇ÷°ü À§Çè °ËÁø, °¨¿°º´ °ËÁø(HIV, °£¿°, °áÇÙ °Ë»ç) µîÀÌ ÀÖ½À´Ï´Ù.

¼¼°è °¢±¹ÀÇ Á¤ºÎ¿Í ÀÇ·á ±â°üÀº Áúº´ ºÎ´ã°ú »ç¸Á·üÀ» ÁÙÀ̱â À§ÇØ °ËÁø ÇÁ·Î±×·¥À» ½ÃÇàÇϰí ÀÖ½À´Ï´Ù. Áý´Ü°ËÁø ÇÁ·Î±×·¥Àº ¿ª»çÀûÀ¸·Î ÀڱðæºÎ¾Ï °¨¼Ò, ÁöÁú ÇÁ·ÎÆÄÀϸµÀ» ÅëÇÑ ½ÉÇ÷°ü °Ç°­ °³¼±, À¯Àü¼º Áúȯ ¿¹¹æÀ» À§ÇÑ À¯ÀüÀû º¸ÀÎÀÚ °ËÁøÀ» ÅëÇØ ÀڱðæºÎ¾ÏÀ» ¿¹¹æÇÏ´Â µ¥ È¿°úÀûÀ̾ú½À´Ï´Ù. ¸¸¼ºÁúȯ ¹× ³ëÈ­ °ü·Ã ÁúȯÀÇ À¯º´·üÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ÀÇ·á ½Ã½ºÅÛÀº ´õ ¸¹Àº Áúº´À» ´Ù·ç°í, »õ·Î¿î ±â¼úÀ» ÅëÇÕÇϰí, Àα¸Åë°èÇÐÀû, À¯ÀüÀû, »ýȰ½À°üÀû ¿äÀο¡ µû¶ó À§Çè Æò°¡¸¦ °³º°È­Çϱâ À§ÇØ Áý´Ü°ËÁø ³ë·ÂÀ» È®´ëÇϰí ÀÖ½À´Ï´Ù.

±â¼úÀÌ Áý´Ü°ËÁø ¹æ¹ýÀ» ¾î¶»°Ô º¯È­½Ã۰í Àִ°¡?

ÀÇ·á ±â¼ú, ÀΰøÁö´É(AI), ºòµ¥ÀÌÅÍ ºÐ¼®ÀÇ ¹ßÀüÀ¸·Î Áý´Ü°ËÁø ÇÁ·Î±×·¥ÀÇ Á¤È®¼º, È¿À²¼º, È®À强ÀÌ Å©°Ô Çâ»óµÇ°í ÀÖ½À´Ï´Ù. °¡Àå ȹ±âÀûÀÎ ¹ßÀü Áß Çϳª´Â ¹æ»ç¼±°ú º´¸®Çп¡¼­ AI¸¦ Ȱ¿ëÇÑ ¿µ»ó Áø´Ü°ú ±â°è ÇнÀ ¾Ë°í¸®ÁòÀ» »ç¿ëÇÏ´Â °ÍÀÔ´Ï´Ù. AI´Â À¯¹æÃÔ¿µ, Æó ½ºÄµ, ¸Á¸· ¿µ»óÀ» ±âÁ¸ ¹æ¹ýº¸´Ù ³ôÀº Á¤È®µµ·Î ºÐ¼®ÇÒ ¼ö ÀÖ¾î À§¾ç¼ºÀ» ÁÙÀÌ°í ¾Ï, ´ç´¢¸Á¸·º´Áõ, ½Å°æÅðÇ༺ ÁúȯÀ» Á¶±â¿¡ ¹ß°ßÇÒ ¼ö ÀÖ½À´Ï´Ù.

