¼¼°èÀÇ ¹ýÀÇÇÐ À¯ÀüüÇÐ ½ÃÀå
Forensic Genomics
»óǰÄÚµå : 1777347
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 368 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,195,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,585,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ¹ýÀÇÇÐ À¯ÀüüÇÐ ½ÃÀåÀº 2030³â±îÁö 12¾ï ´Þ·¯¿¡ À̸¦ Àü¸Á

2024³â¿¡ 5¾ï 6,030¸¸ ´Þ·¯·Î ÃßÁ¤µÈ ¹ýÀÇÇÐ À¯ÀüüÇÐ ¼¼°è ½ÃÀåÀº 2030³â¿¡´Â 12¾ï ´Þ·¯¿¡ À̸£°í, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 12.7%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ºÐ¼®±â ¹× ½ÃÄö¼­´Â CAGR 11.2%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 5¾ï 6,620¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¼ÒÇÁÆ®¿þ¾î ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ CAGR·Î 13.9%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 1¾ï 5,270¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR16.8%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ¹ýÀÇÇÐ À¯ÀüüÇÐ ½ÃÀåÀº 2024³â¿¡ 1¾ï 5,270¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³â°£ CAGR 16.8%·Î 2030³â±îÁö 2¾ï 3,940¸¸ ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î¼­´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 9.4%¿Í 11.2%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 10.1%¸¦ ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù.

¼¼°èÀÇ ¹ýÀÇÇÐ À¯ÀüüÇÐ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

¹ýÀÇÇÐ À¯ÀüüÇÐÀÌ ¹üÁË ¼ö»ç¿Í ½Å¿ø È®Àο¡ º¯È­¸¦ °¡Á®¿À´Â ÀÌÀ¯´Â ¹«¾ùÀϱî?

¹ýÀÇÇÐ À¯ÀüüÇÐÀº Â÷¼¼´ë ¿°±â¼­¿­ºÐ¼®(NGS), DNA Æä³ëŸÀÌÇÎ, ¹ýÀÇÇÐ À¯Àü°èÅëµµ(FGG)¸¦ Ȱ¿ëÇÏ¿© ¹üÁË ÇöÀå ¼ö»ç, Àι° È®ÀÎ, ¹ÌÁ¦»ç°Ç ÇØ°á¿¡ Çõ¸íÀ» ÀÏÀ¸Ä×½À´Ï´Ù. ¾Ë·ÁÁø »ùÇÃÀ» ªÀº ÅÄ´ý ¹Ýº¹(STR)¿¡ ÀÇÁ¸ÇÏ´Â ±âÁ¸ÀÇ ¹ýÀÇÇÐ DNA ¹æ¹ý°ú ´Þ¸®, ¹ýÀÇÇÐ À¯ÀüüÇÐÀº ½ÉÃþÀûÀÎ À¯ÀüÀÚ ÇÁ·ÎÆÄÀϸµ, Á¶»ó ºÐ¼®, ½ÉÁö¾î ¾ó±¼ º¹¿ø ¿¹Ãø±îÁö °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀ¸·Î ¹ý ÁýÇà±â°ü, ¹ýÀÇÇÐÀÚ, Á¤º¸±â°üÀº º¹ÀâÇÑ »ç°ÇÀ» º¸´Ù Á¤È®ÇÏ°í ½Å¼ÓÇÏ°Ô ÇØ°áÇÒ ¼ö ÀÖ½À´Ï´Ù.

