¼¼°èÀÇ À¯±â ±Ý¼Ó ±¸Á¶Ã¼(MOF) ½ÃÀå
Metal Organic Frameworks
»óǰÄÚµå : 1777408
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 292 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,195,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,585,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ À¯±â ±Ý¼Ó ±¸Á¶Ã¼(MOF) ½ÃÀåÀº 2030³â±îÁö 198¾ï ´Þ·¯¿¡ À̸¦ Àü¸Á

2024³â¿¡ 95¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â À¯±â ±Ý¼Ó ±¸Á¶Ã¼(MOF) ¼¼°è ½ÃÀåÀº 2024-2030³â°£ CAGR 13.0%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 198¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ¾Ë·ç¹Ì´½ ±â¹ÝÀº CAGR 15.2%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 57¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±¸¸® ±â¹Ý ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 14.4%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 26¾ï ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR17.8%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ À¯±â ±Ý¼Ó ±¸Á¶Ã¼(MOF) ½ÃÀåÀº 2024³â¿¡ 26¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 43¾ï ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 17.8%·Î ÃßÁ¤µË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î¼­´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 9.3%¿Í 11.7%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 10.3%¸¦ ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù.

¼¼°èÀÇ À¯±â ±Ý¼Ó ±¸Á¶Ã¼(MOF) ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

À¯±â ±Ý¼Ó ±¸Á¶Ã¼(MOF)¶õ ¹«¾ùÀΰ¡?

À¯±â ±Ý¼Ó ±¸Á¶Ã¼(MOF)´Â À¯±â ¸®°£µå¿¡ ¹èÀ§µÈ ±Ý¼Ó À̿ ¶Ç´Â Ŭ·¯½ºÅÍ·Î ±¸¼ºµÇ¾î °íµµÀÇ ´Ù°ø¼º ±¸Á¶¸¦ Çü¼ºÇÏ´Â Àç·áÀÇ ÀÏÁ¾ÀÔ´Ï´Ù. ÀÌ ¼ÒÀç´Â ¸Å¿ì ³ôÀº Ç¥¸éÀû, Á¶Àý °¡´ÉÇÑ ±â°ø Å©±â ¹× ±¸Á¶Àû À¯¿¬¼ºÀ¸·Î À¯¸íÇÏ¿© ´Ù¾çÇÑ ÀÀ¿ë ºÐ¾ß¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. MOF´Â ºÐÀÚ ¼öÁØ¿¡¼­ »ç¿ëÀÚ Á¤ÀÇÇÒ ¼ö ÀÖÀ¸¸ç, ƯÁ¤ ¿ä±¸ »çÇ׿¡ ¸Â°Ô Á¶Á¤ÇÒ ¼ö ÀÖ´Â ´ÙÀç´Ù´ÉÇÑ Æ¯¼ºÀ» Á¦°øÇÕ´Ï´Ù. µ¶Æ¯ÇÑ ´Ù°ø¼ºÀ¸·Î ÀÎÇØ ´Ù·®ÀÇ ±âü ¹× ¾×ü¸¦ Èí¼ö ¹× ÀúÀåÇÒ ¼ö ÀÖ¾î °¡½º ÀúÀå, Ã˸ŠÀÛ¿ë, ºÐ¸® °øÁ¤ µîÀÇ ¿ëµµ¿¡ ƯÈ÷ À¯¿ëÇÕ´Ï´Ù.

MOFÀÇ ±â´ÉÀº ¹°ÁúÀ» °íÈ¿À²·Î ÈíÂø ¹× Å»ÂøÇÏ´Â ´É·Â¿¡ ÀÇÁ¸Çϱ⠶§¹®¿¡ ź¼Ò Æ÷Áý, ¼ö¼Ò ÀúÀå, ¿©°ú µîÀÇ ºÐ¾ß¿¡¼­ ³ôÀº È¿°ú¸¦ ¹ßÈÖÇÕ´Ï´Ù. ±Ý¼Ó Áß½ÉÀ̳ª À¯±â ¹èÀ§ÀÚ¸¦ Á¶Á¤ÇÏ¿© ƯÁ¤ °¡½º¿¡ ´ëÇÑ ¼±ÅüºÀ̳ª ƯÁ¤ Á¶°Ç¿¡¼­ÀÇ ¾ÈÁ¤¼º Çâ»ó µî ´Ù¾çÇÑ Æ¯¼ºÀ» °¡Áø MOF¸¦ ¼³°èÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ´Ù¿ëµµ¼ºÀ¸·Î ÀÎÇØ Àç»ý¿¡³ÊÁö, ȯ°æ Á¤È­, ÀÇ·á¿ë µî ½Å±â¼ú¿¡ »ç¿ëµÇ´Â MOF¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ ½ÃÀå ÀáÀç·ÂÀÌ ´õ¿í Ä¿Áö°í ÀÖ½À´Ï´Ù.