¶Ç ´Ù¸¥ Å« µµ¾àÀº ¾×ü »ý°Ë°ú ´ÙÁß ¾Ï Á¶±â¹ß°ß(MCED) °Ë»çÀÇ µîÀåÀÔ´Ï´Ù. Ç÷¾× »ùÇÃÀ» ÀÌ¿ëÇØ Á¶±â ¾ÏÀ» ³ªÅ¸³»´Â ¼øÈ¯ Á¾¾ç DNA(ctDNA) ¹× ±âŸ ¹ÙÀÌ¿À¸¶Ä¿¸¦ °ËÃâÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ºñħ½ÀÀû °Ë»ç´Â ±âÁ¸ÀÇ Á¶Á÷ »ý°ËÀ» ´ëüÇÒ ¼ö ÀÖ´Â º¸´Ù ¾ÈÀüÇÏ°í °£ÆíÇÑ °Ë»ç·Î ´ë±Ô¸ð °ËÁø ÇÁ·Î±×·¥¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. ¶ÇÇÑ, À¯ÀüüÇÐ ¹× ÀüÀåÀ¯Àüü ¿°±â¼­¿­ºÐ¼®(WGS)ÀÇ ¹ßÀüÀ¸·Î À¯Àü¼º Áúȯ, ¾à¸®À¯Àüü ¹ÝÀÀ, ¾ËÃ÷ÇÏÀ̸Ӻ´ ¹× ´ç´¢º´°ú °°Àº º¹ÀâÇÑ Áúº´¿¡ ´ëÇÑ ¼ÒÀÎÀ» ¼±º°ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.

¿þ¾î·¯ºí Çコ ±â¼ú°ú µðÁöÅÐ ¹ÙÀÌ¿À¸¶Ä¿ÀÇ ÅëÇÕµµ °ËÁø ¹æ¹ýÀ» À籸¼ºÇϰí ÀÖ½À´Ï´Ù. ½º¸¶Æ®¿öÄ¡, Áö¼ÓÇ÷´çÃøÁ¤±â, ECG žÀç ¿þ¾î·¯ºí µîÀÇ ÀåÄ¡´Â Áö¼ÓÀûÀÎ °Ç°­ ¸ð´ÏÅ͸µ, ½Ç½Ã°£ µ¥ÀÌÅÍ ¼öÁý, ºÎÁ¤¸Æ, °íÇ÷¾Ð, ´ë»ç ÀÌ»óÀ» Á¶±â¿¡ ¹ß°ßÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº ÀÏȸ¼º ¼±º° °Ë»ç¿¡¼­ Áö¼ÓÀûÀÎ °Ç°­ ¸ð´ÏÅ͸µÀ¸·Î ÀüȯÇÒ ¼ö ÀÖÀ¸¸ç, ÀÇ·áÁøÀÌ ºñÁ¤»óÀûÀÎ »ý¸®Àû º¯È­ÀÇ Â¡Èĸ¦ Á¶±â¿¡ °¨ÁöÇÏ°í °³ÀÔÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù.

Áý´Ü°ËÁø È®´ë¸¦ Çü¼ºÇÏ´Â ÁÖ¿ä µ¿ÇâÀº ¹«¾ùÀΰ¡?

Áý´Ü°ËÁøÀÇ °¡Àå Áß¿äÇÑ Æ®·»µå Áß Çϳª´Â °³ÀÎÈ­µÈ À§Çè ±â¹Ý ¼±º°°Ë»ç ÇÁ·ÎÅäÄÝ·Î ÀüȯÇÏ´Â °ÍÀÔ´Ï´Ù. ±âÁ¸¿¡´Â °ËÁø °¡À̵å¶óÀÎÀÌ ¿¬·ÉÀ̳ª ±¤¹üÀ§ÇÑ Áý´ÜÀÇ ±âÁØÀ» ±âÁØÀ¸·Î »ï¾Ò´Ù¸é, Á¤¹ÐÀÇ·á¿Í À§Çèµµ °èÃþÈ­¶ó´Â »õ·Î¿î ¿¬±¸·Î ÀÎÇØ °³Àκ° ¸ÂÃã °ËÁø ±Ç°í°¡ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, 40¼¼ºÎÅÍ º¸ÆíÀûÀÎ À¯¹æ¾Ï °ËÁø ´ë½Å À¯ÀüÀû À§Çèµµ Æò°¡¿Í °¡Á··Â ºÐ¼®À» ÅëÇØ °³ÀÎÀÌ ´õ ÀÏÂï °ËÁøÀ» ½ÃÀÛÇØ¾ß ÇÏ´ÂÁö, ´õ ÀÚÁÖ °ËÁøÀ» ¹Þ¾Æ¾ß ÇÏ´ÂÁö¸¦ °áÁ¤ÇÏ´Â µ¥ µµ¿òÀ» ÁÖ°í ÀÖ½À´Ï´Ù. ÀÌ Á¢±Ù¹ýÀ» ÅëÇØ ºÒÇÊ¿äÇÑ °Ë»ç¸¦ ÃÖ¼ÒÈ­Çϸ鼭 °íÀ§Ç豺 ȯÀÚÀÇ °á°ú¸¦ °³¼±ÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀçÅà °ËÁø ¹× ÀÚ°¡ °ËÁø È®´ëµµ ÀÇ·á ¼­ºñ½º Á¢±Ù¼ºÀÇ º¯È­¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. COVID-19 »çÅ·ΠÀÎÇØ ÀçÅÃÁø´Ü °Ë»ç, ¿ø°ÝÀÇ·á »ó´ã, ¿ìÆí °Ëü äÃë ŰƮ µµÀÔÀÌ °¡¼ÓÈ­µÇ¾ú°í, ÀÌÈÄ HPV, ´ëÀå¾Ï, °¨¿°¼º Áúȯ °ËÁøÀ¸·Î È®´ëµÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ºÐ»êÇü ¸ðµ¨Àº ƯÈ÷ ³óÃÌ Áö¿ªÀ̳ª ÀÇ·á ½Ã¼³¿¡ ´ëÇÑ Á¢±Ù¼ºÀÌ Á¦ÇÑÀûÀÎ »ç¶÷µé¿¡°Ô ´õ ³ôÀº Âü¿©À², ÀÇ·á °ÝÂ÷ ÇØ¼Ò, ÆíÀǼº Çâ»óÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.