¹ýÀÇÇÐ À¯ÀüüÇÐÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖ´Â ÀÌÀ¯´Â ¿­È­, È¥ÇÕ ¶Ç´Â ¹Ì·®ÀÇ DNA »ùÇÿ¡¼­ ¹ÌÁöÀÇ °³ÀÎÀ» ½Äº°ÇÒ ¼ö ÀÖ´Â ´É·ÂÀ¸·Î ÀÎÇØ ¹üÁË ¼ö»ç, ½ÇÁ¾ÀÚ »ç°Ç, Àç³­ ÇÇÇØÀÚ ½Äº°(DVI), Å×·¯ ´ëÀÀ¿¡ ¸Å¿ì À¯¿ëÇÑ µµ±¸·Î Ȱ¿ëµÇ°í Àֱ⠶§¹®ÀÔ´Ï´Ù. ¶ÇÇÑ, ¹ýÀÇÇÐ À¯ÀüüÇÐÀº °í´ë DNA(aDNA) ¹× ¿ª»çÀû À¯¹° ºÐ¼®¿¡µµ ³Î¸® »ç¿ëµÇ¾î °í°íÇÐÀÚ¿Í °¨½Ä°üÀÌ À¯ÀüÀû ±â¿ø°ú »ç¸Á ¿øÀÎÀ» ±Ô¸íÇÏ´Â µ¥ µµ¿òÀ» ÁÖ°í ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍ ±â¹Ý ¹ýÀÇÇÐ ±â¼úÀÌ ´õ¿í Á¤È®ÇÏ°í ½±°Ô ÀÌ¿ëÇÒ ¼ö ÀÖ°Ô µÊ¿¡ µû¶ó, ¹ýÀÇÇÐ À¯ÀüüÇÐÀº ¹ýÀÇÇÐ °¨º° Ȳ±Ý Ç¥ÁØÀÌ µÉ °ÍÀÔ´Ï´Ù.

±â¼úÀÇ ¹ßÀüÀº ¹ýÀÇÇÐ À¯ÀüüÇÐÀ» ¾î¶»°Ô ¿òÁ÷À̰í ÀÖÀ»±î¿ä?

¹ýÀÇÇÐ À¯ÀüüÇÐÀº DNA ½ÃÄö½Ì, ÀΰøÁö´É(AI), ¹ÙÀÌ¿ÀÀÎÆ÷¸Åƽ½º, ¸Ó½Å·¯´×(ML)ÀÇ ±â¼ú Çõ½ÅÀ¸·Î ºü¸£°Ô ¹ßÀüÇß½À´Ï´Ù. °¡Àå Áß¿äÇÑ µ¹ÆÄ±¸ Áß Çϳª´Â Â÷¼¼´ë ¿°±â¼­¿­ ºÐ¼®(NGS)À¸·Î, DNAÀÇ ÃʰíÇØ»óµµ ºÐ¼®À» Á¦°øÇÔÀ¸·Î½á ¹ýÀÇÇÐÀÚµéÀÌ ¹Ì·®ÀÇ »ý¹°ÇÐÀû ¹°Áú¿¡¼­µµ »ó¼¼ÇÑ À¯Àü Á¤º¸¸¦ ÃßÃâÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ±âÁ¸ÀÇ STR ±â¹Ý ¹ýÀÇÇÐ ºÐ¼®°ú ´Þ¸® NGS´Â ÀüÀå À¯Àüü ¿°±â¼­¿­ ºÐ¼®(WGS)°ú ¹ÌÅäÄܵ帮¾Æ DNA(mtDNA) ¿°±â¼­¿­ ºÐ¼®À» ÅëÇØ Ç÷¿¬ ºÐ¼® ¹× ¿ª»çÀû Á¶»ó¿¡ ´ëÇÑ ´õ ±íÀº ÅëÂû·ÂÀ» Á¦°øÇÕ´Ï´Ù.

