¼¼°èÀÇ ½Ä¹° À¯·¡ ºÎÇüÁ¦ ½ÃÀå
Plant-based Excipients
»óǰÄÚµå : 1777433
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 314 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,239,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,719,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ½Ä¹° À¯·¡ ºÎÇüÁ¦ ½ÃÀåÀº 2030³â±îÁö 23¾ï ´Þ·¯¿¡ µµ´Þ

2024³â¿¡ 19¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ½Ä¹° À¯·¡ ºÎÇüÁ¦ ¼¼°è ½ÃÀåÀº ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGR 3.0%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 23¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀΠź¼öÈ­¹°Àº CAGR 2.6%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 6¾ï 2,500¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ´Ü¹éÁú ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 3.5%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 5¾ï 1,440¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR5.5%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ½Ä¹° À¯·¡ ºÎÇüÁ¦½ÃÀåÀº 2024³â¿¡´Â 5¾ï 1,440¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 4¾ï 3,790¸¸ ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 5.5%·Î ÃßÁ¤µË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î¼­´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 1.2%¿Í 2.3%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 1.7%¸¦ ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù.

¼¼°èÀÇ ½Ä¹° À¯·¡ ºÎÇüÁ¦½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

½Ä¹° À¯·¡ ºÎÇüÁ¦ ½ÃÀåÀº Ŭ¸° ¶óº§ ÀǾàǰ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, õ¿¬ ¼ººÐ¿¡ ´ëÇÑ ¼±È£µµ Áõ°¡, Áö¼Ó °¡´ÉÇÑ ÀǾàǰ Á¦Á¦ ±â¼ú ¹ßÀü µîÀ¸·Î Å©°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ºÎÇüÁ¦´Â ÀǾàǰ, °Ç°­º¸Á¶½Äǰ, È­ÀåǰÀÇ Á¦Á¦¿¡¼­ °áÇÕÁ¦, ÃæÀüÁ¦, ºØ±«Á¦, ¾ÈÁ¤Á¦, À¯È­Á¦, ÄÚÆÃÁ¦·Î¼­ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ¼ÒºñÀÚ¿Í ±ÔÁ¦ ´ç±¹ÀÌ È¯°æ ģȭÀûÀÌ°í »ýü ÀûÇÕ¼ºÀÌ ¶Ù¾î³ª¸ç ¹«ÇØÇÑ ´ë¾ÈÀ» ¿ä±¸ÇÔ¿¡ µû¶ó, Á¦¾à»çµéÀº ÇÕ¼º ¹× µ¿¹°¼º ºÎÇüÁ¦ ´ë½Å ½Ä¹°¼º ºÎÇüÁ¦·Î ÀüȯÇϰí ÀÖ½À´Ï´Ù.

½ÃÀåÀ» ÁÖµµÇÏ´Â °¡Àå Áß¿äÇÑ Æ®·»µå Áß Çϳª´Â Ŭ¸° ¶óº§ ¿îµ¿À¸·Î, ¼ÒºñÀÚµéÀº ÀǾàǰ°ú °Ç°­º¸Á¶½Äǰ¿¡ õ¿¬, ¹«È­ÇÐ, ½Ä¹°¼º ´ë¾ÈÀ» ¿øÇϰí ÀÖ½À´Ï´Ù. Á©¶óƾ(µ¿¹°¼º Äݶó°Õ À¯·¡), ÇÕ¼º Æú¸®¸Ó¿Í °°Àº ÀüÅëÀûÀÎ ºÎÇüÁ¦´Â »ýºÐÇØ¼º, µ¶¼º °¨¼Ò, Áö¼Ó°¡´É¼ºÀÇ ÀÌÁ¡À» Á¦°øÇÏ´Â ¼¿·ê·Î¿À½º, ÀüºÐ, Æåƾ, °Ëº£½º ºÎÇüÁ¦·Î ´ëüµÇ°í ÀÖ½À´Ï´Ù.