À¯±â ±Ý¼Ó ±¸Á¶Ã¼(MOF) ½ÃÀåÀÇ ÁÖ¿ä µ¿ÇâÀº?

MOF ½ÃÀåÀ» ÁÖµµÇÏ´Â °¡Àå Áß¿äÇÑ Æ®·»µå Áß Çϳª´Â ȯ°æÀû ¿ëµµ, ƯÈ÷ ź¼Ò Æ÷Áý ¹× ´ë±â Á¤È­¿¡ ´ëÇÑ »ç¿ë Áõ°¡ÀÔ´Ï´Ù. ±âÈÄ º¯È­¿¡ ´ëÇÑ ¿ì·Á°¡ Ä¿Áö¸é¼­ ¿Â½Ç°¡½º ¹èÃâÀ» ÁÙÀÌ´Â ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. ³ôÀº Ç¥¸éÀû°ú ÀÌ»êȭź¼Ò(CO2)¿Í °°Àº °¡½º¸¦ ¼±ÅÃÀûÀ¸·Î ÈíÂøÇÏ´Â ´É·ÂÀ» °¡Áø MOF´Â »ê¾÷ °øÁ¤ ¹× ¹ßÀü¼Ò¿¡¼­ ¹èÃâµÇ´Â CO2¸¦ ȸ¼ö ¹× ÀúÀåÇÏ´Â À¯¸ÁÇÑ ¼Ö·ç¼ÇÀ¸·Î ÁÖ¸ñ¹Þ°í ÀÖ½À´Ï´Ù. ÀÌ»êȭź¼Ò Æ÷Áý ¹× ÀúÀå(CCS) ±â¼ú¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁü¿¡ µû¶ó, ƯÈ÷ °¢±¹ÀÇ È¯°æ ±ÔÁ¦°¡ °­È­µÊ¿¡ µû¶ó MOF¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

¶Ç ´Ù¸¥ Áß¿äÇÑ µ¿ÇâÀº ¿¡³ÊÁö ÀúÀå ¹× ¼ö¼Ò ÀúÀå ÀÀ¿ë ºÐ¾ß¿¡¼­ MOF¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. Àü ¼¼°èÀûÀ¸·Î Àç»ý¿¡³ÊÁö¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ ¿¡³ÊÁö ÀúÀå ±â¼ú °³¼± ¿¬±¸¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖÀ¸¸ç, MOF´Â È¿À²ÀûÀÎ ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛÀÇ ÀáÀçÀû Àç·á·Î ¿¬±¸µÇ°í ÀÖ½À´Ï´Ù. MOFÀÇ ³ôÀº Ç¥¸éÀû°ú Á¶Àý °¡´ÉÇÑ ±â°ø Å©±â´Â ¼ö¼Ò¿Í °°Àº °¡½º¸¦ ÀúÀåÇÏ´Â µ¥ ÀÌ»óÀûÀÎ È帷Π¼ö¼Ò ÀÚµ¿Â÷ ¹× Àç»ý¿¡³ÊÁö ÀúÀå ¼Ö·ç¼Ç °³¹ß¿¡ ÇʼöÀûÀÔ´Ï´Ù. ¶ÇÇÑ MOF´Â ½´ÆÛÄ¿ÆÐ½ÃÅÍ¿Í ¹èÅ͸®¿¡ÀÇ Àû¿ëÀÌ ¿¬±¸µÇ°í ÀÖÀ¸¸ç, ±âÁ¸ ¼ÒÀç¿¡ ºñÇØ ÀúÀå ¿ë·®ÀÌ Çâ»óµÉ °¡´É¼ºÀÌ ÀÖ½À´Ï´Ù.

