¼¼°èÀÇ ÇÏÀ̺긮µå ±×¸®µå ¿¬°á ¸¶ÀÌÅ©·Î±×¸®µå ½ÃÀå
Hybrid Grid Connected Microgrids
»óǰÄÚµå : 1777360
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 398 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,180,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,541,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ÇÏÀ̺긮µå ±×¸®µå ¿¬°á ¸¶ÀÌÅ©·Î±×¸®µå ½ÃÀåÀº 2030³â±îÁö 60¾ï ´Þ·¯¿¡ À̸¦ Àü¸Á

2024³â¿¡ 21¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ÇÏÀ̺긮µå ±×¸®µå ¿¬°á ¸¶ÀÌÅ©·Î±×¸®µå ¼¼°è ½ÃÀåÀº 2024-2030³â°£ CAGR 19.0%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 60¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ µðÁ© ¹ßÀü±â´Â CAGR 21.8%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 24¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. õ¿¬°¡½º ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 16.2%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 5¾ï 7,560¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR26.1%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ÇÏÀ̺긮µå ±×¸®µå ¿¬°á ¸¶ÀÌÅ©·Î±×¸®µå ½ÃÀåÀº 2024³â¿¡ 5¾ï 7,560¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 14¾ï ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 26.1%·Î ÃßÁ¤µË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î¼­´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 14.8%¿Í 17.1%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 15.9%¸¦ ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù.

¼¼°è ÇÏÀ̺긮µå ±×¸®µå ¿¬°á ¸¶ÀÌÅ©·Î±×¸®µå ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ Á¤¸®

ÇÏÀ̺긮µå ±×¸®µå ¿¬°á ¸¶ÀÌÅ©·Î±×¸®µå°¡ ºÐ»êÇü ¿¡³ÊÁö ½Ã½ºÅÛÀÇ ¹Ì·¡·Î ºÎ»óÇÏ´Â ÀÌÀ¯´Â ¹«¾ùÀϱî?

ÇÏÀ̺긮µå °èÅ뿬°èÇü ¸¶ÀÌÅ©·Î±×¸®µå´Â °èÅ뿬°èÇü°ú ¼¶Çü ¸ðµÎ ź·ÂÀûÀ̰í È¿À²ÀûÀ̸ç Áö¼Ó °¡´ÉÇÑ Àü·ÂÀ» °ø±ÞÇÒ ¼ö ÀÖ´Â Áß¿äÇÑ ÀÎÇÁ¶ó·Î¼­ Àü ¼¼°èÀûÀ¸·Î ±× Á߿伺ÀÌ Ä¿Áö°í ÀÖ½À´Ï´Ù. ÀÌ ½Ã½ºÅÛÀº ž籤 ¹ßÀü, dz·Â ¹ßÀü, µðÁ©/°¡½º ¹ßÀü±â, ¿¡³ÊÁö ÀúÀå µî ¿©·¯ ¿¡³ÊÁö¿øÀ» ÅëÇÕÇϰí Áß¾Ó ÁýÁᫎ Àü·Â¸Á°ú º´ÇàÇÏ¿© ¿øÈ°ÇÏ°Ô ¿î¿µÇÒ ¼ö ÀÖ´Â ½º¸¶Æ® Á¦¾î ±â´ÉÀ» °®Ãß°í ÀÖ½À´Ï´Ù. ¿ÏÀüÇÑ µ¶¸³Çü ½Ã½ºÅÛ°ú ´Þ¸® ÇÏÀ̺긮µå ¸¶ÀÌÅ©·Î±×¸®µå´Â ÁÖ¿ä À¯Æ¿¸®Æ¼ ±×¸®µå¿Í »óÈ£ ÀÛ¿ëÇϵµ·Ï ¼³°èµÇ¾î ÇÊ¿äÇÒ ¶§ Àü·ÂÀ» ²ø¾îµéÀ̰í, ¹ßÀü·®ÀÌ Áö¿ª ¼ö¿ä¸¦ ÃʰúÇÒ ¶§ À׿© Àü·ÂÀ» ¼öÃâÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ÀÌÁß ±â´ÉÀ» ÅëÇØ ¿¡³ÊÁöÀÇ ½Å·Ú¼ºÀ» ³ôÀÌ´Â µ¿½Ã¿¡ ºÎÇÏ ÃÖÀûÈ­, ¼ö¿ä¹ÝÀÀ Âü¿©, ÇÇũįÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.

