¼¼°èÀÇ ÀζóÀÎ ÇÁ·Î¼¼½º Á¡Åä°è ½ÃÀå
In-Line Process Viscometers
»óǰÄÚµå : 1777364
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 290 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,186,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,559,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ÀζóÀÎ ÇÁ·Î¼¼½º Á¡Åä°è ½ÃÀåÀº 2030³â±îÁö 2¾ï 9,490¸¸ ´Þ·¯¿¡ À̸¦ Àü¸Á

2024³â¿¡ 2¾ï 1,850¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â ÀζóÀÎ ÇÁ·Î¼¼½º Á¡Åä°è ¼¼°è ½ÃÀåÀº 2024-2030³â°£ CAGR 5.1%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 2¾ï 9,490¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀΠȸÀü½ÄÀº CAGR 3.8%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 7,790¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ºñƲ¸² Áøµ¿ ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 6.8%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 5,950¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 7.9%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ÀζóÀÎ ÇÁ·Î¼¼½º Á¡Åä°è ½ÃÀåÀº 2024³â¿¡ 5,950¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ 2024-2030³â°£ CAGR 7.9%·Î ¼ºÀåÀ» Áö¼ÓÇÏ¿©, 2030³â¿¡´Â ¿¹Ãø ½ÃÀå ±Ô¸ð 5,780¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î¼­´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 2.6%¿Í 5.0%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 3.3%¸¦ ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù.

ÀζóÀÎ ÇÁ·Î¼¼½º Á¡Åä°è ¼¼°è ½ÃÀå µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

ÀζóÀÎ ÇÁ·Î¼¼½º Á¡µµ°è ¼ö¿ä¸¦ ÁÖµµÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

¼¼°è ÀζóÀÎ ÇÁ·Î¼¼½º Á¡µµ°è ½ÃÀåÀº ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼­ ½Ç½Ã°£ Á¡µµ ¸ð´ÏÅ͸µ ¹× Á¦¾î¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó ºü¸£°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ÀζóÀÎ ÇÁ·Î¼¼½º Á¡µµ°è´Â ½ÄÀ½·á °¡°ø, Á¦¾à, È­ÇÐ, ¼®À¯ Á¤Á¦, ÄÚÆÃ Á¦Á¶ µîÀÇ ÀÀ¿ë ºÐ¾ß¿¡¼­ À¯Ã¼ÀÇ Æ¯¼ºÀ» ÀÏÁ¤ÇÏ°Ô À¯ÁöÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. ÀÌ Àåºñ´Â Áö¼ÓÀûÀÎ Á¡µµ ÃøÁ¤, Á¦Ç° ǰÁú º¸Àå, Àç·á ³¶ºñ¸¦ ÃÖ¼ÒÈ­ÇÏ¿© »ý»ê È¿À²À» ÃÖÀûÈ­ÇÏ´Â µ¥ ±â¿©ÇÕ´Ï´Ù. Á¦¾à ¹× ½Äǰ Á¦Á¶¿Í °°Àº »ê¾÷Àº ¾ö°ÝÇÑ ±ÔÁ¦ ±âÁØÀ» °¡Áö°í Àֱ⠶§¹®¿¡ ±â¾÷µéÀº ÄÄÇöóÀ̾𽺠¿ä°ÇÀ» ÃæÁ·ÇÏ°í ³ôÀº ǰÁú ±âÁØÀ» À¯ÁöÇϱâ À§ÇØ Ã·´Ü Á¡µµ ÃøÁ¤ ¼Ö·ç¼Ç¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù.