¶Ç ´Ù¸¥ ȹ±âÀûÀÎ ±â¼úÀº ¹ýÀÇÇÐ À¯ÀüüÇÐ(FGG)À¸·Î, ¼ö¸¹Àº ¹ÌÁ¦ »ç°Ç°ú ¹ÌÈ®ÀÎ ½Ã½Å ¼ö»ç¿¡ µµ¿òÀ» ÁÖ°í ÀÖ½À´Ï´Ù. ¹üÁË ÇöÀåÀÇ DNA¿Í °ø°³ °èº¸ µ¥ÀÌÅͺ£À̽ºÀÇ µ¥ÀÌÅ͸¦ ºñ±³ÇÔÀ¸·Î½á ¹ýÀÇÇÐÀÚµéÀº °¡Á· °ü°è¸¦ ÃßÀûÇÏ°í ¼ö»çÀÇ ´Ü¼­¸¦ ¾òÀ» ¼ö ÀÖ½À´Ï´Ù. °ñµç ½ºÅ×ÀÌÆ® ų·¯ °Ë°Å¿Í °°Àº À¯¸íÇÑ »ç°ÇÀº ¼ö½Ê³âÀüÀÇ »ç°ÇÀ» ÇØ°áÇÏ´Â µ¥ ÀÖ¾î FGG°¡ ¾ó¸¶³ª °­·ÂÇÑÁö º¸¿©ÁÖ¾ú°í, Àü ¼¼°è ¹ý ÁýÇà ±â°üÀÌ ÀÌ Á¢±Ù ¹æ½ÄÀ» äÅÃÇϵµ·Ï Àå·ÁÇß½À´Ï´Ù.

AI¿Í ¹ÙÀÌ¿ÀÀÎÆ÷¸Åƽ½º ¶ÇÇÑ ¹ýÀÇÇÐ À¯ÀüüÇп¡¼­ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. AI ±â¹Ý ¾Ë°í¸®ÁòÀº ´ë±Ô¸ð À¯ÀüÀÚ µ¥ÀÌÅÍ ¼¼Æ®¸¦ ºÐ¼®ÇÏ¿© DNA ¸¶Ä¿¸¦ ÅëÇØ ¾ó±¼ Ư¡À» À籸¼ºÇÏ°í ´« »ö±ò, ¸Ó¸® ¸ð¾ç, ÇǺλö µî ½ÅüÀû Ư¡À» ¿¹ÃøÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, µö·¯´× ¸ðµ¨Àº STR ºÐ¼®, Ä£Á· °ü°è ÃßÁ¤, È¥ÇÕ µðÄÁº¼·ç¼ÇÀ» °­È­ÇÏ¿© ¹ýÀÇÇÐ Àü¹®°¡°¡ º¹ÀâÇÑ ¹üÁË ÇöÀå »ùÇÿ¡ Æ÷ÇÔµÈ ¿©·¯ ±â¿©ÀÚ¸¦ ±¸º°ÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀº ¹ýÀÇÇÐ À¯Àüü Á¶»çÀÇ Á¤È®¼º, È¿À²¼º, ½Å·Ú¼ºÀ» Å©°Ô Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù.

¹ýÀÇÇÐ À¯ÀüüÇÐ ½ÃÀåÀÇ »õ·Î¿î µ¿ÇâÀº?

¹ýÀÇÇÐ À¯ÀüüÇÐ ½ÃÀåÀº ±â¼ú ¹ßÀü, ±ÔÁ¦ º¯È­, ÀÏ¹Ý ´ëÁßÀÇ Âü¿©¿¡ ÈûÀÔ¾î ¸î °¡Áö »õ·Î¿î Æ®·»µå¸¦ º¸À̰í ÀÖ½À´Ï´Ù. °¡Àå Áß¿äÇÑ Æ®·»µå Áß Çϳª´Â ¿ª»çÀû »ç°ÇÀ̳ª ½ÇÁ¾ »ç°Ç ÇØ°á¿¡ ÀÖ¾î ¹ýÀÇÇÐ À¯ÀüüÇÐÀÇ ¿ªÇÒÀÌ È®´ëµÇ°í ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. Á¤ºÎ¿Í ¹ý ÁýÇà ±â°üÀº ´ë±Ô¸ð Àç³­, ÀνŸŸŠ»ç°Ç, ¹ÌÁ¦ »ç°Ç¿¡¼­ ÇÇÇØÀÚ¸¦ ã±â À§ÇØ DNA µ¥ÀÌÅ͹ðÅ©¿Í ¹ýÀÇÇÐ °èº¸ÇÐ µµ±¸¸¦ Á¡Á¡ ´õ ¸¹ÀÌ È°¿ëÇϰí ÀÖ½À´Ï´Ù.