¶Ç ´Ù¸¥ Áß¿äÇÑ ¿øµ¿·ÂÀº ÇÕ¼º ºÎÇüÁ¦, ƯÈ÷ °Ç°­ À§ÇèÀ» ÃÊ·¡ÇÒ ¼ö ÀÖ´Â ¼®À¯È­ÇÐ À¯·¡ °áÇÕÁ¦ ¹× ÃæÀüÁ¦¿¡ ´ëÇÑ ±ÔÁ¦ ´ç±¹ÀÇ °¨½Ã°¡ °­È­µÇ°í ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ¹Ì±¹ FDA, À¯·´ÀǾàǰû(EMA), Àεµ¾àÀüÀ§¿øÈ¸(IPC) µî ±ÔÁ¦±â°üÀº ÀǾàǰ¿¡ õ¿¬ ¹× »ýüÀûÇÕ¼ºÀÌ ³ôÀº ºÎÇüÁ¦¸¦ Áß¿ä½ÃÇϰí ÀÖ½À´Ï´Ù. ÀÌ ¶§¹®¿¡ ƯÈ÷ ±¸°­ºØÇØÁ¤(ODT), ¼­¹æÇü Á¦Á¦, »ýü ÀÌ¿ë·üÀ» ³ôÀÌ´Â ¾à¹° ¿î¹Ýü µî ½Ä¹° À¯·¡ ºÎÇüÁ¦ Çõ½Å¿¡ ´ëÇÑ ¿¬±¸°³¹ß ÅõÀÚ°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

¶ÇÇÑ, Áö¼Ó°¡´É¼º°ú ±×¸° Äɹ̽ºÆ®¸®¿¡ ´ëÇÑ ³ë·ÂÀº ½Ä¹° À¯·¡ ºÎÇüÁ¦·ÎÀÇ ÀüȯÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. Á¦¾à¾÷°è´Â ÀÌ»êȭź¼Ò ¹èÃâ·®À» ÁÙÀ̰í, ¼®À¯ À¯·¡ ¿ø·á¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÃÖ¼ÒÈ­Çϸç, »ýºÐÇØ¼º Á¦Á¦ ¿ø·á¸¦ äÅÃÇØ¾ß ÇÑ´Ù´Â ¾Ð¹ÚÀ» ¹Þ°í ÀÖ½À´Ï´Ù. ¾Ë·Î¿¡ º£¶ó Á©, ½Ò°Ü ¿Î½º, º¯¼º ÀüºÐ°ú °°Àº ½Ä¹°¼º ºÎÇüÁ¦´Â Àç»ý °¡´ÉÇϰí À¯ÀüÀÚ º¯ÇüÀÌ ¾ø´Â ģȯ°æÀûÀÎ ¼Ö·ç¼ÇÀ» Á¦°øÇÔÀ¸·Î½á Á¦¾à ¹× °Ç°­ º¸Á¶ ½Äǰ Á¦Á¶¾÷ü¿¡°Ô ¸Å·ÂÀûÀÎ ¼±ÅÃÀÌ µÇ°í ÀÖ½À´Ï´Ù.

½Ä¹°¼º ºÎÇüÁ¦°¡ ÀǾàǰ-°Ç°­±â´É½Äǰ Á¦Á¦¸¦ ¾î¶»°Ô º¯È­½Ã۰í Àִ°¡?

½Ä¹° À¯·¡ ºÎÇüÁ¦ÀÇ »ýü ÀûÇÕ¼º, ¾ÈÁ¤¼º, ¾à¹° Àü´Þ ¹× »ýü ÀÌ¿ë·üÀÇ Çâ»óÀ¸·Î Á¦¾à »ê¾÷°ú °Ç°­ º¸Á¶ ½Äǰ »ê¾÷¿¡¼­ ½Ä¹° À¯·¡ ºÎÇüÁ¦ÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ ºÎÇüÁ¦´Â Á¤Á¦, ĸ½¶, Çöʾ×, ¼­½ºÆæ¼Ç, ¿Ü¿ë Á©, ¹æÃâ Á¦¾î ¾à¹° ½Ã½ºÅÛ µî¿¡ ³Î¸® »ç¿ëµË´Ï´Ù.