ÇÏÀ̺긮µå ¸¶ÀÌÅ©·Î±×¸®µåÀÇ µîÀåÀº ºÐ»êÇü ¹ßÀü, Àü±âÈ­, ±âÈÄ º¯È­¿¡ °­ÇÑ ÀÎÇÁ¶ó·ÎÀÇ ÀüȯÀÌ ÁøÇàµÇ°í ÀÖ´Â ¼¼°è ¿¡³ÊÁö Àüȯ±â¿Í ¸Â¹°·Á ÀÖ½À´Ï´Ù. ÇÏÀ̺긮µå ¸¶ÀÌÅ©·Î±×¸®µå´Â Àü·Â¸ÁÀÇ ºÒ¾ÈÁ¤¼º, ³ëÈÄÈ­µÈ Àü·Â ÀÎÇÁ¶ó, Żź¼ÒÈ­ÀÇ Çʿ伺°ú °°Àº ÁÖ¿ä °úÁ¦¸¦ ÇØ°áÇÒ ¼ö ÀÖ½À´Ï´Ù. ÇÏÀ̺긮µå ¸¶ÀÌÅ©·Î±×¸®µå´Â ÀÇ·á, ±º»ç, µ¥ÀÌÅͼ¾ÅÍ, Ä·ÆÛ½º, »ê¾÷´ÜÁö, ÀçÇØ Ãë¾à Áö¿ª µî Àü·Â °ø±ÞÀÌ Áß´ÜµÉ ¼ö ¾ø´Â ºÐ¾ß¿¡¼­ ¹Ì¼Ç Å©¸®Æ¼ÄÃÇÑ ¿¡³ÊÁö ¿¬¼Ó¼ºÀ» Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ ¸ðµâ¼º°ú È®À强À¸·Î ÀÎÇØ ½º¸¶Æ® ½ÃƼ, ³óÃÌ Àü±âÈ­ ÀÌ´Ï¼ÅÆ¼ºê, ³ì»ö »ê¾÷ ȸ¶û¿¡ ÅëÇÕÇϱ⿡ ÀÌ»óÀûÀ̸ç, ÇÏÀ̺긮µå ¸¶ÀÌÅ©·Î±×¸®µå´Â Â÷¼¼´ë ºÐ»êÇü ¿¡³ÊÁö Àü¸ÁÀÇ ÇÙ½ÉÀ¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

±â¼ú ÅëÇÕ ¹× Á¦¾î ½Ã½ºÅÛÀº ¸¶ÀÌÅ©·Î±×¸®µåÀÇ È¿À²¼º°ú ±×¸®µå »óÈ£ ¿î¿ë¼ºÀ» ¾î¶»°Ô Çâ»ó½Ã۰í Àִ°¡?

