¼¼°èÀÇ ±¤Ã˸ŠÄÚÆÃ ½ÃÀå
Photocatalytic Coatings
»óǰÄÚµå : 1777427
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 386 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,186,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,559,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ±¤Ã˸ŠÄÚÆÃ ½ÃÀåÀº 2030³â±îÁö 16¾ï ´Þ·¯¿¡ À̸¦ Àü¸Á

2024³â¿¡ 9¾ï 5,790¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â ±¤Ã˸ŠÄÚÆÃ ¼¼°è ½ÃÀåÀº 2024-2030³â°£ CAGR 9.2%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 16¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ TiO2´Â CAGR 10.4%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 9¾ï 5,650¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ZnO ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 8.0%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 2¾ï 6,100¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR14.4%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ±¤Ã˸ŠÄÚÆÃ ½ÃÀåÀº 2024³â¿¡ 2¾ï 6,100¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGR 14.4%·Î ¼ºÀåÀ» Áö¼ÓÇÏ¿©, 2030³â±îÁö 3¾ï 6,140¸¸ ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î¼­´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 4.6%¿Í 8.8%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 6.2%¸¦ ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù.

¼¼°èÀÇ ±¤Ã˸ŠÄÚÆÃ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

±¤Ã˸ŠÄÚÆÃ ¼¼°è ½ÃÀåÀº ´Ù¾çÇÑ ¿ëµµÀÇ ¼¿ÇÁ Ŭ¸®´×, °ø±âûÁ¤, Ç×±Õ ÄÚÆÃÀ» äÅÃÇÏ´Â »ê¾÷ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ±Þ¼ÓÈ÷ È®´ëµÇ°í ÀÖ½À´Ï´Ù. ±¤Ã˸ŠÄÚÆÃÀº ÀÌ»êȭƼŸ´½(TiO2), »êÈ­¾Æ¿¬(ZnO), »ï»êÈ­ÅÖ½ºÅÙ(WO3) µîÀÇ ³ª³ë±â¼ú°ú ¹ÝµµÃ¼ ¼ÒÀ縦 Ȱ¿ëÇÏ¿© Àڿܼ±À̳ª °¡½Ã±¤¼± Á¶»ç ½Ã Ã˸ŹÝÀÀÀ» Ȱ¼ºÈ­ÇÕ´Ï´Ù. ÀÌ ¹ÝÀÀÀº À¯±â ¿À¿°¹°Áú, ¹ÚÅ׸®¾Æ, Èֹ߼º À¯±âÈ­ÇÕ¹°(VOC)ÀÇ ºÐÇØ¸¦ ÃËÁøÇÏ¿© ȯ°æ º¹¿ø, ÇコÄɾî, °Ç¼³, ÀÚµ¿Â÷ »ê¾÷¿¡¼­ ¸Å¿ì È¿°úÀûÀÔ´Ï´Ù.

ÀÌ ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä Æ®·»µå Áß Çϳª´Â Áö¼Ó °¡´ÉÇÏ°í ¿¡³ÊÁö È¿À²ÀûÀÎ ÆäÀÎÆ®¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡ÀÔ´Ï´Ù. ¼¼°è °¢±¹ Á¤ºÎ°¡ ´ë±â¿À¿°°ú µµ½Ã Á¤È­¿¡ ´ëÇÑ ¾ö°ÝÇÑ È¯°æ ±ÔÁ¦¸¦ ½ÃÇàÇÏ´Â °¡¿îµ¥ ±¤Ã˸ŠÄÚÆÃÀÇ Ã¤ÅÃÀº Á¡Á¡ ´õ Ȱ¹ßÇØÁö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÄÚÆÃÀº µµ½Ã ½º¸ð±× °¨¼Ò, À¯ÇØÇÑ NOx(Áú¼Ò»êÈ­¹°) ºÐÇØ, Á¢Ã˼ºÀÌ ³ôÀº Ç¥¸é¿¡¼­ º´¿ø¼º ¹ÚÅ׸®¾Æ Á¦°Å¿¡ Å©°Ô ±â¿©Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Àç·á °úÇÐÀÇ ¹ßÀüÀ¸·Î °¡½Ã±¤¼± ¹ÝÀÀÇü ±¤Ã˸Ű¡ °³¹ßµÇ¾î ±âÁ¸ÀÇ UV Ȱ¼º Ç¥¸é»Ó¸¸ ¾Æ´Ï¶ó ÀÌ·¯ÇÑ ÄÚÆÃÀÇ ±â´É¼ºÀÌ È®´ëµÇ¾î »ó¾÷Àû Ȱ¿ë °¡´É¼ºÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù.