¶Ç ´Ù¸¥ ¼ºÀå Ãß¼¼´Â Á÷Àå °Ç°­ ÁõÁø ÇÁ·Î±×·¥À̳ª ¹Î°ü ÆÄÆ®³Ê½Ê¿¡ Áý´Ü°ËÁøÀ» ÅëÇÕÇÏ´Â °ÍÀÔ´Ï´Ù. ´ë±â¾÷°ú º¸Çè»çµéÀº Áúº´ÀÇ Á¶±â ¹ß°ßÀÌ Àå±âÀûÀ¸·Î ÀÇ·áºñ¸¦ Àý°¨ÇÏ°í ±Ù·ÎÀÚÀÇ »ý»ê¼ºÀ» Çâ»ó½ÃŲ´Ù´Â »ç½ÇÀ» ÀνÄÇϰí, Á÷¿ø º¹ÁöÀÇ ÀÏȯÀ¸·Î ¿¹¹æ °ËÁøÀ» Á¦°øÇϰí ÀÖ½À´Ï´Ù. ¸¶Âù°¡Áö·Î, °øÁß º¸°Ç ±â°üÀº ¹Î°£ »ý¸í°øÇÐ ±â¾÷µé°ú Çù·ÂÇÏ¿© ´ë±Ô¸ð·Î ¹èÆ÷ÇÒ ¼ö ÀÖ´Â ºñ¿ë È¿À²ÀûÀÎ AI ±â¹Ý °ËÁø ¼Ö·ç¼ÇÀ» °³¹ßÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÆÄÆ®³Ê½ÊÀº °ËÁø ÀÌ´Ï¼ÅÆ¼ºê¿¡ ´ëÇÑ Á¢±Ù¼ºÀ» È®´ëÇÏ°í °øÁߺ¸°Ç ¼º°ú¸¦ ÃÖÀûÈ­ÇÏ´Â µ¥ µµ¿òÀÌ µÇ°í ÀÖ½À´Ï´Ù.

Áý´Ü°ËÁø ½ÃÀåÀÇ ¼ºÀåÀ» ÃËÁøÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