¹ÙÀÌ¿À¸ÞµðÄà ¹× Á¦¾à¾÷°è¿¡¼­µµ ¾à¹° Àü´Þ ¹× ¹ÙÀÌ¿À¼¾½Ì ¿ëµµ·Î MOF¸¦ äÅÃÇÏ´Â »ç·Ê°¡ ´Ã°í ÀÖ½À´Ï´Ù. MOF´Â ¾à¹° ¹× ±âŸ Ä¡·áÁ¦¸¦ ĸ½¶È­ÇÏ¿© Á¦¾îµÈ ¹æ½ÄÀ¸·Î ¹æÃâÇϵµ·Ï ¼³°èÇÒ ¼ö Àֱ⠶§¹®¿¡ Ç¥Àû ¾à¹° Àü´Þ ½Ã½ºÅÛ¿¡ ¸Å¿ì ¸Å·ÂÀûÀÔ´Ï´Ù. ¶ÇÇÑ, ³ôÀº Ç¥¸éÀû°ú ´Ù°ø¼º ±¸Á¶·Î ÀÎÇØ ƯÁ¤ »ýü ºÐÀÚ¸¦ Æ÷ÂøÇÏ°í °¨ÁöÇÒ ¼ö ÀÖ´Â ¹ÙÀÌ¿À ¼¾¼­¿¡ »ç¿ëÇϱ⿡ ÀÌ»óÀûÀÎ Èĺ¸ÀÔ´Ï´Ù. º¸´Ù È¿À²ÀûÀÌ°í °³ÀÎÈ­µÈ Ä¡·áÀÇ Çʿ伺ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ÀÇ·á ºÐ¾ß¿¡¼­ MOFÀÇ ÀáÀç·ÂÀº °è¼Ó È®´ëµÇ°í ÀÖÀ¸¸ç, Àüü ½ÃÀå ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.

À¯±â ±Ý¼Ó ±¸Á¶Ã¼(MOF)¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ´Â ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

À¯±â ±Ý¼Ó ±¸Á¶Ã¼(MOF)¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ´Â ÀÌÀ¯´Â ´Ù¾çÇÑ »ê¾÷ ºÐ¾ßÀÇ ±¤¹üÀ§ÇÑ ÀÀ¿ë ºÐ¾ß¿¡ ÀûÇÕÇÑ °íÀ¯ÇÑ Æ¯¼ºÀÌ °áÇյǾî Àֱ⠶§¹®ÀÔ´Ï´Ù. MOF´Â ³î¶ó¿ï Á¤µµ·Î ´ÙÀç´Ù´ÉÇÏ°í Æ¯Á¤ ¿ëµµ¿¡ ¸Â°Ô Á¶Á¤ÇÒ ¼ö Àֱ⠶§¹®¿¡ ¿¡³ÊÁö, ȯ°æ, ÇコÄÉ¾î µîÀÇ ºÐ¾ß¿¡¼­ äÅÃÀ» ÃËÁøÇÏ´Â Áß¿äÇÑ ¿äÀÎÀÌ µÇ°í ÀÖ½À´Ï´Ù. ³ôÀº Ç¥¸éÀû, Å« ±â°ø ºÎÇÇ, ¸ÂÃãÇü Ư¼ºÀ¸·Î ÀÎÇØ È¿À²ÀûÀÎ °¡½º ÀúÀå, ºÐ¸®, Ã˸ŠÀÛ¿ëÀÌ ÇÊ¿äÇÑ ÀÀ¿ë ºÐ¾ß¿¡ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. º¸´Ù Áö¼Ó °¡´ÉÇϰí È¿À²ÀûÀÎ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó MOF´Â ±âÁ¸ Àç·á¿¡ ´ëÇÑ ¸Å·ÂÀûÀÎ ´ë¾ÈÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù.