½º¸¶Æ® ºôµù°ú ±×¸° ºôµù¿¡ ±¤Ã˸ŠÄÚÆÃÀ» ÅëÇÕÇÏ´Â °Íµµ ½ÃÀå ¼ºÀåÀ» ÁÖµµÇÏ´Â Áß¿äÇÑ Æ®·»µåÀÔ´Ï´Ù. ģȯ°æ °ÇÃàÀÇ ºÎ»ó°ú ¾ö°ÝÇÑ °ÇÃà ±ÔÁ¦·Î ÀÎÇØ °ÇÃàȸ»çµéÀº Áö¼Ó°¡´É¼ºÀ» ³ôÀ̱â À§ÇØ ¼¿ÇÁ Ŭ¸®´× À¯¸®, ÆÄ»çµå, °ø±âûÁ¤º®¿¡ ÁÖ¸ñÇϰí ÀÖ½À´Ï´Ù. ÃÊÄ£¼ö¼º ÄÚÆÃÀÇ ±â¼ú Çõ½ÅÀº ÀÌ·¯ÇÑ Ç¥¸éÀÇ ÀÚü ¼¼Ã´ ±â´ÉÀ» ´õ¿í Çâ»ó½ÃÄÑ À¯Áö º¸¼ö ºñ¿ë, ¹° ¼Òºñ·® ¹× È­ÇÐ ¹°Áú ±â¹Ý ¼¼Á¤Á¦¸¦ Å©°Ô ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ÀÌ¿¡ µû¶ó Â÷¼¼´ë ³ª³ë±¸Á¶ ±¤Ã˸ŠÄÚÆÃ ¼ö¿ä´Â ƯÈ÷ µµ½Ã ÀÎÇÁ¶ó, ±³Åë¸Á, °í±Þ »ó¾÷¿ë °Ç¹°¿¡¼­ ±ÞÁõÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

±¤Ã˸ŠÄÚÆÃÀº ÀÇ·á ¹× »ê¾÷ ºÐ¾ß¸¦ ¾î¶»°Ô À籸¼ºÇϰí Àִ°¡?

±¤Ã˸ŠÄÚÆÃÀÇ Ç×±Õ¼º°ú °¨¿° ¿¹¹æ Ư¼ºÀ¸·Î ÀÎÇØ ÇコÄÉ¾î »ê¾÷Àº ±¤Ã˸ŠÄÚÆÃÀ» °¡Àå ¸¹ÀÌ Ã¤ÅÃÇÏ´Â »ê¾÷ Áß Çϳª°¡ µÇ¾ú½À´Ï´Ù. º´¿ø, Áø·á¼Ò, ÀǷῬ±¸¼Ò¿¡¼­´Â º´¿ø ³» °¨¿°(HAI)ÀÇ À§ÇèÀÌ Å« °ü½É»ç°¡ µÇ°í ÀÖ½À´Ï´Ù. ±¤Ã˸ŠÄÚÆÃÀº ÇöÀç ¼ö¼ú½Ç, ÁßȯÀÚ½Ç º®, ÀÇ·á±â±â, Á¢ÃË ºóµµ°¡ ³ôÀº Ç¥¸é¿¡ Àû¿ëµÇ¾î ¹ÚÅ׸®¾Æ, °õÆÎÀÌ, ¹ÙÀÌ·¯½º¸¦ ºÐÇØÇϰí Áö¼ÓÀûÀÎ ¼Òµ¶À» Á¦°øÇÕ´Ï´Ù. Äڷγª19 »çÅ´ Ç×±Õ ÄÚÆÃ¿¡ ´ëÇÑ ¼ö¿ä¸¦ °¡¼ÓÈ­½ÃÄ×°í, ȯ°æ±¤ Á¶°Ç¿¡¼­ º´¿ø±ÕÀÇ »ì±Õ È¿À²À» ³ôÀÎ TiO2 ±â¹Ý ÄÚÆÃ¿¡ ´ëÇÑ ¿¬±¸¸¦ ´õ¿í ÃËÁø½ÃÄ×½À´Ï´Ù.