µðÁöÅÐ Á¦¾î ½Ã½ºÅÛ, ½Ç½Ã°£ ºÐ¼®, ¿¡³ÊÁö °ü¸® ¼ÒÇÁÆ®¿þ¾îÀÇ ¹ßÀüÀ¸·Î ÇÏÀ̺긮µå ¸¶ÀÌÅ©·Î±×¸®µåÀÇ °íµµÈ­°¡ ºü¸£°Ô ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀÇ ÇÙ½ÉÀº Áö´ÉÇü ¸¶ÀÌÅ©·Î±×¸®µå ÄÁÆ®·Ñ·¯·Î, ½Ç½Ã°£À¸·Î ¹ßÀü°ú ¼ÒºñÀÇ ±ÕÇüÀ» ¸ÂÃß°í °èÅ뿬°è ¸ðµå¿Í ¼¶ ¸ðµå °£ ÀüȯÀ» ÀÚµ¿È­ÇÏ¸ç ¿©·¯ ºÐ»êÇü ¿¡³ÊÁö ÀÚ¿ø(DER)ÀÇ ¹èÄ¡¸¦ ÃÖÀûÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ Ç÷§ÆûÀº ¿¹Ãø ¾Ë°í¸®Áò, Àϱ⿹º¸, ºÎÇÏ ÇÁ·ÎÆÄÀϸµ, Àç»ý¿¡³ÊÁöÀÇ ¿ì¼±¼øÀ§ ÁöÁ¤, ¹èÅ͸®ÀÇ È¿À²ÀûÀÎ Ãæ¹æÀü, È­¼®¿¬·á ¹ßÀüÀÇ ÃÖ¼ÒÈ­¸¦ º¸ÀåÇÏ´Â ¿¹Ãø ¾Ë°í¸®Áò, ±â»ó¿¹º¸, ºÎÇÏ ÇÁ·ÎÆÄÀϸµÀ» Ȱ¿ëÇÕ´Ï´Ù. ±×¸®µå ÀÎÇÁ¶ó¿ÍÀÇ ¿øÈ°ÇÑ »óÈ£¿î¿ë¼ºÀ» ÅëÇØ ¸¶ÀÌÅ©·Î±×¸®µå´Â Àü¾Ð Á¶Á¤, Á֯ļö ¾ÈÁ¤È­, ºí·¢½ºÅ¸Æ® ±â´É µîÀÇ ¾È½Ã¸® ¼­ºñ½ºµµ Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù.

¿¡³ÊÁö ÀúÀå, ƯÈ÷ ¸®Æ¬ À̿ ¹èÅ͸®¿Í ÇÃ·Î¿ì ¹èÅ͸® ½Ã½ºÅÛÀº º¯µ¿ÇÏ´Â Àç»ý¿¡³ÊÁö ÀÔ·ÂÀ» ¾ÈÁ¤È­Çϰí, ¹ßÀüÀÇ ½Ã°£ À̵¿À» °¡´ÉÇÏ°Ô Çϸç, ±×¸®µå Âü¿©¸¦ °­È­ÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ÀιöÅÍ ¹× ¾ç¹æÇâ ÄÁ¹öÅÍ¿Í °°Àº ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º´Â AC/DC Àü¿øÀ» ¿øÈ°ÇÏ°Ô ÅëÇÕÇϰí À¯Æ¿¸®Æ¼ ±×¸®µå¿ÍÀÇ µ¿±âÈ­¸¦ Áö¿øÇÕ´Ï´Ù. Á¤±³ÇÑ ÈÞ¸Õ ¸Ó½Å ÀÎÅÍÆäÀ̽º(HMI)¿Í SCADA ½Ã½ºÅÛÀº ¸ÖƼ»çÀÌÆ® ¹× ¹Ì¼Ç Å©¸®Æ¼ÄÃÇÑ ¹èÄ¡¿¡ ÇʼöÀûÀÎ ½Ç½Ã°£ °¡½Ã¼º°ú ¿ø°Ý Á¦¾î¸¦ Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úµéÀ» ÃÑĪÇÏ´Â ¸¶ÀÌÅ©·Î±×¸®µå´Â ¿¡³ÊÁö ź·Â¼º, ºñ¿ë Àý°¨, ±×¸®µå À¯¿¬¼º, °íµµÀÇ ÀÚµ¿È­ ¹× Á¦¾î¸¦ ÅëÇÑ Àúź¼Ò ½Å·Ú¼ºÀ» Ãß±¸ÇÏ´Â Àü·Âȸ»ç, ÁöÀÚü, »ê¾÷°è »ç¿ëÀڵ鿡°Ô Á¡Á¡ ´õ ¸Å·ÂÀûÀ¸·Î ´Ù°¡¿À°í ÀÖ½À´Ï´Ù.

ÇÏÀ̺긮µå ¸¶ÀÌÅ©·Î±×¸®µåÀÇ ¼¼°è È®»êÀ» °¡¼ÓÈ­ÇÏ´Â ½ÃÀå ¿ø¸®¿Í ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©´Â?