¼ö¿ä Áõ°¡ÀÇ ÁÖ¿ä ¿äÀÎÀº Áö¼Ó°¡´É¼º°ú ȯ°æ º¸È£¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁ³±â ¶§¹®ÀÔ´Ï´Ù. »ê¾÷°è, Á¤ºÎ, ¼ÒºñÀÚ ¸ðµÎ°¡ ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÁÙÀ̱â À§ÇØ ³ë·ÂÇϰí ÀÖ´Â °¡¿îµ¥, MOF´Â ź¼Ò ¹èÃâ ¹× Æó±â¹° °ü¸®¿Í °°Àº ¹®Á¦¸¦ ÇØ°áÇÒ ¼ö ÀÖ´Â À¯¸ÁÇÑ ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. CO2 ¹× ±âŸ °¡½º¸¦ Æ÷ÁýÇϰí ÀúÀåÇÏ´Â MOFÀÇ ´É·ÂÀº ±âÈÄ º¯È­ÀÇ ¿µÇâÀ» ¿ÏÈ­ÇÏ´Â µ¥ ƯÈ÷ °¡Ä¡°¡ ÀÖ½À´Ï´Ù. ƯÈ÷ ¹ßÀü, ½Ã¸àÆ® Á¦Á¶, ö°­ Á¦Á¶¿Í °°Àº »ê¾÷¿¡¼­ MOF¸¦ »ç¿ëÇÏ¿© À¯ÇØÇÑ ¹èÃâ¹°À» Æ÷ÁýÇϰí ȯ°æ ¹ßÀÚ±¹À» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù.

¿¡³ÊÁö ºÐ¾ß¿¡¼­ MOF´Â ¼ö¼Ò ÀúÀå ¹× Àç»ý¿¡³ÊÁö Àû¿ë °¡´É¼ºÀ¸·Î ÁÖ¸ñ¹Þ°í ÀÖ½À´Ï´Ù. ¼ö¼Ò ¿¬·áÀüÁö ±â¼úÀÇ ±Þ¼ÓÇÑ ¹ßÀü°ú ûÁ¤ ¿¡³ÊÁö ¼Ö·ç¼ÇÀÇ ÃßÁø¿¡ µû¶ó ¼ö¼Ò °¡½º¸¦ È¿À²ÀûÀ¸·Î ÀúÀåÇÏ°í ¹æÃâÇÏ´Â MOFÀÇ ´É·ÂÀÌ Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù. ûÁ¤ ¿¡³ÊÁö¿øÀÎ ¼ö¼Ò´Â ¿î¼Û ¹× Áß°ø¾÷ Żź¼ÒÈ­ ³ë·ÂÀÇ Áß½ÉÀÌ µÇ°í ÀÖ½À´Ï´Ù. MOF´Â ³·Àº ¾Ð·Â°ú ¿Âµµ¿¡¼­ ´ë·®ÀÇ ¼ö¼Ò¸¦ ¾ÈÀüÇÏ°Ô ÀúÀåÇÒ ¼ö ÀÖ´Â ¹æ¹ýÀ» Á¦°øÇÏ¿© ¼ö¼Ò ÀÎÇÁ¶ó °³¹ß¿¡ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù.

À¯±â ±Ý¼Ó ±¸Á¶Ã¼(MOF) ½ÃÀåÀÇ ÁÖ¿ä ¼ºÀå ÃËÁø¿äÀÎÀº ¹«¾ùÀΰ¡?

À¯±â ±Ý¼Ó ±¸Á¶Ã¼(MOF)(MOFs) ½ÃÀåÀÇ ¼ºÀåÀº Àç·á °úÇÐÀÇ ¹ßÀü, Áö¼Ó °¡´ÉÇÑ ¿¡³ÊÁö ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, ȯ°æ ¹× ÇコÄÉ¾î »ê¾÷¿¡¼­ MOFsÀÇ Àû¿ë È®´ë µî ¿©·¯ °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ºÐÀÚ ¼öÁØ¿¡¼­ ¸ÂÃãÇüÀ¸·Î ¸¸µé ¼ö ÀÖ´Â MOFÀÇ ´É·ÂÀº Áß¿äÇÑ ÃËÁøÁ¦ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ Ä¿½ºÅ͸¶ÀÌ¡À» ÅëÇØ ÈíÂø ´É·Â Çâ»ó, ¼±ÅÃÀû °¡½º Æ÷Áý, °¡È¤ÇÑ Á¶°Ç¿¡¼­ÀÇ ¿­È­ ÀúÇ×¼º µî ±ØÈ÷ Ư¼öÇÑ Æ¯¼ºÀ» °¡Áø ¼ÒÀç °³¹ßÀÌ °¡´ÉÇØÁý´Ï´Ù. ÀÌ·¯ÇÑ ¸ÂÃãÇü Ư¼ºÀ¸·Î ÀÎÇØ MOF´Â °¡½º ÀúÀå, ºÐ¸®, Ã˸ŠÀÛ¿ë, ȯ°æ Á¤È­ ¹× ±âŸ ÀÀ¿ë ºÐ¾ß¿¡ ÀÌ»óÀûÀÎ È帷Π´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼­ äÅõǰí ÀÖ½À´Ï´Ù.