ÇコÄɾî»Ó¸¸ ¾Æ´Ï¶ó »ê¾÷ ¹× Á¦Á¶ ºÐ¾ß¿¡¼­µµ °ø±âÁ¤È­ ¹× ¿À¿°¹°Áú Á¦¾î¿¡ ±¤Ã˸ŠÄÚÆÃÀÌ È°¿ëµÇ°í ÀÖ½À´Ï´Ù. °øÀåÀ̳ª »ý»ê¼³ºñ, ƯÈ÷ È­Çй°Áú, ¼¶À¯, Á߱ݼÓÀ» Ãë±ÞÇÏ´Â °øÀå¿¡¼­´Â ´Ù·®ÀÇ VOC°¡ ¹èÃâµË´Ï´Ù. ȯ±â ½Ã½ºÅÛ, »ê¾÷¿ë ÆÄ»çµå, Æó¼ö ó¸® ½Ã¼³¿¡ ±¤Ã˸ŠÄÚÆÃÀ» »ç¿ëÇÔÀ¸·Î½á ÀÛ¾÷ÀåÀÇ ¾ÈÀü¼ºÀ» ³ôÀÌ°í ¾ö°ÝÇÑ ¹èÃâ ±ÔÁ¦ ¹ý±Ô¸¦ ÁؼöÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ·¯ÇÑ ÄÚÆÃÀº ½Äǰ °¡°ø »ê¾÷¿¡¼­ º§Æ® ÄÁº£À̾î, ÀúÀå ÀåÄ¡, Æ÷ÀåÀçÀÇ ¹Ì»ý¹° ¿À¿°À» ¹æÁöÇϰí, Á¦Ç°ÀÇ À¯Åë±âÇÑÀ» ¿¬ÀåÇϰí, ½ÄÁßµ¶À» ÁÙÀÌ´Â µ¥ µµ¿òÀÌ µÇ´Â µî ½Äǰ °¡°ø »ê¾÷¿¡¼­ ÇʼöÀûÀÎ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù.

»ê¾÷ ÀÀ¿ë ºÐ¾ß¿¡¼­ ÁÖ¸ñÇÒ ¸¸ÇÑ ¹ßÀüÀº ±Ý¼Ó ³ª³ë ÀÔÀÚ, »êÈ­ ±×·¡ÇÉ ¹× µµÇÎ ±â¼úÀ» °áÇÕÇÏ¿© ¼º´ÉÀ» Çâ»ó½ÃŲ ÇÏÀ̺긮µå ±¤Ã˸ŠÄÚÆÃÀÇ ÃâÇöÀÔ´Ï´Ù. ÀÌ·¯ÇÑ °³¼±À¸·Î ÄÚÆÃÀº ½Ç³» Á¶¸í Á¶°Ç¿¡¼­µµ ÀÛµ¿ÇÒ ¼ö ÀÖ°Ô µÇ¾î »ç¹«½Ç °ø°£, ¼îÇθô, ´ëÁß±³Åë Çãºê ¹× °¡Á¤ ³» ÀÎÅ׸®¾î¿¡ ´õ¿í È¿°úÀûÀ¸·Î »ç¿ëÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ÄÚÆÃÀÇ È®À强µµ Çâ»óµÇ°í ÀÖÀ¸¸ç, ½ºÇÁ·¹ÀÌ ¿Â, µö ÄÚÆÃ, Á¤Àü±â ÁõÂø ±â¼úÀÇ ¹ßÀüÀ¸·Î ´ë±Ô¸ð »ê¾÷Àû Àû¿ëÀÌ °¡´ÉÇØÁ³½À´Ï´Ù.