Àç»ý¿¡³ÊÁö ÅëÇÕ, ¿¡³ÊÁö ÀÚ¸³, ±âÈÄ º¯È­¿¡ ´ëÇÑ ÀûÀÀÀ» ÇâÇÑ Àü ¼¼°èÀÇ º¯È­´Â ¼±Áø±¹°ú °³¹ßµµ»ó±¹À» ¸··ÐÇϰí ÇÏÀ̺긮µå ±×¸®µå ¿¬°á ¸¶ÀÌÅ©·Î±×¸®µå µµÀÔ¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. ¼º¼÷ÇÑ °æÁ¦±Ç¿¡¼­´Â Àü·Âȸ»ç¿Í ¿µ¸®±â¾÷ÀÌ Àü·Â¸Á ÀÇÁ¸µµ¸¦ ÁÙÀ̰í, ¿¡³ÊÁö Á¶´ÞÀ» ÃÖÀûÈ­Çϸç, Àû±ØÀûÀÎ ÀÌ»êȭź¼Ò °¨Ãà ¸ñÇ¥¸¦ ´Þ¼ºÇϱâ À§ÇØ ¸¶ÀÌÅ©·Î±×¸®µå¸¦ µµÀÔÇϰí ÀÖ½À´Ï´Ù. ¹Ì±¹¿¡¼­´Â ¼¼¾× °øÁ¦, ÁÖÁ¤ºÎ Àǹ«È­, ¿¡³ÊÁöºÎ ÀÚ±Ý Áö¿ø ÇÁ·Î±×·¥À» ÅëÇØ »ó¾÷¿ë ¹× Ä¿¹Â´ÏƼ ±Ô¸ðÀÇ ¸¶ÀÌÅ©·Î±×¸®µå °³¹ßÀ» Àå·ÁÇϰí ÀÖÀ¸¸ç, ƯÈ÷ »êºÒÀÌ ¹ß»ýÇϱ⠽¬¿î ÁÖ¿Í Àç³­¿¡ Ãë¾àÇÑ ÁÖ¿¡¼­ ¸¶ÀÌÅ©·Î±×¸®µå °³¹ßÀ» Àå·ÁÇϰí ÀÖ½À´Ï´Ù. EU¿¡¼­´Â ÇÏÀ̺긮µå ¸¶ÀÌÅ©·Î±×¸®µå°¡ ±×¸°µô ¹× Fit-for-55 ¹ýÁ¦ ÆÐŰÁö¿Í ÀÏÄ¡Çϱ⠶§¹®¿¡ Áö¿ª¿¡ ±â¹ÝÇÑ ¿¡³ÊÁö Àüȯ Àü·«ÀÇ ÀÏȯÀ¸·Î µµÀÔÀÌ ÃËÁøµÇ°í ÀÖ½À´Ï´Ù.

½ÅÈï ½ÃÀå¿¡¼­´Â ÇÏÀ̺긮µå ¸¶ÀÌÅ©·Î±×¸®µå°¡ ±¹°¡ Àü·Â¸Á¿¡ °úµµÇÑ ºÎ´ãÀ» ÁÖÁö ¾ÊÀ¸¸é¼­ ³óÃÌÀÇ Àü±âÈ­ ¹× Àü·Â ½Å·Ú¼ºÀ» ½ÇÇöÇÒ ¼ö ÀÖ´Â °¡Àå Çö½ÇÀûÀÎ ¹æ¾ÈÀ¸·Î ¿©°ÜÁö°í ÀÖ½À´Ï´Ù. ¾Æ½Ã¾Æ, ¾ÆÇÁ¸®Ä«, ¶óƾ¾Æ¸Þ¸®Ä«ÀÇ °¢±¹ Á¤ºÎ´Â ¹Î°ü ÆÄÆ®³Ê½Ê, ¾çÇãÀû À¶ÀÚ, Àç»ý¿¡³ÊÁö ÅëÇÕÀ» ¿ì¼±½ÃÇÏ´Â ³óÃÌ Àü±âÈ­ Á¤Ã¥À» ÅëÇØ ¸¶ÀÌÅ©·Î±×¸®µå µµÀÔÀ» Áö¿øÇϰí ÀÖ½À´Ï´Ù. ž籤 ¹× dz·Â ¹ßÀü°ú µðÁ© ¹ßÀü±â, ¹ÙÀÌ¿À¿¬·á ¹ßÀü±â, ÃàÀüÁö¸¦ °áÇÕÇÑ ÇÏÀ̺긮µå ¼³°è¸¦ ÅëÇØ °³¹ßÀÚ´Â ÆÄ°ß °¡´ÉÇÑ ¹é¾÷À» À¯ÁöÇϸ鼭 Àç»ý¿¡³ÊÁö º¸±Þ·üÀ» ±Ø´ëÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ³Ý ¹ÌÅ͸µ, P2P °Å·¡, °èÅë ¼­ºñ½º ½ÃÀåÀ¸·ÎÀÇ ¸¶ÀÌÅ©·Î±×¸®µå ÁøÀÔÀ» °¡´ÉÇÏ°Ô ÇÏ´Â ±ÔÁ¦ °³ÇõÀº °¡Ä¡¸¦ ´õ¿í ¹ß±¼ÇÏ°í °­·ÂÇÑ ÅõÀÚ »ç·Ê¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù. Àü ¼¼°èÀûÀ¸·Î ź¼Ò°¡°ÝÁ¦, ESG ÅõÀÚ È帧, ¿¡³ÊÁö ºñ¿ë »ó½ÂÀ¸·Î ÀÎÇØ ÇÏÀ̺긮µå °èÅ뿬°èÇü ¸¶ÀÌÅ©·Î±×¸®µåÀÇ »ó¾÷Àû, ȯ°æÀû Çʿ伺ÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù.