¶Ç ´Ù¸¥ Áß¿äÇÑ ¿øµ¿·ÂÀº ¿¡³ÊÁö È¿À²ÀûÀ̰í ģȯ°æÀûÀÎ ±â¼ú¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡Çϰí ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ¼¼°è°¡ Áö¼Ó°¡´ÉÇÑ ¿¡³ÊÁö ¼Ö·ç¼ÇÀ¸·Î ÀüȯÇÏ´Â °¡¿îµ¥, MOF´Â ¼ö¼Ò ÀúÀå ¹× CO2 Æ÷ÁýÀÇ °¡´É¼ºÀ» Ãß±¸Çϰí ÀÖ½À´Ï´Ù. ƯÈ÷, ¼ö¼Ò ¿¬·áÀüÁö¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿Í ź¼ÒÁ߸³¿¡ ´ëÇÑ ¼¼°è °¢±¹ÀÇ ÃßÁøÀº ¾ÈÀüÇϰí È¿À²ÀûÀÎ ¼ö¼Ò ÀúÀå ¼Ö·ç¼ÇÀ¸·Î MOFÀÇ ¿¬±¸¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ³ôÀº Ç¥¸éÀû°ú Á¶Àý °¡´ÉÇÑ ±â°ø ±¸Á¶¸¦ °¡Áø MOF´Â ±âÁ¸ ¼ÒÀç¿¡ ºñÇØ ³ôÀº ¹Ðµµ·Î ¼ö¼Ò¸¦ ÀúÀåÇÒ ¼ö ÀÖ¾î ¼ö¼Ò¸¦ µ¿·Â¿øÀ¸·Î ÇÏ´Â ÀÚµ¿Â÷ ¹× ¿¡³ÊÁö ½Ã½ºÅÛ »ó¿ëÈ­¿¡ ´ëÇÑ °úÁ¦¸¦ ±Øº¹ÇÒ ¼ö ÀÖ½À´Ï´Ù.

±âÈÄ º¯È­, ´ë±â¿À¿° µî ȯ°æ¹®Á¦¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁø °Íµµ Å« ÃËÁø¿äÀÎÀÔ´Ï´Ù. ¼¼°è °¢±¹ Á¤ºÎ´Â ¿Â½Ç°¡½º ¹èÃâÀ» ÁÙÀ̱â À§ÇØ ´õ¿í ¾ö°ÝÇÑ È¯°æ ±ÔÁ¦¸¦ ½ÃÇàÇϰí ÀÖÀ¸¸ç, MOF´Â ź¼Ò Æ÷Áý, ´ë±â Á¤È­, Æó±â¹° 󸮿¡ ÀÖ¾î ¸Å¿ì À¯¸ÁÇÑ ¼Ö·ç¼ÇÀÌ µÇ°í ÀÖ½À´Ï´Ù. MOF´Â ¹è±â°¡½º, »ê¾÷ ¹èÃâ¹° ¹× ´ë±â Áß CO2¸¦ ¼±ÅÃÀûÀ¸·Î Æ÷ÁýÇϱâ À§ÇØ °³¹ßµÇ¾î »ê¾÷°è°¡ ÀÌ»êȭź¼Ò ¹èÃâ·®À» ÁÙÀÌ°í ±ÔÁ¦ ¿ä°ÇÀ» ÃæÁ·ÇÏ´Â µ¥ µµ¿òÀ» ÁÖ°í ÀÖ½À´Ï´Ù. ƯÈ÷ ½Ã¸àÆ®, ö°­, ¹ßÀü µî ¿¡³ÊÁö Áý¾àÀû »ê¾÷¿¡¼­ Áö¼Ó°¡´É¼º ½ÇõÀÌ °­Á¶µÇ¸é¼­ MOF¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