½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¶Ç ´Ù¸¥ Áß¿äÇÑ ¿äÀÎÀº Á¦Á¶ °øÁ¤¿¡¼­ ÀÚµ¿È­ ¹× Àδõ½ºÆ®¸® 4.0 ±â¼úÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. »ê¾÷ ¿î¿µÀÌ µ¥ÀÌÅÍ Áß½ÉÈ­µÊ¿¡ µû¶ó À¯Ã¼ Á¡µµÀÇ ½Ç½Ã°£ ¸ð´ÏÅ͸µÀº °øÁ¤ ÃÖÀûÈ­ ¹× ¿¹Ãø À¯Áöº¸¼ö¿¡ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù. µðÁöÅÐ ÀÎÅÍÆäÀ̽º¿Í IoT ¿¬°á ±â´ÉÀ» °®Ãá ÀζóÀÎ Á¡µµ°è´Â Á¦Á¶¾÷ü°¡ Á¡µµ ÃøÁ¤À» Áß¾Ó ÁýÁᫎ Á¦¾î ½Ã½ºÅÛ¿¡ ÅëÇÕÇÏ¿© ¼öÀÛ¾÷À» ÁÙÀÌ°í °øÁ¤ È¿À²¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. Á¡µµ Á¦¾îÀÇ °æÁ¦Àû ÀÌÁ¡¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁü¿¡ µû¶ó »ê¾÷°è´Â ¿î¿µ ¼º´É Çâ»ó°ú »ý»ê ºñ¿ë Àý°¨À» À§ÇØ ÀζóÀÎ Á¡µµ°è¸¦ µµÀÔÇϰí ÀÖ½À´Ï´Ù.

±â¼ú Çõ½ÅÀº ÀζóÀÎ Á¡µµ°è¸¦ ¾î¶»°Ô º¯È­½Ãų °ÍÀΰ¡?

±â¼úÀÇ ¹ßÀüÀº ÀζóÀÎ ÇÁ·Î¼¼½º Á¡µµ°èÀÇ ¹ßÀü¿¡ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖÀ¸¸ç, Á¤È®µµ, ³»±¸¼º ¹× ÅëÇÕ ´É·ÂÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ÀÌ ºÐ¾ß¿¡¼­ °¡Àå Áß¿äÇÑ ±â¼ú Çõ½Å Áß Çϳª´Â ÃÊÀ½ÆÄ Á¡µµ°è¿Í ÀüÀÚ±â Á¡µµ°èÀÇ °³¹ßÀÔ´Ï´Ù. ÀÌ Á¡µµ°è´Â ±â°èÀûÀ¸·Î ¿òÁ÷ÀÌ´Â ºÎºÐÀÌ ÇÊ¿ä ¾øÀÌ Á¤È®ÇÏ°í ºñħ½ÀÀûÀÎ Á¡µµ ÃøÁ¤À» ½ÇÇöÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Ã·´Ü ±â¼úÀº ±âÁ¸ÀÇ È¸Àü½Ä Á¡µµ°è³ª ¸ð¼¼°ü½Ä Á¡µµ°è¿¡ ºñÇØ ³ôÀº ½Å·Ú¼º°ú À¯Áöº¸¼ö °¨¼Ò¸¦ ½ÇÇöÇÏ¿© ¿¬¼ÓÀûÀÎ »ê¾÷¿ëµµ¿¡ ÀÌ»óÀûÀÔ´Ï´Ù.