¶Ç ´Ù¸¥ Å« È帧Àº ¹ýÀÇÇÐ À¯ÀüüÇаú ½Å¼Ó DNA ºÐ¼®(RDA) ±â¼úÀÇ ÅëÇÕÀÔ´Ï´Ù. ±âÁ¸ÀÇ ¹ýÀÇÇÐ DNA °¨Á¤Àº ¸î ÁÖ¿¡¼­ ¸î ´ÞÀÌ °É¸®Áö¸¸, ½Å¼Ó DNA °¨Á¤ ½Ã½ºÅÛÀº 90ºÐ À̳»¿¡ ÇÁ·ÎÆÄÀÏÀ» »ý¼ºÇÒ ¼ö Àֱ⠶§¹®¿¡ °øÇ× º¸¾È, ÀüÀå ¹ýÀÇÇÐ, ±ä±Þ ´ëÀÀ ½Ã³ª¸®¿À¿¡¼­ ¸Å¿ì À¯¿ëÇÕ´Ï´Ù. ÀÌ ½Ç½Ã°£ ½Å¿ø È®ÀÎ ´É·ÂÀº ±¹°æ °ü¸® ±â°ü, ±º ¹ýÀÇÇÐ ºÎ¼­, ´ëÅ×·¯ ºÎ¼­ µî¿¡¼­ äÅÃÇÏ¿© °³ÀÎÀ» ½Å¼ÓÇÏ°Ô °¨ÁöÇϰí È®ÀÎÇÏ´Â µ¥ µµ¿òÀ» ÁÖ°í ÀÖ½À´Ï´Ù.

¶ÇÇÑ, ¹ýÀÇÇÐÀû À¯Àü °èº¸(FGG)¸¦ µÑ·¯½Ñ À±¸® ¹× ÇÁ¶óÀ̹ö½Ã ¹®Á¦°¡ À¯Àüü ¿¬±¸ÀÇ ¹ýÀû ƲÀ» Çü¼ºÇϰí ÀÖ½À´Ï´Ù. ¹ýÀÇÇÐ À¯ÀüüÇÐÀÌ Áß´ë ¹üÁ˸¦ ÇØ°áÇÏ´Â µ¥ µµ¿òÀÌ µÇ°í ÀÖÁö¸¸, À¯ÀüÀû ÇÁ¶óÀ̹ö½Ã, »çÀü µ¿ÀÇ, »ó¾÷Àû DNA µ¥ÀÌÅͺ£À̽º »ç¿ë¿¡ ´ëÇÑ ¿ì·Á·Î ÀÎÇØ ±ÔÁ¦ °¨µ¶¿¡ ´ëÇÑ ³íÀǰ¡ À̾îÁö°í ÀÖ½À´Ï´Ù. ÇöÀç ¸¹Àº ¹ýÀÇÇÐ ±â°üµéÀº À±¸®Àû °¡À̵å¶óÀΰú °Å¹ö³Í½º Á¤Ã¥À» °³¹ßÇÏ¿© »çȸÀû ½Å·Ú¸¦ À¯ÁöÇϸ鼭 À¯ÀüÀÚ µ¥ÀÌÅͰ¡ Ã¥ÀÓ°¨ ÀÖ°Ô »ç¿ëµÉ ¼ö ÀÖµµ·Ï Çϰí ÀÖ½À´Ï´Ù.