°¡Àå Áß¿äÇÑ ¿ëµµ Áß Çϳª´Â °æ±¸¿ë °íÇüÁ¦(OSD)·Î, ½Ä¹° À¯·¡ °áÇÕÁ¦ ¹× ºØ±«Á¦´Â Á¤Á¦ÀÇ ÀÀÁý·Â, ¿ëÇØ ¼Óµµ ¹× ȯÀÚ ¼øÀÀµµ¸¦ Çâ»ó½Ãŵ´Ï´Ù. ¹Ì°áÁ¤ ¼¿·ê·Î¿À½º(MCC), ÀüºÐ À¯µµÃ¼, Æåƾ°ú °°Àº õ¿¬ ºÎÇüÁ¦´Â »ýºÐÇØ¼º°ú Àú¾Ë·¹¸£±â¼ºÀ¸·Î ÀÎÇØ ÇÕ¼º Æú¸®ºñ´ÒÇǷѸ®µ·(PVP)°ú ÇÏÀ̵å·Ï½ÃÇÁ·ÎÆÄÀÏ¸ÞÆ¿¼¿·ê·Î¿À½º(HPMC)¸¦ ´ëüÇϰí ÀÖ½À´Ï´Ù.

¶Ç ´Ù¸¥ ÁÖ¿ä Çõ½Å ºÐ¾ß´Â ¼­¹æÇü°ú »ýü ÀÌ¿ë·üÀ» ³ôÀÌ´Â Á¦Á¦ÀÔ´Ï´Ù. ÀÜź°Ë, ±¸¾Æ°Ë, ¾Ë±ä»ê°ú °°Àº ½Ä¹° À¯·¡ ´Ù´ç·ù´Â ¾à¹° ¹æÃâ µ¿¿ªÇÐÀ» ¼öÁ¤Çϰí, ¿ëÇØµµ¸¦ °³¼±Çϰí, ¾àµ¿ÇÐÀ» ÃÖÀûÈ­Çϱâ À§ÇØ »ç¿ëµË´Ï´Ù. ÀÌ·¯ÇÑ ºÎÇüÁ¦´Â ¾à¹°ÀÇ Èí¼ö¸¦ °³¼±Çϰí ÇÕ¼º °è¸éȰ¼ºÁ¦ ¹× È­ÇÐÀû ¾ÈÁ¤Á¦ÀÇ Çʿ伺À» °¨¼Ò½Ãŵ´Ï´Ù.

ĸ½¶ Á¦Á¶ ½Ã ½Ä¹°¼º ºÎÇüÁ¦´Â Á©¶óƾ(µ¿¹°¼º Äݶó°Õ À¯·¡)À» ÇÏÀ̵å·Ï½ÃÇÁ·ÎÆÄÀÏ¸ÞÆ¿¼¿·ê·Î¿À½º(HPMC)¿Í Ç®·ç¶õ(ŸÇÇ¿ÀÄ« ÀüºÐ À¯·¡)À¸·Î ´ëüÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºñ°Ç ¹× ÇÒ¶ö ģȭÀûÀΠĸ½¶Àº ½Ä¹°¼º Á¦Á¦¿¡ ´ëÇÑ ¼ö¿ä°¡ ³ôÀº °Ç°­±â´É½Äǰ ¹× ¿µ¾çÁ¦ ¾÷°è¿¡¼­ Å« È£ÀÀÀ» ¾ò°í ÀÖ½À´Ï´Ù.

¶ÇÇÑ, ½Ä¹° À¯·¡ ºÎÇüÁ¦´Â »ý¹°ÇÐÀû Á¦Á¦ ¹× ºñ°æ±¸ ÀǾàǰÀÇ Á¦Á¦¿¡¼­µµ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ½Ä¹° À¯·¡ ·¹½Ãƾ, ´ëµÎ ÀÎÁöÁú, õ¿¬ À¯È­Á¦´Â ¸®Æ÷Á» ¾à¹° Àü´Þ, ÁÖ»çÁ¦, ¹é½Å º¸Á¶Á¦¿¡ ÀÌ¿ëµÇ°í ÀÖÀ¸¸ç, ÇÕ¼º ´ëüǰ¿¡ ºñÇØ ¾ÈÁ¤¼ºÀÌ Çâ»óµÇ°í µ¶¼ºÀÌ °¨¼ÒµÇ¾ú½À´Ï´Ù.

½Ä¹° À¯·¡ ºÎÇüÁ¦ÀÇ ¼ºÀåÀ» ÁÖµµÇÏ´Â Çõ½ÅÀº ¹«¾ùÀϱî¿ä?