±¤Ã˸ŠÄÚÆÃÀº ¿î¼Û ¹× ¼ÒºñÀç ºÐ¾ß¿¡¼­ ¾î¶² ¿ªÇÒÀ»Çմϱî?

ÀÚµ¿Â÷ »ê¾÷°ú ¿î¼Û »ê¾÷¿¡¼­´Â ±¤Ã˸ŠÄÚÆÃÀÌ Æ¯È÷ ÀÚµ¿Â÷ ¿Ü°üÀÇ ¼¿ÇÁ Ŭ¸®´×, ¾Õ À¯¸®ÀÇ ±è¼­¸² ¹æÁö, ½º¸ð±× ¹æÁö µµ·Î ÀÎÇÁ¶ó µî¿¡¼­ Å« ÁÖ¸ñÀ» ¹Þ°í ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀº ÀÚµ¿Â÷ ³»ºÎ, ´ë½Ãº¸µå, Á¼®¿¡ TiO2 ±â¹Ý ÄÚÆÃÀ» µµÀÔÇÏ¿© ³¿»õ, ¹ÚÅ׸®¾Æ, °ø±â Áß ¿À¿°¹°ÁúÀ» Á¦°ÅÇÏ¿© Â÷³» °ø±âÁúÀ» °³¼±Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ ÄÚÆÃÀº ±âÂ÷¿ª, °øÇ× Å͹̳Î, ´ëÁß±³ÅëÀÇ Ç¥¸é¿¡ µµÆ÷µÇ¾î À¯Áöº¸¼ö ºñ¿ëÀ» ÃÖ¼ÒÈ­ÇÏ°í ±³Åë·®ÀÌ ¸¹Àº ȯ°æ¿¡¼­ °¨¿°¼º ÁúȯÀÇ È®»êÀ» ¾ïÁ¦Çϰí ÀÖ½À´Ï´Ù.

¶Ç ´Ù¸¥ À¯¸ÁÇÑ ¼ºÀå ºÐ¾ß´Â ½º¸¶Æ® µµ·Î ¹× µµ½Ã ÀÎÇÁ¶ó¿¡ ±¤Ã˸ŠÄÚÆÃÀ» ÅëÇÕÇÏ´Â °ÍÀÔ´Ï´Ù. Àü ¼¼°è µµ½Ã¿¡¼­´Â µµ½Ã ¿À¿°À» ÇØ°áÇϱâ À§ÇØ ÀÚü ¼¼Ã´ ÄÜÅ©¸®Æ®, ¿À¿° Èí¼ö °í¼Óµµ·Î À庮, ½º¸ð±× ½Ä¼º µµ·Î Æ÷Àå µîÀÇ ½ÇÇèÀÌ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÄÚÆÃÀ» µµ·Î ¹× ±³·®¿¡ Àû¿ëÇÏ¸é ´ë±â Áß Áú¼Ò»êÈ­¹° ³óµµ¸¦ ³·Ãâ ¼ö ÀÖ¾î ´ëµµ½Ã Áö¿ªÀ» º¸´Ù ±ú²ýÇϰí Áö¼Ó°¡´ÉÇÏ°Ô ¸¸µé ¼ö ÀÖ½À´Ï´Ù. ÀϺ», ÀÌÅ»¸®¾Æ, ³×´ú¶õµå µîÀÇ ±¹°¡¿¡¼­´Â ÀÌ¹Ì ±¤Ã˸ŠÆ÷Àå ±â¼úÀ» µµÀÔÇÏ¿© µµ½Ã ´ë±â ¿À¿°¹°Áú°ú ÀÚµ¿Â÷ ¹èÃâ·®À» ÃøÁ¤ÇÒ ¼ö ÀÖÀ» Á¤µµ·Î °¨¼Ò½ÃÄ×½À´Ï´Ù.