¹ýÀÇÇÐ ¼ö»ç¿¡ À־ ¸ÞŸÀ¯ÀüüÇÐÀÇ ºÎ»óÀº ¶Ç ´Ù¸¥ ¼ºÀå Ãß¼¼ÀÔ´Ï´Ù. ¹üÁË ÇöÀåÀÇ ¹Ì»ý¹° DNA¸¦ ºÐ¼®ÇÔÀ¸·Î½á ¹ýÀÇÇÐÀÚµéÀº »ç¸Á ÈÄ ½Ã°£(»çÈÄ °£°Ý)À» ÆÄ¾ÇÇϰí, ȯ°æ ³ëÃâÀ» È®ÀÎÇϸç, ¹Ì»ý¹° ±ºÁýÀ» ±â¹ÝÀ¸·Î °³ÀÎÀÇ Áö¸®Àû ±â¿øÀ» ¿¹ÃøÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ »õ·Î¿î ºÐ¾ß´Â Àΰ£ DNA ºÐ¼®¿¡ ±×Ä¡Áö ¾Ê°í ¹ýÀÇÇÐ ¼ö»ç¸¦ °­È­ÇÏ¿© º¸´Ù Á¤È®ÇÑ ¹üÁË ÇØ°áÀ» À§ÇÑ »õ·Î¿î µµ±¸¸¦ Á¦°øÇÒ °ÍÀ¸·Î ±â´ëµË´Ï´Ù.

¹ýÀÇÇÐ À¯ÀüüÇÐ ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

¹ýÀÇÇÐ À¯ÀüüÇÐ ½ÃÀåÀÇ ¼ºÀåÀº DNA ½ÃÄö½Ì ±â¼úÀÇ ¹ßÀü, ¹üÁË »ç°Ç Áõ°¡, ¹ýÀÇÇÐ ¿¬±¸ ¹× ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡ µî ¿©·¯ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. °­·Â ¹üÁË, ½ÇÁ¾ÀÚ »ç°Ç, °³ÀÎÁ¤º¸ »ç±â Áõ°¡·Î ÀÎÇØ ¹ý ÁýÇà ±â°üÀº ¼ö»ç °á°ú¸¦ °³¼±Çϱâ À§ÇØ ÃÖ÷´Ü ¹ýÀÇÇÐ À¯Àüü ¼Ö·ç¼ÇÀ» äÅÃÇÏ°Ô µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ, Àü ¼¼°è Á¤ºÎ´Â ¹ýÀÇÇÐ ½Äº° ¹× ¹üÁËÀÚ ÃßÀûÀ» °£¼ÒÈ­Çϱâ À§ÇØ ±¹°¡ DNA µ¥ÀÌÅͺ£À̽º¸¦ È®ÀåÇϰí ÀÖ½À´Ï´Ù.

¹ýÀÇÇÐ À¯ÀüüÇп¡ ´ëÇÑ ¹ýÀû, ±ÔÁ¦Àû Áö¿øµµ Áß¿äÇÑ ¿øµ¿·ÂÀÔ´Ï´Ù. ¸¹Àº ±¹°¡¿¡¼­ ¹üÁËÀÚ, Å×·¯ ´ëÀÀ, Àç³­ ´ëÀÀ µîÀ» À§ÇØ DNA ¼öÁýÀ» Àǹ«È­Çϰí ÀÖ½À´Ï´Ù. ¹Ì±¹¿¡¼­´Â FBIÀÇ CODIS(Combined DNA Index System)°¡ Å©°Ô È®´ëµÇ¾ú°í, À¯·´, Áß±¹, Áßµ¿¿¡¼­µµ ºñ½ÁÇÑ ¹æ½ÄÀ» äÅÃÇϰí ÀÖ½À´Ï´Ù. ÇÑÆí, ¹ýÀÇÇÐ ±â°üµéÀº ±¹°æÀ» ÃÊ¿ùÇÑ ¹üÁË ¼ö»ç³ª ½ÇÁ¾ÀÚ ½Å¿ø È®ÀÎÀ» ¿ëÀÌÇÏ°Ô Çϱâ À§ÇØ À¯ÀüÀÚ µ¥ÀÌÅÍ °øÀ¯ ÆÄÆ®³Ê½ÊÀ» ±¸ÃàÇϰí ÀÖ½À´Ï´Ù.