½Ä¹° À¯·¡ ºÎÇüÁ¦ ½ÃÀåÀº ±×¸°Äɹ̽ºÆ®¸®, ³ª³ë±â¼ú, ¹ÙÀÌ¿ÀÆú¸®¸Ó ¿£Áö´Ï¾î¸µÀ» ÅëÇØ ±â´É¼º°ú ¼º´ÉÀ» Çâ»ó½ÃŰ¸ç °ý¸ñÇÒ ¸¸ÇÑ ±â¼úÀû Áøº¸¸¦ ÀÌ·èÇϰí ÀÖ½À´Ï´Ù.

°¡Àå ÁÖ¸ñÇÒ ¸¸ÇÑ ±â¼ú Çõ½Å Áß Çϳª´Â ¾à¹° Àü´Þ¿ë ½Ä¹° À¯·¡ ³ª³ë ij¸®¾îÀÇ °³¹ßÀÔ´Ï´Ù. ¸ñÀç ÆÞÇÁ, ¹ÚÅ׸®¾Æ ¼¿·ê·Î¿À½º, ½Ä¹° ¼¶À¯ À¯·¡ ³ª³ë¼¿·ê·Î¿À½º´Â Ç¥Àû ¾à¹° ¹æÃâ ¹× ³ª³ëÀÔÀÚ ¾ÈÁ¤È­¸¦ À§ÇÑ °í¼º´É ºÎÇüÁ¦·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ »ýºÐÇØ¼º ³ª³ë ij¸®¾î´Â ¾à¹°ÀÇ ¿ëÇØµµ, ¾ÈÁ¤¼º, ¹æÃâ Á¶Àý¼ºÀ» Çâ»ó½ÃÄÑ ¾Ï Ä¡·áÁ¦, »ý¹°ÇÐÀû Á¦Á¦, mRNA º£À̽ºÀÇ Ä¡·áÁ¦¿¡ ÀÌ»óÀûÀÔ´Ï´Ù.

¶Ç ´Ù¸¥ ȹ±âÀûÀÎ ¹ßÀüÀº ¼­¹æÇü Á¦Á¦ ¹× »ýüÁ¢Âø¼º ¾à¹° ¿î¹Ýü¿¡¼­ ½Ä¹° À¯·¡ ÁöÁú°ú ¿Î½º¸¦ »ç¿ëÇÏ´Â °ÍÀÔ´Ï´Ù. Ä«¸£³ª¿ì¹Ù ¿Î½º³ª ½Ò°Ü ¿Î½º¿Í °°Àº õ¿¬ ¿Î½º´Â ¸ÅÆ®¸¯½º Á¤Á¦³ª ÁöÁú º£½ºÀÇ ¾à¹° Á¦Á¦¿¡ ÅëÇյǰí ÀÖÀ¸¸ç, »ê¼º ȯ°æÀ̳ª È¿¼Ò ȯ°æ¿¡¼­µµ ¾ÈÁ¤¼ºÀ» À¯ÁöÇϸ鼭 õõÈ÷ Á¦¾îµÈ ¾à¹° ¹æÃâÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.

°³·®µÈ ½Ä¹°¼º ÀüºÐ°ú ²­ÀÇ ¹ßÀüÀº ºÎÇüÁ¦ ±â¼ú¿¡µµ Çõ¸íÀ» °¡Á®¿Ô½À´Ï´Ù. °úÇÐÀÚµéÀº ³»¼º ÀüºÐ, °¡±³ Æåƾ, ÇÏÀ̵å·ÎÄÝ·ÎÀÌµå ²­ ºí·»µå¸¦ °øÇÐÀûÀ¸·Î °³¼±ÇÏ¿© °í¼º´É ºØ±«Á¦, À¯È­Á¦, Á¡µµ °­È­Á¦¸¦ »ý»êÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºÎÇüÁ¦´Â Àΰø ¾ÈÁ¤Á¦³ª ¼®À¯°è ÷°¡Á¦¸¦ »ç¿ëÇÏÁö ¾Ê°íµµ Á¤Á¦ÀÇ ¹«°á¼ºÀ» Çâ»ó½ÃŰ°í ¾à¹°ÀÇ ¿ëÇØµµ¸¦ ³ôÀÌ¸ç »ýü ÀÌ¿ë·üÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù.