°¡Àü ¹× »ýȰ¿ëǰ ½ÃÀå¿¡¼­µµ Ç×±Õ ½º¸¶Æ®Æù, ÅÍÄ¡½ºÅ©¸°, °ø±âûÁ¤±â, °¡ÀüÁ¦Ç°¿¡ ±¤Ã˸ŠÄÚÆÃÀÌ Àû¿ëµÇ°í ÀÖ½À´Ï´Ù. ½º¸¶Æ®È¨¿¡¼­´Â ÁÖ¹æ Á¶¸®´ë, ¿å½Ç ŸÀÏ, °¡±¸ Ç¥¸é¿¡ ¼¿ÇÁ Ŭ¸®´× ¹× ³¿»õ¸¦ ÁßÈ­½ÃŰ´Â ÄÚÆÃÀ» ÀÔÈ÷´Â °æ¿ì°¡ ¸¹¾ÆÁö¸é¼­ ½Ç³» °ø±âÁúÀ» °³¼±Çϰí È­ÇÐ ¼¼Á¤Á¦¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³·Ãß°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Ç×±Õ ½º¸¶Æ®¿öÄ¡, ÇÇÆ®´Ï½º Æ®·¡Ä¿, ÇコÄÉ¾î ¸ð´ÏÅ͸µ ±â±â µî ¿þ¾î·¯ºí ±â¼úÀ» À§ÇÑ UV Ȱ¼ºÈ­ ÄÚÆÃ°ú °¡½Ã±¤¼± ±¸µ¿ ÄÚÆÃÀÇ °³¹ßÀÌ ÁøÇàµÇ°í ÀÖÀ¸¸ç, ÀÌ·¯ÇÑ ÄÚÆÃÀÇ »ó¾÷Àû °¡´É¼ºÀº ±âÁ¸ÀÇ ¿ëµµ¸¦ ³Ñ¾î È®ÀåµÇ°í ÀÖ½À´Ï´Ù.

±¤Ã˸ŠÄÚÆÃ ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ÁÖ¿ä ¿äÀÎÀº?

±¤Ã˸ŠÄÚÆÃ ½ÃÀåÀÇ ¼ºÀåÀº ±â¼ú ¹ßÀü, ȯ°æ ¹®Á¦ Áõ°¡, µµ½Ã ¿À¿° Áõ°¡, Áö¼Ó °¡´ÉÇÑ ÄÚÆÃÀ» Áö¿øÇÏ´Â ±ÔÁ¦ Á¤Ã¥ µî ¿©·¯ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. µµÇÎµÈ »êȭƼŸ´½ ¹× ÇöóÁî¸ð´Ð ³ª³ë±¸Á¶¿Í °°Àº °¡½Ã±¤¼± Ȱ¼º ±¤Ã˸ÅÀÇ Çõ½ÅÀº ±âÁ¸ÀÇ Àڿܼ±¿¡ ÀÇÁ¸ÇÏ´Â ½Ã½ºÅÛ¿¡¼­ ÄÚÆÃÀÇ ¿ëµµ¸¦ È®ÀåÇÏ¿© ½Ç³»¿ë, ¼ÒºñÀç, ´ëÁß±³Åë Ç¥¸é µî¿¡ ÀûÇÕÇÕ´Ï´Ù.