¶Ç ´Ù¸¥ Áß¿äÇÑ ±â¼ú µ¿ÇâÀº Á¡µµ ÃøÁ¤ ½Ã½ºÅÛ¿¡ ½Ç½Ã°£ µ¥ÀÌÅÍ ºÐ¼®°ú AI ±â¹Ý °øÁ¤ Á¦¾î¸¦ ÅëÇÕÇÏ´Â °ÍÀÔ´Ï´Ù. ÃֽŠÀζóÀÎ Á¡µµ°è¿¡´Â ½º¸¶Æ® ¼¾¼­°¡ ÀåÂøµÇ¾î ÀÖ¾î Á¡µµ º¯µ¿À» ÀÚµ¿À¸·Î °¨ÁöÇÏ¿© ÀáÀçÀûÀÎ °øÁ¤ ÀÌÅ»¿¡ ´ëÇØ ÀÛ¾÷ÀÚ¿¡°Ô °æ°íÇÏ¿© ¿¹Áöº¸ÀüÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ¶ÇÇÑ, Ŭ¶ó¿ìµå ±â¹Ý Á¡µµ ¸ð´ÏÅ͸µ ½Ã½ºÅÛÀÌ Àα⸦ ²ø°í ÀÖÀ¸¸ç, Á¡µµ µ¥ÀÌÅÍ¿¡ ´ëÇÑ ¿ø°Ý ¾×¼¼½º¸¦ ÅëÇØ Áß¾Ó ÁýÁᫎ °øÁ¤ Á¦¾î ¹× ÃÖÀûÈ­¸¦ ½ÇÇöÇϰí ÀÖ½À´Ï´Ù. AI¿Í ¸Ó½Å·¯´×ÀÇ µµÀÔÀÌ ÁøÇàµÊ¿¡ µû¶ó ÀζóÀÎ Á¡µµ°è´Â Á¡µµ ÆÄ¶ó¹ÌÅ͸¦ ½º½º·Î Á¶Á¤ÇÏ¿© ÃÖÀûÀÇ »ý»ê Á¶°ÇÀ» À¯ÁöÇÒ ¼ö ÀÖ´Â Áö´ÉÇü °øÁ¤ Á¦¾î µµ±¸·Î ÁøÈ­Çϰí ÀÖ½À´Ï´Ù.

ÀζóÀÎ Á¡µµ°èÀÇ ¿ëµµ¸¦ È®ÀåÇÏ´Â »õ·Î¿î ÀÀ¿ë ºÐ¾ß´Â ¹«¾ùÀΰ¡?

ÀζóÀÎ ÇÁ·Î¼¼½º Á¡µµ°èÀÇ ÀÀ¿ë ¹üÀ§´Â ÀüÅëÀûÀÎ »ê¾÷ ¿Ü¿¡µµ È®ÀåµÇ¾î »õ·Î¿î ½ÃÀå ±âȸ¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù. °¡Àå ºü¸£°Ô ¼ºÀåÇÏ´Â ºÐ¾ß Áß ÇϳªÀÎ ½ÄÀ½·á »ê¾÷¿¡¼­ ÀζóÀÎ Á¡µµ ÃøÁ¤Àº À¯Á¦Ç°, ¼Ò½º, µå·¹½Ì, ½Äǰ ¹× À½·á¿Í °°Àº Á¦Ç°ÀÇ ±ÕÀϼºÀ» º¸ÀåÇϱâ À§ÇØ ÇʼöÀûÀÔ´Ï´Ù. ½Ä¹°¼º ´ëü ½Äǰ°ú ±â´É¼º À½·áÀÇ µîÀåÀ¸·Î Á¦Á¶¾÷üµéÀº ½Ä°¨, ¾ÈÁ¤¼º, º¸Á¸¼ºÀ» À¯ÁöÇϱâ À§ÇØ ÀζóÀÎ Á¡µµ°è¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³ôÀ̰í ÀÖ½À´Ï´Ù.