¶ÇÇÑ, ¹ßÈ¿¸¦ ±â¹ÝÀ¸·Î ÇÑ ½Ä¹° ºÎÇüÁ¦ »ý»êÀÌ Á¡Á¡ ´õ Ȱ¹ßÇØÁö°í ÀÖ½À´Ï´Ù. ¹Ì»ý¹° ¹ßÈ¿¸¦ ÀÌ¿ëÇÏ¿© ¿¬±¸ÀÚµéÀº ¹ßÈ¿ ÀÜź°Ë, Ç®·ç¶õ, ½Ä¹°¼º ·¹½Ãƾ µî °í¼øµµ ½Ä¹° À¯·¡ ºÎÇüÁ¦¸¦ »ý»êÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ Á¢±Ù ¹æ½ÄÀº È®À强, ¼øµµ, Áö¼Ó°¡´É¼ºÀ» ³ôÀ̰í Á¦¾à µî±Þ ÀÀ¿ë ºÐ¾ß¿¡¼­ ÀϰüµÈ ǰÁúÀ» º¸ÀåÇÕ´Ï´Ù.

½Ä¹° À¯·¡ ºÎÇüÁ¦ ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ÁÖ¿ä ¿äÀÎÀº?

½Ä¹° À¯·¡ ºÎÇüÁ¦ ½ÃÀåÀÇ ¼ºÀåÀº õ¿¬ ¼ººÐ¿¡ ´ëÇÑ ±ÔÁ¦ ´ç±¹ÀÇ Áö¿ø, Ŭ¸° ¶óº§ ÀǾàǰ¿¡ ´ëÇÑ ¼ÒºñÀÚ ¼ö¿ä Áõ°¡, ±Û¸®º¤ Á¦Á¦ ±â¼ú ¹ßÀü µî ¿©·¯ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù.

ÁÖ¿ä ÃËÁø¿äÀÎ Áß Çϳª´Â ¸¸¼º ÁúȯÀÇ À¯º´·ü Áõ°¡¿Í º¸´Ù ¾ÈÀüÇÏ°í ¹«ÇØÇÑ ÀǾàǰ Á¦Á¦ÀÇ Çʿ伺ÀÔ´Ï´Ù. ¾Ï, ½ÉÇ÷°ü Áúȯ, ´ë»ç¼º ÁúȯÀÌ Áõ°¡ÇÔ¿¡ µû¶ó Á¦¾à»çµéÀº ºÎÀÛ¿ëÀ» ÃÖ¼ÒÈ­Çϸ鼭 ¾à¹° Àü´ÞÀ» °­È­ÇÏ´Â »ýºÐÇØ¼º, ºñ¸é¿ª¿ø¼º, ȯÀÚ Ä£È­ÀûÀÎ ºÎÇüÁ¦¸¦ ã°í ÀÖ½À´Ï´Ù.

¶Ç ´Ù¸¥ Áß¿äÇÑ ¿äÀÎÀº ½Ä¹°¼º ¹× ä½ÄÁÖÀÇÀÚ Ä£È­ÀûÀÎ ¿µ¾ç º¸ÃæÁ¦·ÎÀÇ ÀüȯÀÔ´Ï´Ù. Çãºê º¸ÃæÁ¦, ±â´É¼º ½Äǰ, ½Ä¹° À¯·¡ Ä¡·áÁ¦ÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ½Ä¹° ¼¿·ê·Î¿À½º, ¾Æ¶óºñ¾Æ °í¹«, õ¿¬ À¯È­Á¦ µî ºñ°Ç¿ë ºÎÇüÁ¦¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¼ÒºñÀÚµéÀº ÇÕ¼º ÃæÁøÁ¦, Àΰø ÄÚÆÃÁ¦, ¼®À¯ À¯·¡ ¾ÈÁ¤Á¦¸¦ ´ëüÇÒ ¼ö ÀÖ´Â ½Ä¹° À¯·¡ Á¦Ç°À» Àû±ØÀûÀ¸·Î ã°í ÀÖ¾î ½ÃÀå È®´ë¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù.