ȯ°æ ±ÔÁ¦ÀÇ °­È­µµ ÁÖ¿ä ÃËÁø¿äÀÎ Áß ÇϳªÀÔ´Ï´Ù. À¯·´, ºÏ¹Ì, ¾Æ½Ã¾Æ °¢±¹ Á¤ºÎ´Â VOC ¹èÃâ, µµ½Ã ´ë±â¿À¿°, »ê¾÷Æó±â¹° 󸮸¦ ±ÔÁ¦ÇÏ´Â ¾ö°ÝÇÑ ¹ý·üÀ» Á¦Á¤Çϰí ÀÖ½À´Ï´Ù. ±× °á°ú, »ê¾÷°è´Â ȯ°æ ģȭÀûÀ̰í ÀÚ¸³ÀûÀΠǥ¸é ó¸® ¼Ö·ç¼ÇÀ» Àû±ØÀûÀ¸·Î ã°í ÀÖÀ¸¸ç, ±¤Ã˸ŠÄÚÆÃÀº ±âÁ¸ÀÇ È­ÇÐ ¹°Áú ±â¹Ý ÄÚÆÃÀ» ´ëüÇÒ ¼ö ÀÖ´Â ´ë¾ÈÀ¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ±×¸° ºôµù°ú ¿¡³ÊÁö È¿À²ÀÌ ³ôÀº ÀÎÇÁ¶ó¸¦ ÃßÁøÇÏ´Â °Ç¼³ »ê¾÷Àº ¼¿ÇÁ Ŭ¸®´× À¯¸®, °ø±âûÁ¤ ÆÄ»çµå, Ç×±Õ ÀÎÅ׸®¾î Ç¥¸é µî¿¡ ´ëÇÑ ¼ö¿ä¸¦ Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù.

ÀÚµ¿Â÷ ¹× ¿î¼Û ºÎ¹®ÀÇ Áö¼Ó°¡´É¼ºÀ¸·ÎÀÇ ÀüȯÀº ½ÃÀå µµÀÔÀ» ´õ¿í °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. Àü±âÀÚµ¿Â÷(EV), ÇÏÀ̺긮µå ±³Åë ½Ã½ºÅÛ, ½º¸ð±× Àú°¨ µµ½Ã ÀÎÇÁ¶óÀÇ ÃâÇöÀ¸·Î ÀÚµ¿Â÷ ¿ÜÀå, ÃæÀü¼Ò, ´ëÁß±³Åë Çãºê µî¿¡ ±¤Ã˸ŠÄÚÆÃÀÇ »õ·Î¿î ±âȸ°¡ »ý°Ü³ª°í ÀÖ½À´Ï´Ù. ÇÑÆí, ³ª³ë ½ºÇÁ·¹ÀÌ, Á¤Àü±â ÁõÂø, ÀÚ±â Á¶Á÷È­ ÄÚÆÃÀ» Æ÷ÇÔÇÑ ÄÚÆÃ µµÆ÷ ±â¼úÀÇ ¹ßÀüÀ¸·Î ÀÌ·¯ÇÑ ¼Ö·ç¼ÇÀº º¸´Ù È®Àå °¡´ÉÇÏ°í ºñ¿ë È¿À²ÀûÀÌ¸ç ³Î¸® »ê¾÷ÀûÀ¸·Î Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù.

ºÎ¹®

À¯Çü(TiO2, ZnO, ±âŸ À¯Çü), ¿ëµµ(¼¿ÇÁ Ŭ¸®´× ¿ëµµ, °ø±â Á¤È­ ¿ëµµ, ¼öó¸® ¿ëµµ, ±è¼­¸² ¹æÁö ¿ëµµ, ±âŸ ¿ëµµ), ÃÖÁ¾ ¿ëµµ(°ÇÃà ¹× °Ç¼³ ÃÖÁ¾ ¿ëµµ, ¿î¼Û ÃÖÁ¾ ¿ëµµ, ÇコÄɾî ÃÖÁ¾ ¿ëµµ, ±âŸ ÃÖÁ¾ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ ¿¹

AI ÅëÇÕ

´ç»ç´Â À¯È¿ÇÑ Àü¹®°¡¿ë ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°èº° SLM Äõ¸®¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ´ë·® ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Photocatalytic Coatings Market to Reach US$1.6 Billion by 2030

The global market for Photocatalytic Coatings estimated at US$957.9 Million in the year 2024, is expected to reach US$1.6 Billion by 2030, growing at a CAGR of 9.2% over the analysis period 2024-2030. TiO2, one of the segments analyzed in the report, is expected to record a 10.4% CAGR and reach US$956.5 Million by the end of the analysis period. Growth in the ZnO segment is estimated at 8.0% CAGR over the analysis period.