Á¦¾à ¹× »ý¸í°øÇÐ ºÐ¾ß¿¡¼­´Â ÁÖ»çÁ¦, ¹é½Å, ¹ÙÀÌ¿À ÀǾàǰÀÇ Ç°ÁúÀ» º¸ÀåÇϱâ À§ÇØ ÀζóÀÎ Á¡µµ°è°¡ ÇʼöÀûÀ¸·Î »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ¹ÙÀÌ¿ÀÀǾàǰÀº Á¡Á¡ ´õ º¹ÀâÇØÁö°í ÀÖÀ¸¸ç, ÀûÀýÇÑ ¿ë·®, ¾ÈÁ¤¼º, »ýü ÀÌ¿ë·üÀ» À¯ÁöÇϱâ À§ÇØ Á¤È®ÇÑ Á¡µµ °ü¸®°¡ ÇÊ¿äÇÕ´Ï´Ù. ¶ÇÇÑ, ¼®À¯ ¹× °¡½º ºÐ¾ß¿¡¼­´Â ¿øÀ¯ Á¡µµ ¸ð´ÏÅ͸µ, ¿¬·á ¹èÇÕ ÃÖÀûÈ­, ÆÄÀÌÇÁ¶óÀÎÀÇ À¯·® È¿À² Çâ»óÀ» À§ÇØ ÀζóÀÎ Á¡µµ°èÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. Áö¼Ó °¡´ÉÇÑ ¿¬·á¿Í ¹ÙÀÌ¿À¿¬·á¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó, Á¤È®ÇÑ Á¡µµ ÃøÁ¤Àº Á¤Á¦ ¹× ´ëü ¿¡³ÊÁö »ý»ê¿¡ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù.

ÀζóÀÎ ÇÁ·Î¼¼½º Á¡µµ°è ½ÃÀåÀÇ ¹Ì·¡¸¦ Çü¼ºÇÏ´Â ÁÖ¿ä ¼ºÀå ÃËÁø¿äÀÎÀº ¹«¾ùÀΰ¡?

ÀζóÀÎ ÇÁ·Î¼¼½º¿ë Á¡µµ°è ½ÃÀåÀÇ ¼ºÀåÀº °øÁ¤ ÀÚµ¿È­ÀÇ ¹ßÀü, ǰÁú °ü¸® ¼ö¿ä Áõ°¡, ÀÀ¿ë ºÐ¾ß È®´ë µî ¸î °¡Áö Áß¿äÇÑ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ÁÖ¿ä ¼ºÀå ¿äÀÎ Áß Çϳª´Â ½Ç½Ã°£ µ¥ÀÌÅÍ ¼öÁý, ¿¹Áöº¸Àü, ÀÚµ¿ °øÁ¤ Á¦¾î¸¦ Áß½ÃÇÏ´Â Àδõ½ºÆ®¸® 4.0 ±â¼úÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. »ê¾÷°è°¡ ¿ÏÀü ÀÚµ¿È­µÈ »ý»ê ȯ°æÀ¸·Î ÀüȯÇÔ¿¡ µû¶ó ÀζóÀÎ Á¡µµ°è¸¦ ÅëÇÑ ¿¬¼Ó Á¡µµ ¸ð´ÏÅ͸µ¿¡ ´ëÇÑ ¿ä±¸°¡ Å©°Ô Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

½ÃÀå È®´ë¸¦ ÃËÁøÇÏ´Â ¶Ç ´Ù¸¥ ÁÖ¿ä ¿äÀÎÀº Á¦Ç° ǰÁú°ú ¾ÈÀü¿¡ ´ëÇÑ ±ÔÁ¦°¡ °­È­µÇ°í ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. Á¦¾à, ½ÄÀ½·á, È­ÇÐ µîÀÇ »ê¾÷¿¡¼­´Â ¾ö°ÝÇÑ Ç°Áú °ü¸® ±âÁØÀÌ Àû¿ëµÇ±â ¶§¹®¿¡ ÀζóÀÎ Á¡µµ°è·Î Á¡µµ¸¦ ÃøÁ¤ÇÏ´Â °ÍÀº ÄÄÇöóÀ̾𽺸¦ ÁؼöÇÏ´Â µ¥ ÇʼöÀûÀÎ ¿ä¼ÒÀÔ´Ï´Ù. ¶ÇÇÑ, Áö¼Ó°¡´É¼º°ú ¿¡³ÊÁö È¿À²À» Ãß±¸ÇÔ¿¡ µû¶ó ÃÖÀûÀÇ ÀÚ¿ø Ȱ¿ëÀÌ ¿ä±¸µÇ´Â »ê¾÷ °øÁ¤¿¡¼­ ÀζóÀÎ Á¡µµ°èÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