Áý´Ü°ËÁø ½ÃÀåÀÇ ¼ºÀåÀº ±â¼ú ¹ßÀü, Á¤ºÎ ÀÚ±Ý Áõ°¡, Áúº´ º¸Àå ¹üÀ§ È®´ë, ºñ°¨¿°¼º Áúȯ(NCDs)ÀÇ À¯º´·ü Áõ°¡ µî ¿©·¯ ¿äÀο¡ ÀÇÇØ ÀÌ·ç¾îÁý´Ï´Ù. ¾Ï, ½ÉÇ÷°üÁúȯ, ´ç´¢º´°ú °°Àº ¸¸¼ºÁúȯÀÇ ¼¼°èÀû ºÎ´ã Áõ°¡´Â Á¶±â ¹ß°ßÀ» ÅëÇÑ Àû±ØÀûÀÎ Áúº´ °ü¸®ÀÇ Çʿ伺À» ³ôÀ̰í ÀÖÀ¸¸ç, Á¤ºÎ¿Í ÀÇ·á ±â°üÀº °ËÁø¿¡ ¿ì¼±¼øÀ§¸¦ µÎ°í ¿¹¹æ ÀÇ·á¿¡ ´õ ¸¹Àº ¿¹»êÀ» ¹èÁ¤Çϵµ·Ï Ã˱¸Çϰí ÀÖ½À´Ï´Ù.

¶Ç ´Ù¸¥ ÁÖ¿ä ¿øµ¿·ÂÀº À¯ÀüÀÚ ½ÃÄö½Ì ¹× ¹ÙÀÌ¿À¸¶Ä¿ ºÐ¼® ºñ¿ëÀÌ ³·¾ÆÁö°í °í±Þ °ËÁø ±â¼úÀÌ ´õ Àú·ÅÇÏ°í ½±°Ô ÀÌ¿ëÇÒ ¼ö ÀÖ°Ô µÇ¾ú´Ù´Â Á¡ÀÔ´Ï´Ù. Â÷¼¼´ë ¿°±â¼­¿­ºÐ¼®(NGS)°ú AI¸¦ Ȱ¿ëÇÑ Áø´ÜÀº ÇöÀç ÀÏ»óÀûÀÎ °ËÁø ÇÁ·Î±×·¥¿¡ ÅëÇյǾî À¯ÀüÀû ¼ÒÀÎ, ¾Ï µ¹¿¬º¯ÀÌ, ÀÚ°¡¸é¿ª ¸¶Ä¿¸¦ Á¶±â¿¡ ½Äº°ÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ÀÌ ¶§¹®¿¡ ƯÈ÷ ¹Ì±¹, À¯·´, ÀϺ» µî ½ÅÈï ÇコÄÉ¾î ½ÃÀå¿¡¼­´Â À¯ÀüÀÚ °ËÁø ¹× Á¤¹Ð °Ë»ç ±â¼úÀÇ Ã¤Å÷üÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù.

±ÔÁ¦¿Í Á¤Ã¥ °³Çõµµ Á¶Á÷Àû °ËÁø ÇÁ·Î±×·¥ È®´ë¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. ¼¼°è °¢±¹ Á¤ºÎ´Â ¾Ï °ËÁø º¸Çè Àû¿ë, ½Å»ý¾Æ °ËÁø È®´ë, °¨¿°º´ °Ë»ç Àǹ«È­ µîÀ» ½ÃÇàÇϰí ÀÖÀ¸¸ç, Á¶±â¹ß°ß ¼­ºñ½ºÀÇ ÇýÅÃÀ» ¹Þ´Â Àα¸ÀÇ ºñÀ²ÀÌ ²ÙÁØÈ÷ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ°ú AI ±â¹Ý µ¥ÀÌÅÍ ºÐ¼®ÀÇ ¹ßÀüÀ¸·Î ÀüÀÚ ÀÇ·á ±â·Ï(EHR)ÀÇ ÅëÇÕÀÌ °³¼±µÇ¾î ȯÀÚÀÇ °ËÁø ±â·Ï, À§Çè ¿äÀÎ, ÈÄ¼Ó °³ÀÔÀ» ´õ Àß ÃßÀûÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.