The U.S. Market is Estimated at US$261.0 Million While China is Forecast to Grow at 14.4% CAGR

The Photocatalytic Coatings market in the U.S. is estimated at US$261.0 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$361.4 Million by the year 2030 trailing a CAGR of 14.4% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 4.6% and 8.8% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 6.2% CAGR.

Global Photocatalytic Coatings Market - Key Trends & Drivers Summarized

The global photocatalytic coatings market is experiencing rapid expansion as industries increasingly adopt self-cleaning, air-purifying, and antimicrobial coatings across various applications. Photocatalytic coatings leverage nanotechnology and semiconductor materials, such as titanium dioxide (TiO2), zinc oxide (ZnO), and tungsten trioxide (WO3), to activate a catalytic reaction under UV or visible light exposure. This reaction facilitates the decomposition of organic pollutants, bacteria, and volatile organic compounds (VOCs), making these coatings highly effective in environmental remediation, healthcare, construction, and automotive industries.

One of the major trends shaping this market is the rising demand for sustainable and energy-efficient coatings. As governments worldwide impose strict environmental regulations on air pollution and urban cleanliness, the adoption of photocatalytic coatings is gaining momentum. These coatings significantly contribute to reducing urban smog, breaking down harmful NOx (nitrogen oxides) emissions, and eliminating pathogens from high-touch surfaces. Moreover, advancements in material science have led to the development of visible-light-responsive photocatalysts, expanding the functionality of these coatings beyond traditional UV-activated surfaces, thereby increasing their commercial viability.

The integration of photocatalytic coatings in smart and green buildings is another critical trend driving market growth. With the rise of eco-friendly construction and stringent building regulations, architectural firms are turning to self-cleaning glass, facades, and air-purifying walls to enhance sustainability. Innovations in superhydrophilic coatings are further improving the self-cleaning capabilities of these surfaces, leading to significant reductions in maintenance costs, water consumption, and chemical-based cleaning agents. As a result, the demand for next-generation nanostructured photocatalytic coatings is expected to surge, particularly in urban infrastructure, transport networks, and high-end commercial buildings.

How Are Photocatalytic Coatings Reshaping the Healthcare and Industrial Sectors?

The healthcare industry is emerging as one of the largest adopters of photocatalytic coatings due to their antimicrobial and infection-prevention properties. In hospitals, clinics, and medical laboratories, the risk of hospital-acquired infections (HAIs) is a significant concern. Photocatalytic coatings are now being applied to surgical rooms, ICU walls, medical equipment, and high-touch surfaces to provide continuous disinfection by breaking down bacteria, fungi, and viruses. The COVID-19 pandemic accelerated the demand for antimicrobial coatings, further pushing research into TiO2-based coatings with enhanced pathogen-killing efficiency under ambient light conditions.

Beyond healthcare, industrial and manufacturing sectors are leveraging photocatalytic coatings for air purification and pollutant control. Factories and production units, particularly those dealing with chemicals, textiles, and heavy metals, generate significant VOC emissions. The application of photocatalytic coatings in ventilation systems, industrial facades, and wastewater treatment facilities is enabling businesses to comply with stringent emission control laws while enhancing workplace safety. Additionally, these coatings are proving essential in food processing industries, where they help prevent microbial contamination on conveyor belts, storage units, and packaging materials, ensuring longer product shelf life and reducing foodborne illnesses.