Áö¼Ó °¡´ÉÇϰí ģȯ°æÀûÀÎ ÀǾàǰ Á¦Á¶ ¹æ¹ýÀÇ ºÎ»óµµ »ýºÐÇØ¼º ½Ä¹°¼º ºÎÇüÁ¦¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. Á¦¾àȸ»ç´Â ÀÌ»êȭź¼Ò ¹èÃâ·® ¹× È­ÇÐÆó±â¹° °¨Ãà, È­¼®¿¬·á À¯·¡ ¿ø·á ÀÇÁ¸µµ °¨¼Ò¸¦ À§ÇØ ³ë·ÂÇϰí ÀÖÀ¸¸ç, ½Ä¹° À¯·¡ ºÎÇüÁ¦´Â Àç»ý °¡´ÉÇϰí ȯ°æ ģȭÀûÀÎ ´ë¾ÈÀ» Á¦°øÇÕ´Ï´Ù.

¶ÇÇÑ, õ¿¬ ºÎÇüÁ¦¸¦ Áö¿øÇÏ´Â ±ÔÁ¦ Á¤Ã¥ÀÌ ½ÃÀå ¼ºÀå¿¡ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. À¯·´ÀǾàǰû(European Medicines Agency, EMA)°ú ¹Ì±¹ FDA µîÀÇ ±â°üÀº ÀǾàǰ Á¦Çü¿¡ ¹«ÇØÇÑ Ãµ¿¬ À¯·¡ ºÎÇüÁ¦ÀÇ »ç¿ëÀ» Àå·ÁÇϰí ÀÖ½À´Ï´Ù. ½Ä¹°¼º ºÎÇüÁ¦ÀÇ ¾àÀü Ç¥ÁØÀÌ È®´ëµÇ¸é¼­ ÀüÅë ÀǾàǰ°ú »õ·Î¿î ¾à¹° Àü´Þ ½Ã½ºÅÛ ¸ðµÎ¿¡¼­ ½Ä¹°¼º ºÎÇüÁ¦ÀÇ Ã¤ÅÃÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

½Ä¹° À¯·¡ ÀǾàǰÀÇ ±â¼ú Çõ½Å, ±×¸° Äɹ̽ºÆ®¸®ÀÇ ¹ßÀü, õ¿¬ Á¦Á¦¿¡ ´ëÇÑ ¼ÒºñÀÚ ¼ö¿ä°¡ Áö¼ÓÀûÀ¸·Î Áõ°¡ÇÔ¿¡ µû¶ó ½Ä¹° À¯·¡ ºÎÇüÁ¦ ½ÃÀåÀº Å©°Ô È®´ëµÉ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. °í¼º´É õ¿¬ ºÎÇüÁ¦, ģȯ°æ ÃßÃâ ±â¼ú, »ýüÀûÇÕ¼º ¾à¹° Á¦Á¦ ±â¼ú¿¡ ÅõÀÚÇÏ´Â ±â¾÷Àº Â÷¼¼´ë Áö¼Ó °¡´ÉÇÑ ÀÇ·á ¹× Å¬¸° ¶óº§ ÀǾàǰ ¼Ö·ç¼ÇÀÇ ÃÖÀü¼±¿¡ ¼­°Ô µÉ °ÍÀÔ´Ï´Ù.

ºÎ¹®

È­ÇÐÀû ¼ºÁú(ź¼öÈ­¹°, ´Ü¹éÁú, Æú¸®¸Ó, ¹Ì³×¶ö, ¹è´çü¡¤¿Î½º, ¿¡½ºÅ׸£, ¿¡Å׸£, Ä«º¹½Ç»ê, ±âŸ), ¿ëµµ¿Í ±â´É(°áÇÕÁ¦¡¤Èñ¼®Á¦, ȰÅÃÁ¦¡¤À±È°À¯¡¤ºØ±«Á¦, ÇǸ· Çü¼ºÁ¦¡¤ÄÚÆÃÁ¦, °¡¼ÒÁ¦, ÇöŹȭÁ¦, º¸Á¸·á¡¤»êÈ­¹æÁöÁ¦, Âø»öÁ¦¡¤Çâ¹ÌÁ¦)

Á¶»ç ´ë»ó ±â¾÷ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ¼­, ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Plant-based Excipients Market to Reach US$2.3 Billion by 2030

The global market for Plant-based Excipients estimated at US$1.9 Billion in the year 2024, is expected to reach US$2.3 Billion by 2030, growing at a CAGR of 3.0% over the analysis period 2024-2030. Carbohydrates, one of the segments analyzed in the report, is expected to record a 2.6% CAGR and reach US$625.0 Million by the end of the analysis period. Growth in the Proteins segment is estimated at 3.5% CAGR over the analysis period.