¿ëµµ ¹× Áö¿ªº°·Î ÇÏÀ̺긮µå ±×¸®µå ¿¬°á ¸¶ÀÌÅ©·Î±×¸®µå ½ÃÀåÀÇ ¼ºÀåÀ» ÁÖµµÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

ÇÏÀ̺긮µå ±×¸®µå ¿¬°á ¸¶ÀÌÅ©·Î±×¸®µå ½ÃÀåÀÇ ¼ºÀåÀ» ÁÖµµÇϰí ÀÖ´Â ÁÖ¿ä »ê¾÷ ¹× Áö¿ª¿¡¼­ÀÇ ¿¡³ÊÁö ½Å·Ú¼º, ºñ¿ë ÃÖÀûÈ­, Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡°¡ ÁÖ¿ä »ê¾÷ ¹× Áö¿ª¿¡¼­ÀÇ ÇÏÀ̺긮µå ±×¸®µå ¿¬°á ¸¶ÀÌÅ©·Î±×¸®µå ½ÃÀå ¼ºÀåÀ» °ßÀÎÇϰí ÀÖ½À´Ï´Ù. ºÏ¹Ì¿¡¼­´Â ¿¡³ÊÁö ÀÚ¸³°ú ±âÈÄ º¯È­¿¡ ´ëÇÑ ³»¼ºÀ» ¿ä±¸ÇÏ´Â ½Ã¼³ Ä·ÆÛ½º, ±º»ç±âÁö, ÁöÀÚü µîÀÌ ½ÃÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ÇÇÅ© ¼ö¿ä ½Ã ¼ÛÀü¸ÁÀÇ ¿Ö°î°ú ÀÌ»ó±âÈÄ¿¡ ´ëÇÑ Ãë¾à¼º ¶§¹®¿¡ ÇÊ¿äÇÒ ¶§ ÀÚÀ²ÀûÀ¸·Î ÀÛµ¿ÇÏ°í Æò»ó½Ã¿¡´Â ¼ÛÀü¸Á°ú µ¿±âÈ­µÈ »óŸ¦ À¯ÁöÇÒ ¼ö ÀÖ´Â ¸¶ÀÌÅ©·Î±×¸®µå¿¡ ´ëÇÑ ÅõÀÚ°¡ È®´ëµÇ°í ÀÖ½À´Ï´Ù. À¯·´¿¡¼­´Â ³ì»ö»ê¾÷Áö´ë, ´ëÁß±³ÅëÀÇ Àü±âÈ­, Áö¿ª³­¹æ ¹× ½º¸¶Æ®±×¸®µå ±¸»ó°ú ¿¬°èµÈ Áö¿ª ¿¡³ÊÁö °èȹÀ» À§ÇØ ¸¶ÀÌÅ©·Î±×¸®µå°¡ È®´ëµÇ°í ÀÖ½À´Ï´Ù.