¹Î¼ö¿ë ¹ýÀÇÇÐ À¯ÀüüÇÐ µµÀÔÀÌ Áõ°¡Çϰí ÀÖ´Â °Íµµ ½ÃÀå ¼ºÀåÀ» °ßÀÎÇϰí ÀÖ½À´Ï´Ù. ¹üÁË ¼ö»ç ¿Ü¿¡µµ ºÎ¸ð-ÀÚ³à °¨Á¤, °¡°è Á¶»ç, ¹ÙÀÌ¿À º¸¾È¿¡µµ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. ½ÃÄö½Ì ºñ¿ëÀÌ °è¼Ó Ç϶ôÇϰí ÈÞ´ë¿ë DNA ½ÃÄö½Ì Àåºñ°¡ ´õ ³Î¸® º¸±ÞµÊ¿¡ µû¶ó ¹ýÀÇÇÐ À¯ÀüüÇÐÀº ¹ý ÁýÇà ±â°ü, ¹ýÀÇÇÐ º´¸®ÇÐ, ¹ý·ü ¼ö»ç¿¡ ÇʼöÀûÀÎ Á¸Àç°¡ µÉ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¶ÇÇÑ, ¹Î°ü Çù·Â, ¹ýÀÇÇÐ ¿¬±¸¼Ò, ¹üÁË ÇöÀå ºÐ¼® ±³À° ÇÁ·Î±×·¥¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡°¡ ½ÃÀå È®´ë¸¦ °ßÀÎÇϰí ÀÖ½À´Ï´Ù. Verogen, Illumina, Thermo Fisher Scientific µî ¹ýÀÇÇÐ À¯ÀüüÇÐ Àü¹® ±â¾÷µéÀº ¹ýÀÇÇÐ ¿ëµµ¿¡ ¸Â´Â °í±Þ DNA ½ÃÄö½Ì ¼Ö·ç¼ÇÀ» °³¹ßÇÏ¿© ¹ýÀÇÇÐ À¯Àüü µµ±¸¸¦ º¸´Ù ½±°í ºñ¿ë È¿À²ÀûÀ¸·Î »ç¿ëÇÒ ¼ö ÀÖµµ·Ï Çϰí ÀÖ½À´Ï´Ù. ´õ ½±°Ô »ç¿ëÇÒ ¼ö ÀÖµµ·Ï Çϰí ÀÖ½À´Ï´Ù.

¹ýÀÇÇÐ À¯ÀüüÇÐÀÇ ¹Ì·¡´Â AI ±â¹Ý ¹ýÀÇÇÐ ºÐ¼®, »ý¹°Á¤º¸ÇÐ ÆÄÀÌÇÁ¶óÀÎÀÇ °³¼±, ¹ýÀÇÇÐ DNA µ¥ÀÌÅͺ£À̽ºÀÇ È®Àå¿¡ ÀÇÇØ Çü¼ºµÉ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±â¼úÀÌ °è¼Ó ¹ßÀüÇÔ¿¡ µû¶ó ¹ýÀÇÇÐ À¯ÀüüÇÐÀº ¹üÁË ÇØ°á, ¹ÌÁöÀÇ °³ÀÎ ½Äº°, ¹ýÀÇÇÐ ¹ßÀü¿¡ Á¡Á¡ ´õ Áß¿äÇÑ ¿ªÇÒÀ» ÇÏ°Ô µÉ °ÍÀ̸ç, ±Ã±ØÀûÀ¸·Î Àü ¼¼°è »ç¹ý ½Ã½ºÅÛÀ» Çâ»ó½Ãų °ÍÀÔ´Ï´Ù.