ºñÁ¢Ã˽Ä, À¯Áöº¸¼ö°¡ ÇÊ¿ä ¾ø´Â Á¡µµ ÃøÁ¤ ¼Ö·ç¼ÇÀ¸·ÎÀÇ ÀüȯÀÌ ÁøÇàµÇ°í ÀÖ´Â °Íµµ ½ÃÀåÀÇ ¹Ì·¡¸¦ Çü¼ºÇϰí ÀÖ½À´Ï´Ù. °í¾Ð, °í¿Â, ºÎ½Ä ȯ°æ µî °¡È¤ÇÑ Á¶°Ç¿¡¼­µµ ÀÛµ¿ÇÏ´Â °íÁ¤¹Ð, ÀúÀ¯Áöº¸¼ö Á¡µµ°è¸¦ °³¹ßÇÏ´Â Á¦Á¶¾÷ü°¡ ´Ã°í ÀÖ½À´Ï´Ù. »ê¾÷°è°¡ È¿À²¼º, Á¤È®¼º, Áö¼Ó°¡´É¼ºÀ» Áß½ÃÇÏ´Â °¡¿îµ¥, Â÷¼¼´ë ÀζóÀÎ ÇÁ·Î¼¼½º Á¡µµ°è´Â Çö´ë »ê¾÷ ¿î¿µ¿¡ ÇʼöÀûÀÎ µµ±¸·Î ÀÚ¸®¸Å±èÇϸ鼭 ¼ö¿ä°¡ È®´ëµÉ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ºÎ¹®

±â¼ú(ȸÀü, ºñƲ¸² Áøµ¿, Áøµ¿, ¹«ºù ÇǽºÅæ, ÄÚ¸®¿Ã¸®, ´ÙÀ̳ª¹Í À¯Ã¼, À½ÇâÆÄ, ±âŸ), ÃÖÁ¾ ¿ëµµ(¼®À¯, È­ÇÐ, ÀǾàǰ, ½Äǰ ¹× À½·á, ±âŸ)

Á¶»ç ´ë»ó ±â¾÷ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇÕ´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°èº° SLM Äõ¸®¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ´ë·® ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global In-Line Process Viscometers Market to Reach US$294.9 Million by 2030

The global market for In-Line Process Viscometers estimated at US$218.5 Million in the year 2024, is expected to reach US$294.9 Million by 2030, growing at a CAGR of 5.1% over the analysis period 2024-2030. Rotational, one of the segments analyzed in the report, is expected to record a 3.8% CAGR and reach US$77.9 Million by the end of the analysis period. Growth in the Torsional Oscillation segment is estimated at 6.8% CAGR over the analysis period.

The U.S. Market is Estimated at US$59.5 Million While China is Forecast to Grow at 7.9% CAGR

The In-Line Process Viscometers market in the U.S. is estimated at US$59.5 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$57.8 Million by the year 2030 trailing a CAGR of 7.9% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 2.6% and 5.0% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 3.3% CAGR.

Global In-Line Process Viscometer Market - Key Trends & Drivers Summarized

What Is Driving the Demand for In-Line Process Viscometers?

The global in-line process viscometer market is expanding rapidly, driven by the increasing need for real-time viscosity monitoring and control across various industries. In-line process viscometers are essential for maintaining consistent fluid properties in applications such as food and beverage processing, pharmaceuticals, chemicals, petroleum refining, and coatings manufacturing. These devices help optimize production efficiency by providing continuous viscosity measurements, ensuring product quality, and minimizing material waste. With stringent regulatory standards in industries such as pharmaceuticals and food production, companies are investing in advanced viscometry solutions to meet compliance requirements and maintain high-quality standards.

Another significant factor fueling market growth is the rising adoption of automation and Industry 4.0 technologies in manufacturing processes. As industrial operations become more data-driven, real-time monitoring of fluid viscosity has become crucial for process optimization and predictive maintenance. In-line viscometers, equipped with digital interfaces and IoT connectivity, enable manufacturers to integrate viscosity measurements into centralized control systems, reducing manual interventions and improving process efficiency. With growing awareness about the economic benefits of viscosity control, industries are increasingly implementing in-line viscometers to enhance operational performance and reduce production costs.