The U.S. Market is Estimated at US$514.4 Million While China is Forecast to Grow at 5.5% CAGR

The Plant-based Excipients market in the U.S. is estimated at US$514.4 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$437.9 Million by the year 2030 trailing a CAGR of 5.5% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 1.2% and 2.3% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 1.7% CAGR.

Global Plant-Based Excipients Market - Key Trends & Drivers Summarized

The plant-based excipients market is experiencing significant growth, driven by increasing demand for clean-label pharmaceuticals, rising preference for natural ingredients, and advancements in sustainable drug formulation technologies. Excipients play a crucial role in pharmaceutical, nutraceutical, and cosmetic formulations, serving as binders, fillers, disintegrants, stabilizers, emulsifiers, and coating agents. As consumers and regulators push for eco-friendly, biocompatible, and non-toxic alternatives, pharmaceutical companies are shifting toward plant-derived excipients over their synthetic and animal-based counterparts.

One of the most significant trends driving the market is the clean-label movement, where consumers are demanding natural, chemical-free, and plant-based alternatives in medicines and supplements. Conventional excipients, such as gelatin (from animal collagen) and synthetic polymers, are being replaced with cellulose, starches, pectin, and gum-based excipients that offer biodegradability, reduced toxicity, and sustainability benefits.

Another key driver is the increasing regulatory scrutiny on synthetic excipients, particularly petrochemical-derived binders and fillers that may pose health risks. Regulatory agencies, including the U.S. FDA, European Medicines Agency (EMA), and Indian Pharmacopeia Commission (IPC), are emphasizing natural and biocompatible excipients in drug formulations. This has led to increased R&D investments in plant-based excipient innovations, especially in orally disintegrating tablets (ODTs), extended-release formulations, and bioavailability-enhancing drug carriers.

Furthermore, sustainability and green chemistry initiatives are accelerating the shift toward plant-based excipients. The pharmaceutical industry is under pressure to reduce its carbon footprint, minimize reliance on petroleum-based materials, and adopt biodegradable formulation ingredients. Plant-derived excipients such as aloe vera gel, rice bran wax, and modified starches offer renewable, non-GMO, and environmentally friendly solutions, making them an attractive choice for pharmaceutical and nutraceutical manufacturers.

How Are Plant-Based Excipients Transforming Pharmaceutical and Nutraceutical Formulations?

The pharmaceutical and nutraceutical industries are increasingly adopting plant-based excipients due to their biocompatibility, stability, and ability to enhance drug delivery and bioavailability. These excipients are widely used in tablet formulations, capsules, suspensions, topical gels, and controlled-release drug systems.

One of the most significant applications is in oral solid dosage forms (OSDs), where plant-based binders and disintegrants improve tablet cohesion, dissolution rates, and patient compliance. Natural excipients such as microcrystalline cellulose (MCC), starch derivatives, and pectin are replacing synthetic polyvinylpyrrolidone (PVP) and hydroxypropyl methylcellulose (HPMC) due to their better biodegradability and lower allergenic potential.

Another key area of innovation is in sustained-release and bioavailability-enhancing formulations. Plant-derived polysaccharides, such as xanthan gum, guar gum, and alginate, are being used to modify drug release kinetics, improve solubility, and optimize pharmacokinetics. These excipients enable better drug absorption, reducing the need for synthetic surfactants and chemical stabilizers.

In capsule manufacturing, plant-based excipients are replacing gelatin (derived from animal collagen) with hydroxypropyl methylcellulose (HPMC) and pullulan (from tapioca starch). These vegan and halal-friendly capsules are gaining traction in the nutraceutical and dietary supplement industries, where plant-based formulations are in high demand.

Furthermore, plant-based excipients are playing a crucial role in biologics and parenteral drug formulations. Plant-derived lecithins, soy phospholipids, and natural emulsifiers are being utilized in liposomal drug delivery, injectable formulations, and vaccine adjuvants, offering enhanced stability and reduced toxicity compared to synthetic alternatives.