¾Æ½Ã¾ÆÅÂÆò¾ç, ƯÈ÷ Àεµ, Àεµ³×½Ã¾Æ, ÀϺ», È£ÁÖ¿¡¼­ ÇÏÀ̺긮µå ¸¶ÀÌÅ©·Î±×¸®µå°¡ ¿¡³ÊÁö Á¢±Ù¼º, Àü·Â Áý¾àÀû »ê¾÷´ÜÁö, ¼¶ Áö¿ª Ä¿¹Â´ÏƼ¸¦ Áö¿øÇϱâ À§ÇØ µµÀԵǰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀÇ ±Þ¼ÓÇÑ µµ½ÃÈ­, Àç»ý¿¡³ÊÁö ¿ë·® È®´ë, Ŭ¸°Å×Å© ½ºÅ¸Æ®¾÷¿¡ ´ëÇÑ Á¤ºÎÀÇ Áö¿øÀ¸·Î µµ½Ã¿Í ¿Üµý Áö¿ª ¸ðµÎ ¸¶ÀÌÅ©·Î±×¸®µå ±¸Ãà¿¡ À¯¸®ÇÑ Á¶°ÇÀÌ Á¶¼ºµÇ°í ÀÖ½À´Ï´Ù. ¾ÆÇÁ¸®Ä«¿Í ¶óƾ¾Æ¸Þ¸®Ä«´Â ¾ÆÁ÷ ½ÅÈï ½ÃÀåÀÌÁö¸¸ Çб³, Áø·á¼Ò, ³ó¾÷ ±âÁö, ³­¹Î °ÅÁÖÁö µî¿¡¼­ ±âºÎÀÚ Áö¿ø ¹× ÀÓÆÑÆ® Áß½ÉÀÇ ¸¶ÀÌÅ©·Î±×¸®µå ÇÁ·ÎÁ§Æ®°¡ ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº Àú·ÅÇÑ °¡°Ý, ±×¸®µå¿ÍÀÇ »óÈ£ ¿¬°á¼º, Àç»ý¿¡³ÊÁöÀÇ ½Å·Ú¼ºÀ» º¸ÀåÇϱâ À§ÇØ Á¾Á¾ ÇÏÀ̺긮µåÈ­µÇ¾î ÀÖ½À´Ï´Ù.

¿ëµµº°·Î´Â ³ôÀº ¿¡³ÊÁö ¼ö¿ä, Àü·Â Áß´Ü¿¡ ´ëÇÑ ¹Î°¨¼º, ¹èÃâ ¸ñÇ¥¿¡ ´ëÇÑ ±ÔÁ¦ÀÇ ¿µÇâÀ¸·Î ÀÎÇØ »ó¾÷ ¹× »ê¾÷(C&:I) ºÎ¹®ÀÌ ¿ìÀ§¸¦ Á¡Çϰí ÀÖ½À´Ï´Ù. ÇコÄɾî, È£ÅÚ, µ¥ÀÌÅͼ¾ÅÍ, ¹°·ù ºÎ¹®ÀÌ °­·ÂÇÑ µµÀÔ ±â¾÷À¸·Î ºÎ»óÇϰí ÀÖÀ¸¸ç, À¯Æ¿¸®Æ¼ ºÎ¹®Àº ±×¸®µå ¿¡Áö Á¦¾î ¹× DER ¿ÀÄɽºÆ®·¹À̼ÇÀ» À§ÇØ ÇÏÀ̺긮µå ¸¶ÀÌÅ©·Î±×¸®µå¸¦ äÅÃÇÏ´Â °æÇâÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. µðÁöÅÐ ¼º¼÷, Á¤Ã¥ Á¶Á¤, ¼¼°è ¿¡³ÊÁö ºÐ»êÈ­·Î ÀÎÇØ ÇÏÀ̺긮µå ±×¸®µå ¿¬°á ¸¶ÀÌÅ©·Î±×¸®µå ½ÃÀåÀº ºü¸£°Ô ¼ºÀåÇϰí ÀÖÀ¸¸ç, Àü ¼¼°èÀûÀ¸·Î ´õ ±ú²ýÇÏ°í ½º¸¶Æ®ÇÏ¸ç °ß°íÇÑ ¿¡³ÊÁö ½Ã½ºÅÛÀ» ÇâÇÑ º¯È­ÀÇ ±æÀ» Á¦°øÇÕ´Ï´Ù.