A notable development in industrial applications is the emergence of hybrid photocatalytic coatings that combine metal nanoparticles, graphene oxide, and doping techniques to enhance their performance. These modifications allow coatings to function under indoor lighting conditions, making them more effective in office spaces, shopping malls, public transportation hubs, and home interiors. The scalability of these coatings is also improving, with advancements in spray-on, dip-coating, and electrostatic deposition techniques making them more accessible for large-scale industrial deployment.

What Role Do Photocatalytic Coatings Play in the Transportation and Consumer Goods Sectors?

The automotive and transportation industries are witnessing a significant uptake in photocatalytic coatings, particularly in self-cleaning vehicle exteriors, anti-fog windshields, and smog-reducing road infrastructure. Automakers are incorporating TiO2-based coatings in car interiors, dashboards, and seats to eliminate odors, bacteria, and airborne pollutants, improving cabin air quality. Additionally, these coatings are being applied to train stations, airport terminals, and public transport surfaces to minimize maintenance costs and reduce the spread of infectious diseases in high-traffic environments.

Another promising area of growth is the integration of photocatalytic coatings in smart roads and urban infrastructure. Cities around the world are experimenting with self-cleaning concrete, pollution-absorbing highway barriers, and smog-eating road pavements to tackle urban pollution. These coatings, when applied to roads and bridges, help reduce nitrogen oxide levels in the air, making metropolitan areas cleaner and more sustainable. Countries such as Japan, Italy, and the Netherlands have already implemented photocatalytic pavement technologies, demonstrating a measurable decline in airborne pollutants and vehicle emissions in urban areas.

The consumer electronics and household goods market is also adopting photocatalytic coatings for anti-bacterial smartphones, touchscreens, air purifiers, and home appliances. Smart homes are increasingly integrating self-cleaning and odor-neutralizing coatings in kitchen countertops, bathroom tiles, and furniture surfaces, enhancing indoor air quality and reducing reliance on chemical cleaning agents. Additionally, companies are developing UV-activated and visible-light-driven coatings for wearable technology, including antibacterial smartwatches, fitness trackers, and healthcare monitoring devices, expanding the commercial potential of these coatings beyond traditional applications.

What Are the Key Factors Driving the Growth of the Photocatalytic Coatings Market?

The growth in the photocatalytic coatings market is driven by several factors, including technological advancements, rising environmental concerns, increasing urban pollution, and regulatory policies favoring sustainable coatings. Innovations in visible-light-activated photocatalysts, such as doped TiO2 and plasmonic nanostructures, have expanded the usability of these coatings beyond traditional UV-light-dependent systems, making them suitable for indoor applications, consumer goods, and public transportation surfaces.

The increasing stringency of environmental regulations is another key driver. Governments across Europe, North America, and Asia are implementing strict laws to control VOC emissions, urban air pollution, and industrial waste disposal. As a result, industries are actively seeking eco-friendly and self-sustaining surface treatment solutions, positioning photocatalytic coatings as a viable alternative to conventional chemical-based coatings. Additionally, the construction industry’s push for green buildings and energy-efficient infrastructure is boosting demand for self-cleaning glass, air-purifying facades, and antimicrobial interior surfaces.

The automotive and transportation sector’s shift toward sustainability is further accelerating market adoption. The emergence of electric vehicles (EVs), hybrid transportation systems, and smog-reducing urban infrastructure is creating new opportunities for photocatalytic coatings in vehicle exteriors, charging stations, and public transit hubs. Meanwhile, advancements in coating application technologies, including nano-spraying, electrostatic deposition, and self-assembling coatings, are making these solutions more scalable and cost-effective for widespread industrial use.

SCOPE OF STUDY:

The report analyzes the Photocatalytic Coatings market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Type (TiO2, ZnO, Other Types); Application (Self-Cleaning Application, Air Purification Application, Water Treatment Application, Anti-Fogging Application, Other Applications); End-Use (Building & Construction End-Use, Transportation End-Use, Healthcare End-Use, Other End-Uses)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 44 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â