ºÎ¹®

Á¦Ç°(ºÐ¼® Àåºñ ¹× ½ÃÄö¼­¼­, ¼ÒÇÁÆ®¿þ¾î, ŰƮ ¹× ¼Ò¸ðǰ);¹æ¹ý(¸ð¼¼°ü Àü±â¿µµ¿, Â÷¼¼´ë ½ÃÄö½Ì, PCR ÁõÆø, ±âŸ);¿ëµµ(¹üÁË °Ë»ç, ºÎÀÚ °ü°è ¹× °¡Á· °ü°è °Ë»ç, ±âŸ)

Á¶»ç ´ë»ó ±â¾÷ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°èº° SLM Äõ¸®¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ´ë·® ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Forensic Genomics Market to Reach US$1.2 Billion by 2030

The global market for Forensic Genomics estimated at US$560.3 Million in the year 2024, is expected to reach US$1.2 Billion by 2030, growing at a CAGR of 12.7% over the analysis period 2024-2030. Analyzers & Sequencers, one of the segments analyzed in the report, is expected to record a 11.2% CAGR and reach US$566.2 Million by the end of the analysis period. Growth in the Software segment is estimated at 13.9% CAGR over the analysis period.

The U.S. Market is Estimated at US$152.7 Million While China is Forecast to Grow at 16.8% CAGR

The Forensic Genomics market in the U.S. is estimated at US$152.7 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$239.4 Million by the year 2030 trailing a CAGR of 16.8% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 9.4% and 11.2% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 10.1% CAGR.

Global Forensic Genomics Market - Key Trends & Drivers Summarized

Why Is Forensic Genomics Transforming Criminal Investigations and Identification?

Forensic genomics has revolutionized crime scene investigations, human identification, and cold case resolutions by leveraging next-generation sequencing (NGS), DNA phenotyping, and forensic genetic genealogy (FGG). Unlike traditional forensic DNA methods that rely on short tandem repeats (STR) for matching known samples, forensic genomics enables deep genetic profiling, ancestry analysis, and even facial reconstruction predictions. These advancements allow law enforcement, forensic scientists, and intelligence agencies to solve complex cases with greater accuracy and speed.

The increasing adoption of forensic genomics stems from its ability to identify unknown individuals from degraded, mixed, or minute DNA samples, making it an invaluable tool in criminal investigations, missing persons cases, disaster victim identification (DVI), and counterterrorism efforts. Additionally, forensic genomics is being widely used to analyze ancient DNA (aDNA) and historical remains, assisting archaeologists and medical examiners in uncovering genetic origins and cause of death. As data-driven forensic techniques become more precise and accessible, forensic genomics is set to become the gold standard in forensic identification.

How Are Technological Advancements Driving Forensic Genomics?

Forensic genomics has rapidly advanced due to innovations in DNA sequencing, artificial intelligence (AI), bioinformatics, and machine learning (ML). One of the most significant breakthroughs is Next-Generation Sequencing (NGS), which provides an ultra-high resolution analysis of DNA, allowing forensic scientists to extract detailed genetic information from even trace amounts of biological material. Unlike traditional STR-based forensic analysis, NGS enables whole genome sequencing (WGS) and mitochondrial DNA (mtDNA) sequencing, offering greater insights into kinship analysis and historical ancestry.

Another game-changing technology is forensic genetic genealogy (FGG), which has helped solve numerous cold cases and unidentified remains investigations. By comparing crime scene DNA with data from public genealogical databases, forensic scientists can trace familial links and generate investigative leads. High-profile cases, such as the Golden State Killer arrest, have demonstrated the power of FGG in cracking decades-old cases, prompting law enforcement agencies worldwide to adopt this approach.

AI and bioinformatics are also playing a crucial role in forensic genomics. AI-powered algorithms can analyze large genetic datasets, reconstruct facial features from DNA markers, and predict physical traits such as eye color, hair type, and skin tone-a process known as DNA phenotyping. Additionally, deep-learning models are enhancing STR analysis, kinship estimation, and mixture deconvolution, allowing forensic experts to distinguish between multiple contributors in complex crime scene samples. These advancements significantly increase the accuracy, efficiency, and reliability of forensic genomic investigations.