¶ÇÇÑ, »ý¹°ÀÇÇÐ ºÐ¾ß¿¡¼­ MOF¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö´Â °Íµµ ½ÃÀå ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. MOFÀÇ Á¦¾îµÇ°í Ç¥ÀûÈ­µÈ ¹æ½ÄÀ¸·Î ¾à¹°À» ĸ½¶È­Çϰí Àü´ÞÇÒ ¼ö ÀÖ´Â ´É·ÂÀº ¾à¹° Àü´Þ ½Ã½ºÅÛ¿¡¼­ MOFÀÇ »ç¿ë¿¡ Å« °ü½ÉÀ» ºÒ·¯ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ MOFÀÇ ³ôÀº Ç¥¸éÀûÀº Áúº´ °ËÃâ¿ë ¹ÙÀÌ¿À¼¾¼­ µî Áø´Ü ¿ëµµ·Îµµ ÀÌ»óÀûÀÔ´Ï´Ù. º¸´Ù È¿À²ÀûÀÌ°í °³ÀÎÈ­µÈ ÇコÄɾî Ä¡·á¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó Á¦¾à ¹× ÀÇ·á±â±â »ê¾÷¿¡¼­ MOFÀÇ °³¹ß ¹× »ó¿ëÈ­¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

¸¶Áö¸·À¸·Î, MOF ±â¼ú¿¡ ´ëÇÑ ¿¬±¸°³¹ß(R&:D)ÀÇ È®´ë°¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. MOF ¿¬±¸¿¡ ´ëÇÑ Áö¼ÓÀûÀÎ ÅõÀÚ´Â º¸´Ù È¿À²ÀûÀÌ°í ºñ¿ë È¿À²ÀûÀÎ ÇÕ¼º ¹æ¹ýÀÇ °³¹ß·Î À̾îÁ® MOFÀÇ »ý»êÀ» º¸´Ù È®Àå °¡´ÉÇÏ°í °æÁ¦ÀûÀ¸·Î ½ÇÇà °¡´ÉÇÑ °ÍÀ¸·Î ¸¸µé°í ÀÖ½À´Ï´Ù. Ư¼ºÀÌ Çâ»óµÈ »õ·Î¿î MOF°¡ ¹ß°ßµÊ¿¡ µû¶ó ±× Àû¿ë ¹üÀ§°¡ °è¼Ó È®´ëµÇ¾î ½ÃÀå ¼ºÀåÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

°á·ÐÀûÀ¸·Î, À¯±â ±Ý¼Ó ±¸Á¶Ã¼(MOF) ½ÃÀåÀº Áö¼Ó °¡´ÉÇÑ ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, Àç·á°úÇÐÀÇ ¹ßÀü, ¿¡³ÊÁö, ȯ°æ, ÇコÄÉ¾î ºÐ¾ß¿¡¼­ÀÇ MOF Àû¿ë È®´ë·Î ÀÎÇØ Å©°Ô ¼ºÀåÇÒ Å¼¼¸¦ °®Ãß°í ÀÖ½À´Ï´Ù. »ê¾÷°è°¡ È¿À²¼º, Áö¼Ó°¡´É¼º, Çõ½ÅÀ» ÃÖ¿ì¼± °úÁ¦·Î »ï°í ÀÖ´Â °¡¿îµ¥, MOF´Â ±âÈÄ º¯È­¿¡¼­ ¿¡³ÊÁö ÀúÀå, ÇコÄɾ À̸£±â±îÁö ¼¼°è¿¡¼­ °¡Àå ½Ã±ÞÇÑ °úÁ¦¸¦ ÇØ°áÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ °ÍÀ¸·Î ±â´ëµË´Ï´Ù. µû¶ó¼­ MOF ½ÃÀåÀº ¾ÕÀ¸·Îµµ ¿ªµ¿ÀûÀ̰í À¯¸ÁÇÑ ºÐ¾ß°¡ µÉ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

ºÎ¹®

Á¦Ç°(¾Ë·ç¹Ì´½ ±â¹Ý, ±¸¸® ±â¹Ý, ö ±â¹Ý, ¾Æ¿¬ ±â¹Ý, ¸¶±×³×½· ±â¹Ý, ±âŸ), ¿ëµµ(°¡½º ºÐ¸® ¹× Á¤Á¦, Ã˸Å, °¡½º ÀúÀå, ¾à¹°Àü´Þ, ź¼Ò Æ÷Áý, ´ë±âÁß Áý¼ö, ±âŸ)