¶ÇÇÑ, ¼ÒºñÀÚ ÁÖµµÇü ÇコÄɾî¿Í µðÁöÅÐ Çコ Ç÷§ÆûÀÇ ¿ªÇÒÀº °³ÀÎÀÇ °Ç°­°ËÁø ÇÁ·Î±×·¥ Âü¿© ¹æ½ÄÀ» À籸¼ºÇϰí ÀÖ½À´Ï´Ù. ¼ÒºñÀÚ Á÷Á¢ ÀÇ·Ú(DTC) °Ç°­°ËÁø ¾÷üÀÇ µîÀåÀº ÀÇ»çÀÇ ¼Ò°³ ¾øÀ̵µ Áý¿¡¼­ °ËÁø ŰƮ³ª À¯ÀüÀû À§Çèµµ Æò°¡¸¦ ±¸¸ÅÇÒ ¼ö ÀÖ°ÔÇÔÀ¸·Î½á °³ÀÎÀÌ ÀÚ½ÅÀÇ °Ç°­À» °ü¸®ÇÒ ¼ö ÀÖ´Â ±ÇÇÑÀ» ºÎ¿©Çϰí ÀÖ½À´Ï´Ù. ¿¹¹æÀû °Ç°­°ü¸®¿Í Àå¼ö¿¡ ÃÊÁ¡À» ¸ÂÃá Áø´Ü¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ÀνÄÀÌ ³ô¾ÆÁü¿¡ µû¶ó, Æí¸®ÇÏ°í ±â¼ú ±â¹ÝÀÇ °ËÁø ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä´Â Àü ¼¼°èÀûÀ¸·Î °¡¼ÓÈ­µÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ºÎ¹®

Áö¿ª À¯Çü(±¹°¡º° °ËÁø, ÁÖº° °ËÁø), Á¦Ç° À¯Çü(Çϵå¿þ¾î ±â±â, °Ë»ç/½ÇÇè½Ç ¼­ºñ½º, ºÐ¼®/ÇØ¼®), °ËÁø À¯Çü(´ë·® °ËÁø, ÇÁ¸®¹Ì¾ö °ËÁø), »ç¾÷ À¯Çü(º´¿ø, Á¶»ç±â°ü, Áø´Ü ½ÇÇè½Ç)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

¿ì¸®´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI Åø·Î ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM ¹× ¾÷°è °íÀ¯ÀÇ SLMÀ» Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹üÀ» µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Population Screening Market to Reach US$35.3 Billion by 2030

The global market for Population Screening estimated at US$27.2 Billion in the year 2024, is expected to reach US$35.3 Billion by 2030, growing at a CAGR of 4.5% over the analysis period 2024-2030. National Screening, one of the segments analyzed in the report, is expected to record a 5.1% CAGR and reach US$25.7 Billion by the end of the analysis period. Growth in the State-wise Screening segment is estimated at 2.9% CAGR over the analysis period.

The U.S. Market is Estimated at US$7.4 Billion While China is Forecast to Grow at 8.2% CAGR

The Population Screening market in the U.S. is estimated at US$7.4 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$7.3 Billion by the year 2030 trailing a CAGR of 8.2% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 1.8% and 3.5% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 2.6% CAGR.

Population Screening Market - Key Trends & Drivers Summarized

What Is Population Screening and Why Is It Crucial for Public Health?

Population screening is a proactive approach in public health designed to identify diseases, genetic conditions, or risk factors in asymptomatic individuals at an early stage. Unlike diagnostic tests, which confirm a condition in individuals with symptoms, population screening aims to detect health concerns before symptoms develop, allowing for early intervention, improved treatment outcomes, and reduced healthcare costs. Common examples include cancer screening (mammograms, colonoscopies, and HPV tests), newborn screening for metabolic and genetic disorders, cardiovascular risk screening, and infectious disease screening (HIV, hepatitis, and tuberculosis tests).

Governments and healthcare organizations worldwide implement screening programs to reduce disease burden and mortality rates. Mass screening programs have historically been effective in reducing cervical cancer through Pap smears, improving cardiovascular health through lipid profiling, and preventing hereditary conditions through genetic carrier screening. With the increasing prevalence of chronic diseases and age-related conditions, healthcare systems are expanding population screening efforts to cover more conditions, integrate new technologies, and personalize risk assessment based on demographic, genetic, and lifestyle factors.

How Is Technology Revolutionizing Population Screening Methods?

Advancements in medical technology, artificial intelligence (AI), and big data analytics are significantly improving the accuracy, efficiency, and scalability of population screening programs. One of the most transformative developments is the use of AI-powered imaging and machine learning algorithms in radiology and pathology. AI can analyze mammograms, lung scans, and retinal images with higher accuracy than traditional methods, reducing false positives and enabling earlier detection of cancer, diabetic retinopathy, and neurodegenerative diseases.