ºÎ¹®

Àü·Â(µðÁ© ¹ßÀü±â, õ¿¬°¡½º, ž籤¹ßÀü, CHP, ±âŸ), ¿¡³ÊÁö ÀúÀå Àåºñ(¸®Æ¬ ÀÌ¿Â, ³³ÃàÀüÁö, ÇÃ·Î¿ì ¹èÅ͸®, ÇöóÀÌÈÙ, ±âŸ), ¿ëµµ(ÇコÄɾî, ±³À°±â°ü, ±º, À¯Æ¿¸®Æ¼, »ê¾÷ ¹× »ó¾÷, ¿ø°ÝÁö, ±âŸ)

Á¶»ç ´ë»ó ±â¾÷ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ¼­, ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°èº° SLM Äõ¸®¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ´ë·® ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Hybrid Grid Connected Microgrids Market to Reach US$6.0 Billion by 2030

The global market for Hybrid Grid Connected Microgrids estimated at US$2.1 Billion in the year 2024, is expected to reach US$6.0 Billion by 2030, growing at a CAGR of 19.0% over the analysis period 2024-2030. Diesel Generators, one of the segments analyzed in the report, is expected to record a 21.8% CAGR and reach US$2.4 Billion by the end of the analysis period. Growth in the Natural Gas segment is estimated at 16.2% CAGR over the analysis period.

The U.S. Market is Estimated at US$575.6 Million While China is Forecast to Grow at 26.1% CAGR

The Hybrid Grid Connected Microgrids market in the U.S. is estimated at US$575.6 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$1.4 Billion by the year 2030 trailing a CAGR of 26.1% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 14.8% and 17.1% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 15.9% CAGR.

Global Hybrid Grid Connected Microgrid Market - Key Trends & Drivers Summarized

Why Are Hybrid Grid Connected Microgrids Emerging as the Future of Decentralized Energy Systems?

Hybrid grid connected microgrids are gaining global relevance as critical infrastructure capable of delivering resilient, efficient, and sustainable power in both grid-tied and islanded configurations. These systems integrate multiple energy sources-typically solar PV, wind, diesel/gas generators, and energy storage-with smart controls that allow seamless operation alongside centralized grids. Unlike fully off-grid systems, hybrid microgrids are designed to interact with the main utility grid, drawing power when needed and exporting surplus electricity when generation exceeds local demand. This dual capability enhances energy reliability while enabling load optimization, demand response participation, and peak shaving.

Their rise coincides with the global energy transition marked by a growing shift toward distributed generation, electrification, and climate-resilient infrastructure. Hybrid microgrids address key challenges such as rising grid instability, aging transmission infrastructure, and the need for decarbonization. They provide mission-critical energy continuity in sectors such as healthcare, military, data centers, campuses, industrial parks, and disaster-prone zones-where uninterrupted power is non-negotiable. Their modularity and scalability also make them ideal for integration into smart cities, rural electrification initiatives, and green industrial corridors, positioning hybrid microgrids as cornerstones of the next-generation decentralized energy landscape.

How Are Technological Integrations and Control Systems Enhancing Microgrid Efficiency and Grid Interoperability?

The sophistication of hybrid microgrids is rapidly increasing with advancements in digital control systems, real-time analytics, and energy management software. At the core of these systems are intelligent microgrid controllers capable of balancing generation and consumption in real time, automating transitions between grid-connected and islanded modes, and optimizing the dispatch of multiple distributed energy resources (DERs). These platforms use predictive algorithms, weather forecasting, and load profiling to ensure that renewables are prioritized, batteries are efficiently charged and discharged, and fossil-fuel generation is minimized. Seamless interoperability with grid infrastructure allows microgrids to offer ancillary services such as voltage regulation, frequency stabilization, and black-start capabilities.