What Innovations Are Driving the Growth of Plant-Based Excipients?

The plant-based excipients market is undergoing significant technological advancements, with green chemistry, nanotechnology, and biopolymer engineering enhancing their functionality and performance.

One of the most notable innovations is the development of plant-based nanocarriers for drug delivery. Nanocellulose, derived from wood pulp, bacterial cellulose, and plant fibers, is emerging as a high-performance excipient for targeted drug release and nanoparticle stabilization. These biodegradable nanocarriers improve drug solubility, stability, and controlled release, making them ideal for oncology drugs, biologics, and mRNA-based therapies.

Another breakthrough is the use of plant-derived lipids and waxes in sustained-release formulations and bioadhesive drug carriers. Natural waxes, such as carnauba wax and rice bran wax, are being incorporated into matrix tablets and lipid-based drug formulations, enabling slow, controlled drug release while maintaining stability in acidic and enzymatic environments.

The advancement of modified plant starches and gums is also revolutionizing excipient technology. Scientists are engineering resistant starches, cross-linked pectins, and hydrocolloid gum blends to create high-performance disintegrants, emulsifiers, and viscosity enhancers. These excipients improve tablet integrity, enhance drug solubility, and provide better bioavailability without the need for artificial stabilizers or petroleum-based additives.

Additionally, fermentation-based plant excipient production is gaining momentum. Using microbial fermentation, researchers can produce high-purity plant-derived excipients such as fermented xanthan gum, pullulan, and plant-based lecithins. This approach enhances scalability, purity, and sustainability, ensuring consistent quality for pharmaceutical-grade applications.

What Are the Key Factors Driving the Growth of the Plant-Based Excipients Market?

The growth in the plant-based excipients market is driven by several factors, including regulatory support for natural ingredients, increasing consumer demand for clean-label pharmaceuticals, and advancements in green drug formulation technologies.

One of the primary drivers is the increasing prevalence of chronic diseases and the need for safer, non-toxic drug formulations. As cancer, cardiovascular diseases, and metabolic disorders continue to rise, pharmaceutical companies are looking for biodegradable, non-immunogenic, and patient-friendly excipients that enhance drug delivery while minimizing side effects.

Another key factor is the shift toward plant-based and vegan-friendly nutraceuticals. The growing adoption of herbal supplements, functional foods, and botanical-based therapeutics is increasing demand for vegan excipients such as plant cellulose, gum arabic, and natural emulsifiers. Consumers are actively seeking plant-based alternatives to synthetic fillers, artificial coatings, and petroleum-derived stabilizers, accelerating market expansion.

The rise of sustainable and eco-friendly drug manufacturing practices is also fueling the demand for biodegradable and plant-derived excipients. With pharmaceutical companies striving to reduce carbon emissions, chemical waste, and reliance on fossil fuel-based ingredients, plant-based excipients offer a renewable and environmentally responsible alternative.

Additionally, regulatory policies supporting natural excipients are playing a crucial role in market growth. Agencies such as the European Medicines Agency (EMA) and U.S. FDA are promoting the use of non-toxic, naturally derived excipients in drug formulations. The expanding pharmacopoeia standards for botanical excipients are further encouraging their adoption in both traditional pharmaceuticals and novel drug delivery systems.

As plant-based pharmaceutical innovation, green chemistry advancements, and consumer demand for natural formulations continue to rise, the plant-based excipient market is poised for significant expansion. Companies that invest in high-performance natural excipients, eco-friendly extraction techniques, and biocompatible drug formulation technologies will be at the forefront of next-generation sustainable medicine and clean-label pharmaceutical solutions.

SCOPE OF STUDY:

The report analyzes the Plant-based Excipients market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Chemical Nature (Carbohydrates, Proteins, Polymers, Minerals, Glycoside & Waxes, Esters, Ethers & Carboxylic Acids, Others); Applications & Function (Binders & Diluents, Glidants, Lubricants & Disintegrants, Film Forming & Coating Agents, Plasticizers, Suspending Agents, Preservatives & Antioxidants, Colorants & Flavoring Agents)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 47 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â