How Are Technological Innovations Transforming In-Line Viscometry?

Technological advancements are playing a critical role in the evolution of in-line process viscometers, improving their accuracy, durability, and integration capabilities. One of the most significant innovations in this field is the development of ultrasonic and electromagnetic viscometers, which offer precise and non-intrusive viscosity measurement without requiring mechanical moving parts. These advanced technologies provide higher reliability and reduced maintenance compared to traditional rotational and capillary viscometers, making them ideal for continuous industrial applications.

Another key technological trend is the integration of real-time data analytics and AI-driven process control in viscosity measurement systems. Modern in-line viscometers are equipped with smart sensors that enable predictive maintenance, automatically detecting viscosity fluctuations and alerting operators about potential process deviations. Additionally, cloud-based viscosity monitoring systems are gaining popularity, allowing remote access to viscosity data for centralized process control and optimization. With the growing adoption of AI and machine learning, in-line viscometers are evolving into intelligent process control tools, capable of self-adjusting viscosity parameters to maintain optimal production conditions.

What Are the Emerging Applications Expanding the Use of In-Line Viscometers?

The application scope of in-line process viscometers is expanding beyond traditional industries, creating new market opportunities. One of the fastest-growing segments is the food and beverage industry, where in-line viscosity measurement is essential for ensuring consistency in products such as dairy, sauces, dressings, and beverages. With the rise of plant-based food alternatives and functional beverages, manufacturers are increasingly relying on in-line viscometers to maintain texture, stability, and shelf-life properties.

In the pharmaceutical and biotechnology sectors, in-line viscometry is becoming critical for ensuring the quality of injectable drugs, vaccines, and biopharmaceutical formulations. The growing complexity of biopharma products requires precise viscosity control to maintain proper dosing, stability, and bioavailability. Additionally, the oil and gas sector is witnessing increased adoption of in-line viscometers for monitoring crude oil viscosity, optimizing fuel blending, and enhancing pipeline flow efficiency. With the demand for sustainable fuels and biofuels on the rise, accurate viscosity measurement is becoming essential for refining and alternative energy production.

What Are the Key Growth Drivers Shaping the Future of the In-Line Process Viscometer Market?

The growth in the in-line process viscometer market is driven by several key factors, including advancements in process automation, increasing demand for quality control, and the expansion of application areas. One of the primary growth drivers is the rising adoption of Industry 4.0 technologies, which emphasize real-time data collection, predictive maintenance, and automated process control. As industries move toward fully automated production environments, the need for continuous viscosity monitoring through in-line viscometers is expected to rise significantly.

Another major factor propelling market expansion is the increasing regulatory focus on product quality and safety. Industries such as pharmaceuticals, food and beverage, and chemicals are subject to strict quality control standards, making in-line viscosity measurement a critical component of compliance. Additionally, the push for sustainability and energy efficiency is driving the adoption of in-line viscometers in industrial processes that require optimal resource utilization.

The growing shift toward non-contact and maintenance-free viscometry solutions is also shaping the market’s future. Manufacturers are increasingly developing high-precision, low-maintenance viscometers that can operate under extreme conditions, including high-pressure, high-temperature, and corrosive environments. As industries continue to emphasize efficiency, accuracy, and sustainability, the demand for next-generation in-line process viscometers is expected to grow, positioning them as indispensable tools for modern industrial operations.

SCOPE OF STUDY:

The report analyzes the In-Line Process Viscometers market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Technology (Rotational, Torsional Oscillation, Vibration, Moving Piston, Coriolis, Dynamic Fluid, Acoustic Wave, Others); End-Use (Petroleum, Chemicals, Pharmaceuticals, Food & Beverages, Others)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 32 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â