Energy storage-particularly lithium-ion and flow battery systems-plays a critical role in stabilizing variable renewable inputs, enabling time-shifting of generation, and enhancing grid participation. Power electronics, including inverters and bidirectional converters, enable smooth integration of AC/DC sources and support synchronization with the utility grid. Sophisticated human-machine interfaces (HMIs) and SCADA systems provide real-time visibility and remote control, essential for multi-site or mission-critical deployments. These technologies collectively empower microgrids to deliver energy resilience, cost savings, and grid flexibility, making them increasingly attractive to utilities, municipalities, and industrial users seeking low-carbon reliability with high degrees of automation and control.

What Market Forces and Regulatory Frameworks Are Accelerating Hybrid Microgrid Adoption Globally?

The global shift toward renewable integration, energy independence, and climate adaptation is fueling hybrid grid connected microgrid adoption across developed and developing regions. In mature economies, utility companies and commercial enterprises are deploying microgrids to reduce grid reliance, optimize energy procurement, and meet aggressive carbon reduction targets. In the U.S., tax credits, state mandates, and Department of Energy funding programs are encouraging commercial and community-scale microgrid development, particularly in wildfire-prone and disaster-vulnerable states. In the EU, the alignment of hybrid microgrids with the Green Deal and Fit-for-55 legislative package is catalyzing deployment as part of localized energy transition strategies.

In emerging markets, hybrid microgrids are seen as the most viable path to rural electrification and power reliability without overburdening national grids. Governments in Asia, Africa, and Latin America are supporting microgrid rollouts through public-private partnerships, concessional financing, and rural electrification policies that prioritize renewable integration. Hybrid designs-where solar and wind generation are paired with diesel or biofuel generators and storage-allow developers to maximize renewable penetration while retaining dispatchable backup. Regulatory reforms enabling net metering, peer-to-peer trading, and microgrid participation in grid services markets are further unlocking value and creating a robust investment case. Globally, carbon pricing mechanisms, ESG investment flows, and rising energy costs are reinforcing the commercial and environmental imperative for hybrid grid-connected microgrids.

What Is Driving the Growth of the Hybrid Grid Connected Microgrid Market Across Applications and Geographies?

The growth in the hybrid grid connected microgrid market is driven by rising demand for energy reliability, cost optimization, and sustainability across key verticals and regions. In North America, the market is led by institutional campuses, military bases, and municipalities seeking energy independence and climate resilience. Grid strain during peak demand and vulnerability to extreme weather events are prompting widespread investment in microgrids that can operate autonomously when needed but remain grid-synchronized under normal conditions. Europe is seeing expansion in microgrids for green industrial zones, public transit electrification, and community energy schemes linked to district heating and smart grid initiatives.

In Asia-Pacific, hybrid microgrids are being deployed to support energy access, power-intensive industrial estates, and islanded communities-particularly in India, Indonesia, Japan, and Australia. The region’s rapid urbanization, renewable capacity expansion, and government support for clean tech startups are creating favorable conditions for both urban and remote microgrid deployment. Africa and Latin America, though still emerging markets, are witnessing growth in donor-backed and impact-driven microgrid projects for schools, clinics, agricultural hubs, and refugee settlements. These systems are often hybridized to ensure affordability, grid interactivity, and renewable reliability.

Application-wise, commercial & industrial (C&I) segments dominate due to high energy demand, sensitivity to power disruptions, and regulatory exposure to emissions targets. Healthcare, hospitality, data centers, and logistics sectors are emerging as strong adopters, while the utility sector is increasingly embracing hybrid microgrids for grid-edge control and DER orchestration. With digital maturity, policy alignment, and global energy decentralization underway, the hybrid grid connected microgrid market is poised for accelerated growth-offering a transformative pathway toward cleaner, smarter, and more resilient energy systems worldwide.

SCOPE OF STUDY:

The report analyzes the Hybrid Grid Connected Microgrids market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Power Source (Diesel Generators, Natural Gas, Solar PV, CHP, Others); Storage Device (Lithium-ion, Lead Acid, Flow Battery, Flywheels, Others); Application (Healthcare, Educational Institutes, Military, Utilities, Industrial / Commercial, Remote, Others)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 41 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â