Á¶»ç ´ë»ó ±â¾÷ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ¼­, ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°è °íÀ¯ SLM¿¡ Äõ¸®-ÇÏ´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ Å¥·¹ÀÌÆ®µÈ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Metal Organic Frameworks Market to Reach US$19.8 Billion by 2030

The global market for Metal Organic Frameworks estimated at US$9.5 Billion in the year 2024, is expected to reach US$19.8 Billion by 2030, growing at a CAGR of 13.0% over the analysis period 2024-2030. Aluminum based, one of the segments analyzed in the report, is expected to record a 15.2% CAGR and reach US$5.7 Billion by the end of the analysis period. Growth in the Copper based segment is estimated at 14.4% CAGR over the analysis period.

The U.S. Market is Estimated at US$2.6 Billion While China is Forecast to Grow at 17.8% CAGR

The Metal Organic Frameworks market in the U.S. is estimated at US$2.6 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$4.3 Billion by the year 2030 trailing a CAGR of 17.8% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 9.3% and 11.7% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 10.3% CAGR.

Global Metal Organic Frameworks Market - Key Trends & Drivers Summarized

What Are Metal Organic Frameworks (MOFs) and How Do They Work?

Metal Organic Frameworks (MOFs) are a class of materials made up of metal ions or clusters coordinated to organic ligands, forming highly porous structures. These materials are known for their exceptionally high surface area, tunable pore sizes, and structural flexibility, making them ideal for a wide range of applications. MOFs can be customized at the molecular level, offering versatile properties that can be adjusted to meet specific requirements. Their unique porosity allows them to absorb and store large quantities of gases or liquids, which is particularly valuable for applications such as gas storage, catalysis, and separation processes.

The functioning of MOFs relies on their ability to adsorb and desorb substances with high efficiency, which makes them highly effective in areas like carbon capture, hydrogen storage, and filtration. By adjusting the metal centers and organic ligands, researchers can design MOFs with different properties, such as selectivity for specific gases or enhanced stability under certain conditions. This versatility has led to significant interest in MOFs for use in emerging technologies such as renewable energy, environmental remediation, and medical applications, further boosting their market potential.

What Are the Key Trends in the Metal Organic Frameworks Market?

One of the most significant trends driving the market for MOFs is their increasing use in environmental applications, particularly for carbon capture and air purification. As concerns over climate change intensify, the demand for technologies that can reduce greenhouse gas emissions has surged. MOFs, with their high surface areas and ability to selectively adsorb gases like carbon dioxide (CO2), are seen as promising solutions for capturing and storing CO2 emissions from industrial processes and power plants. This growing interest in carbon capture and storage (CCS) technologies, especially as countries implement stricter environmental regulations, is propelling the demand for MOFs.

Another key trend is the growing interest in MOFs for energy storage and hydrogen storage applications. The global push toward renewable energy has spurred research into improving energy storage technologies, and MOFs are being explored as potential materials for efficient energy storage systems. Their high surface area and tunable pore sizes make them ideal candidates for storing gases like hydrogen, which is critical for the development of hydrogen-powered vehicles and renewable energy storage solutions. Additionally, MOFs are being investigated for their use in supercapacitors and batteries, where they could provide enhanced storage capacities compared to traditional materials.

The biomedical and pharmaceutical industries are also increasingly adopting MOFs for drug delivery and biosensing applications. MOFs can be engineered to encapsulate drugs or other therapeutic agents and release them in a controlled manner, making them highly attractive for targeted drug delivery systems. In addition, their high surface area and porous structure make them ideal candidates for use in biosensors, where they can capture and detect specific biological molecules. As the need for more efficient and personalized medical treatments grows, the potential for MOFs in the medical field continues to expand, contributing to the overall market growth.

Why Is the Demand for Metal Organic Frameworks Growing?

The demand for Metal Organic Frameworks is growing due to their unique combination of properties that make them suitable for a wide range of applications across various industries. MOFs are incredibly versatile and can be tailored for specific uses, which is a key factor driving their adoption in sectors like energy, environment, and healthcare. Their high surface area, large pore volumes, and customizable nature allow them to be used for applications that require efficient gas storage, separation, and catalysis. As the need for more sustainable and efficient solutions increases, MOFs are emerging as an attractive alternative to traditional materials.