What Are the Emerging Trends in the Forensic Genomics Market?

The forensic genomics market is witnessing several emerging trends fueled by technological advancements, regulatory shifts, and public engagement. One of the most significant trends is the expanding role of forensic genomics in solving historical and missing persons cases. Governments and law enforcement agencies are increasingly using DNA databanks and forensic genealogy tools to identify victims from mass disasters, human trafficking incidents, and unresolved cases of unidentified remains.

Another major trend is the integration of forensic genomics with rapid DNA analysis (RDA) technologies. Traditional forensic DNA analysis can take weeks or months, but rapid DNA systems can generate profiles in under 90 minutes, making them highly useful in airport security, battlefield forensics, and emergency response scenarios. This real-time identification capability is being adopted by border control agencies, military forensic units, and counterterrorism divisions to detect and verify individuals quickly.

Additionally, ethical and privacy concerns surrounding forensic genetic genealogy (FGG) are shaping legal frameworks for genomic investigations. While forensic genomics has been instrumental in solving major crimes, concerns over genetic privacy, informed consent, and the use of commercial DNA databases have led to debates about regulatory oversight. Many forensic institutions are now developing ethical guidelines and governance policies to ensure that genetic data is used responsibly while maintaining public trust.

The rise of metagenomics in forensic investigations is another growing trend. By analyzing microbial DNA from crime scenes, forensic scientists can determine the time since death (post-mortem interval), identify environmental exposures, and even predict geographical origins of individuals based on their microbiome. This emerging field is expected to enhance forensic investigations beyond human DNA analysis, providing new tools for solving crimes with greater accuracy.

What Factors Are Driving the Growth of the Forensic Genomics Market?

The growth in the forensic genomics market is driven by several factors, including advancements in DNA sequencing technology, rising criminal cases, and increasing investments in forensic research and infrastructure. The global rise in violent crimes, missing persons cases, and identity fraud has pushed law enforcement agencies to adopt cutting-edge forensic genomic solutions to improve investigative outcomes. Governments worldwide are also expanding national DNA databases to streamline forensic identification and criminal tracking.

Legal and regulatory support for forensic genomics is another key driver. Many countries are implementing DNA collection mandates for criminal offenders, counterterrorism efforts, and disaster response. In the U.S., the FBI’s Combined DNA Index System (CODIS) has significantly expanded, and similar initiatives are being adopted in Europe, China, and the Middle East. Meanwhile, forensic institutions are establishing genetic data-sharing partnerships to facilitate cross-border crime investigations and missing persons identifications.

The increasing adoption of forensic genomics in civil applications is also fueling market growth. Apart from criminal investigations, forensic genomics is being utilized in paternity testing, ancestry research, and biosecurity. As sequencing costs continue to decline and portable DNA sequencing devices become more widely available, forensic genomics is expected to become an integral part of law enforcement, forensic pathology, and legal investigations.

Additionally, growing investments in public-private partnerships, forensic research labs, and crime scene analysis training programs are boosting market expansion. Companies specializing in forensic genomics, such as Verogen, Illumina, and Thermo Fisher Scientific, are developing advanced DNA sequencing solutions tailored for forensic applications, making forensic genomic tools more accessible and cost-effective.

The future of forensic genomics is expected to be shaped by AI-driven forensic analytics, improved bioinformatics pipelines, and the expansion of forensic DNA databases. As technology continues to evolve, forensic genomics will play an increasingly pivotal role in solving crimes, identifying unknown individuals, and advancing forensic science, ultimately enhancing justice systems worldwide.

SCOPE OF STUDY:

The report analyzes the Forensic Genomics market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Product (Analyzers & Sequencers, Software, Kits & Consumables); Method (Capillary Electrophoresis, Next-generation Sequencing, PCR Amplification, Others); Application (Criminal Testing, Paternity & Familial Testing, Others)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 32 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â