Another major breakthrough is the rise of liquid biopsy and multi-cancer early detection (MCED) tests, which use blood samples to detect circulating tumor DNA (ctDNA) and other biomarkers indicative of early-stage cancers. These non-invasive tests offer a safer and more convenient alternative to traditional tissue biopsies, making them ideal for large-scale screening programs. Additionally, advancements in genomics and whole-genome sequencing (WGS) have made it possible to screen individuals for inherited diseases, pharmacogenomic responses, and predisposition to complex conditions like Alzheimer's and diabetes.

The integration of wearable health technology and digital biomarkers is also reshaping how screening is conducted. Devices such as smartwatches, continuous glucose monitors, and ECG-equipped wearables allow for continuous health monitoring, real-time data collection, and early detection of arrhythmias, hypertension, and metabolic disorders. These innovations enable a shift from one-time screening tests to ongoing health surveillance, allowing healthcare providers to intervene at the earliest signs of abnormal physiological changes.

What Are the Key Trends Shaping the Expansion of Population Screening?

One of the most significant trends in population screening is the move toward personalized and risk-based screening protocols. Traditionally, screening guidelines were based on age and broad population criteria, but emerging research in precision medicine and risk stratification is leading to tailored screening recommendations. For example, instead of universal breast cancer screening starting at age 40, genetic risk assessment and family history analysis now help determine whether an individual should start earlier or undergo more frequent screenings. This approach minimizes unnecessary tests while improving outcomes for high-risk individuals.

The expansion of home-based and self-administered screening tests is also driving a shift in healthcare accessibility. The COVID-19 pandemic accelerated the adoption of at-home diagnostic tests, telemedicine consultations, and mail-in sample collection kits, which have since been expanded to HPV, colorectal cancer, and infectious disease screening. These decentralized models allow for higher participation rates, reduced healthcare disparities, and increased convenience, especially for populations in rural areas or those with limited access to medical facilities.

Another growing trend is the integration of population screening into workplace wellness programs and public-private partnerships. Large corporations and insurance providers are now offering preventive health screenings as part of employee benefits, recognizing that early disease detection reduces long-term medical costs and improves workforce productivity. Similarly, public health agencies are collaborating with private biotech firms to develop cost-effective, AI-powered screening solutions that can be deployed at scale. These partnerships help expand access to screening initiatives and optimize public health outcomes.

What Factors Are Driving the Growth of the Population Screening Market?

The growth in the population screening market is driven by several factors, including technological advancements, increased government funding, expanding disease coverage, and the rising prevalence of non-communicable diseases (NCDs). The increasing global burden of chronic diseases such as cancer, cardiovascular disease, and diabetes has heightened the need for proactive disease management through early detection, prompting governments and healthcare organizations to prioritize screening initiatives and allocate larger budgets for preventive care.

Another key driver is the falling costs of genetic sequencing and biomarker analysis, making advanced screening technologies more affordable and accessible. Next-generation sequencing (NGS) and AI-powered diagnostics are now being integrated into routine screening programs, allowing for early identification of genetic predispositions, cancer mutations, and autoimmune markers. This has led to higher adoption rates of genetic and precision screening techniques, particularly in developed healthcare markets such as the United States, Europe, and Japan.

Regulatory initiatives and policy reforms are also fueling the expansion of organized screening programs. Governments worldwide are implementing mandates for cancer screening coverage, newborn screening expansion, and infectious disease testing, ensuring that a larger percentage of the population benefits from early detection services. Additionally, advances in cloud computing and AI-driven data analytics are improving electronic health records (EHR) integration, allowing for better tracking of patient screening histories, risk factors, and follow-up interventions.

Furthermore, the role of consumer-driven healthcare and digital health platforms is reshaping how individuals participate in screening programs. The rise of direct-to-consumer (DTC) health testing companies has empowered individuals to take control of their health by purchasing at-home screening kits and genetic risk assessments without requiring physician referrals. As consumer awareness about preventive healthcare and longevity-focused diagnostics grows, the demand for convenient, technology-enabled screening solutions is expected to continue accelerating worldwide.

SCOPE OF STUDY:

The report analyzes the Population Screening market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Region Type (National Screening, State-wise Screening); Product Type (Hardware Equipment, Testing / Lab Services, Analytics / Interpretation); Screening Type (Mass Screening, Premium Screening); Business Type (Hospitals, Research Institutes, Diagnostic Labs)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 44 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â