A key factor contributing to the growing demand is the increasing focus on sustainability and environmental conservation. As industries, governments, and consumers alike seek to reduce their environmental impact, MOFs offer a promising solution for addressing challenges like carbon emissions and waste management. Their ability to capture and store CO2, as well as other gases, is particularly valuable in mitigating the impact of climate change. This is especially true for industries such as power generation, cement production, and steel manufacturing, where MOFs can be used to trap harmful emissions and reduce the environmental footprint.

In the energy sector, MOFs are gaining traction due to their potential for hydrogen storage and renewable energy applications. With the rapid development of hydrogen fuel cell technologies and the push for clean energy solutions, MOFs’ ability to store and release hydrogen gas efficiently is becoming more important. Hydrogen, as a clean energy source, is central to efforts in decarbonizing transportation and heavy industry. MOFs offer a way to safely store large amounts of hydrogen at lower pressures and temperatures, making them critical in the development of hydrogen infrastructure.

What Are the Key Growth Drivers in the Metal Organic Frameworks Market?

The growth in the Metal Organic Frameworks (MOFs) market is driven by several factors, including advancements in material science, increasing demand for sustainable energy solutions, and the expanding applications of MOFs in environmental and healthcare industries. The ability of MOFs to be customized at the molecular level is a significant growth driver. This customization allows for the development of materials with highly specific properties, such as enhanced adsorption capacity, selective gas capture, and resistance to degradation under harsh conditions. These tailored characteristics make MOFs ideal candidates for applications in gas storage, separation, catalysis, and environmental remediation, fueling their adoption across multiple industries.

Another important driver is the growing need for energy-efficient and environmentally friendly technologies. As the world shifts towards sustainable energy solutions, MOFs are being explored for their potential in hydrogen storage and CO2 capture. In particular, the increasing demand for hydrogen fuel cells and the global push for carbon neutrality are driving research into MOFs as a solution for safe and efficient hydrogen storage. With their high surface area and tunable pore structure, MOFs can store hydrogen at higher densities compared to conventional materials, helping to overcome challenges in the commercialization of hydrogen-powered vehicles and energy systems.

The rise of environmental concerns, including climate change and air pollution, is another major growth driver. Governments worldwide are implementing stricter environmental regulations to reduce greenhouse gas emissions, and MOFs present a highly promising solution for carbon capture, air purification, and waste treatment. MOFs are being developed to selectively capture CO2 from flue gases, industrial emissions, and even from the atmosphere, helping industries reduce their carbon footprint and meet regulatory requirements. This growing emphasis on sustainable practices, particularly in energy-intensive industries such as cement, steel, and power generation, is boosting the demand for MOFs.

In addition, the increasing interest in MOFs for biomedical applications is contributing to market growth. The ability of MOFs to encapsulate and deliver drugs in a controlled and targeted manner has sparked significant interest in their use in drug delivery systems. MOFs’ high surface area also makes them ideal for use in diagnostic applications, such as biosensors for disease detection. The growing demand for more efficient and personalized healthcare treatments is pushing the development and commercialization of MOFs in the pharmaceutical and medical device industries.

Finally, the expansion of research and development (R&D) into MOF technologies is accelerating the growth of the market. The continued investment in MOF research has led to the development of more efficient and cost-effective synthesis methods, making the production of MOFs more scalable and economically viable. As new MOFs with enhanced properties are discovered, their range of applications continues to expand, further driving market growth.

In conclusion, the Metal Organic Frameworks market is poised for significant growth due to the increasing demand for sustainable technologies, advancements in material science, and the expanding applications of MOFs in energy, environmental, and healthcare sectors. As industries continue to prioritize efficiency, sustainability, and innovation, MOFs are expected to play a key role in addressing some of the world’s most pressing challenges, from climate change to energy storage to healthcare. This makes the market for MOFs a dynamic and promising field for years to come.

SCOPE OF STUDY:

The report analyzes the Metal Organic Frameworks market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Product (Aluminium based, Copper based, Iron based, Zinc based, Magnesium based, Others); Application (Gas separation & purification, Catalyst, Gas storage, Drug delivery, Carbon capture, Atmospheric water harvesting, Others)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 34 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â