¼¼°èÀÇ Ç×°ø¿ìÁÖ ÇÃ¶ó½ºÆ½¿ë ³­¿¬Á¦ ½ÃÀå
Flame Retardants for Aerospace Plastics
»óǰÄÚµå : 1777331
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 295 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,228,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,684,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ Ç×°ø¿ìÁÖ ÇÃ¶ó½ºÆ½¿ë ³­¿¬Á¦ ½ÃÀåÀº 2030³â±îÁö 4,590¸¸ ´Þ·¯¿¡ À̸¦ Àü¸Á

2024³â¿¡ 3,230¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â Ç×°ø¿ìÁÖ ÇÃ¶ó½ºÆ½¿ë ³­¿¬Á¦ ¼¼°è ½ÃÀåÀº 2024-2030³â°£ CAGR 6.0%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 4,590¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ »êÈ­ ¾ÈƼ¸óÀº CAGR7.7%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 1,740¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¾Ë·ç¹Ì´½ »ï¼öÈ­¹° ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£Áß CAGR 5.5%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 880¸¸ ´Þ·¯·Î ÃßÁ¤µÇ¾î Áß±¹Àº CAGR 9.8%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµÈ´Ù

¹Ì±¹ÀÇ Ç×°ø¿ìÁÖ ÇÃ¶ó½ºÆ½¿ë ³­¿¬Á¦ ½ÃÀåÀº 2024³â¿¡ 880¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ 2024-2030³â°£ CAGR 9.8%·Î ¼ºÀåÀ» Áö¼ÓÇÏ¿©, 2030³â¿¡´Â ¿¹Ãø ½ÃÀå ±Ô¸ð 950¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î¼­´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 2.8%¿Í 6.0%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 4.0%¸¦ ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù.

¼¼°èÀÇ Ç×°ø¿ìÁÖ ÇÃ¶ó½ºÆ½¿ë ³­¿¬Á¦ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

Ç×°ø¿ìÁÖ ÇÃ¶ó½ºÆ½¿¡ ³­¿¬Á¦°¡ ÇʼöÀûÀÎ ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

Ç×°ø¿ìÁÖ ÇÃ¶ó½ºÆ½¿ë ³­¿¬Á¦´Â ½Â°´ÀÇ ¾ÈÀü, Ç×°ø±âÀÇ ³»±¸¼º, Ç×°ø È­Àç ¾ÈÀü ±ÔÁ¤ Áؼö¸¦ º¸ÀåÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Àç·á´Â Ç×°ø±â °´½Ç ÀÎÅ׸®¾î, ´Ü¿­ ÆÐ³Î, ¹è¼± ½Ã½ºÅÛ, ±¸Á¶ ºÎǰ¿¡ »ç¿ëµÇ¾î È­Àç À§ÇèÀ» ÁÙÀÌ°í ³»¿­¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù. Ç×°ø±â ¼ö¿ä Áõ°¡¿Í Ç×°ø±â Á¦Á¶¿¡ ÀÖ¾î °æ·® º¹ÇÕÀç·áÀÇ È®´ë¿¡ µû¶ó °í±Þ ³­¿¬¼º ¼Ö·ç¼ÇÀÇ Çʿ伺ÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¹Ì±¹ ¿¬¹æÇ×°øÃ»(FAA)°ú À¯·´Ç×°ø¾ÈÀüû(EASA) µî ±ÔÁ¦ ´ç±¹Àº Ç×°ø¿ìÁÖ ¼ÒÀç¿¡ ´ëÇØ ¾ö°ÝÇÑ ³­¿¬¼º ±âÁØÀ» ¿ä±¸Çϰí ÀÖ¾î ½ÃÀå ¼ö¿ä¸¦ ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

¾î¶² ±â¼ú ¹ßÀüÀÌ Ç×°ø¿ìÁÖ ÇÃ¶ó½ºÆ½ ³­¿¬Á¦¸¦ °³¼±Çϰí Àִ°¡?

°í¼º´É °íºÐÀÚ Ã·°¡Á¦, ³ª³ëº¹ÇÕ ³­¿¬Á¦, ÀÎÅõ¸Þ¼¾Æ® ÄÚÆÃÀÇ Çõ½ÅÀ¸·Î Ç×°ø¿ìÁÖ¿ë ÇÃ¶ó½ºÆ½ÀÇ ³­¿¬¼ºÀÌ Çâ»óµÇ°í ÀÖ½À´Ï´Ù. °¡º±°í ³»¿­¼ºÀÌ ³ôÀº Æú¸®¸Ó ºí·»µå °³¹ß·Î ¾ÈÀü ±âÁØÀ» À¯ÁöÇϸ鼭 Ç×°ø±âÀÇ ¿¬·á È¿À²ÀÌ Çâ»óµÇ°í ÀÖ½À´Ï´Ù. AI¸¦ Ȱ¿ëÇÑ ¿­ ½Ã¹Ä·¹ÀÌ¼Ç ÅøÀº ³­¿¬¼º ¼ÒÀçÀÇ ¹èÇÕÀ» ÃÖÀûÈ­ÇÏ¿© ±â°èÀû Ư¼º ÀúÇÏ ¾øÀÌ ¿ì¼öÇÑ ³­¿¬¼ºÀ» ±¸ÇöÇÕ´Ï´Ù. ¶ÇÇÑ, ¹«ÇÒ·Î°Õ ³­¿¬ ½Ã½ºÅÛÀÇ µîÀåÀº ȯ°æ ¹®Á¦¸¦ ÇØ°áÇϰí Ç×°ø¿ìÁÖ ÇÃ¶ó½ºÆ½ÀÇ Áö¼Ó°¡´É¼ºÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀ¸·Î Ç×°ø¿ìÁÖ¿ë ³­¿¬Á¦´Â ´õ¿í È¿°úÀûÀ̰í ȯ°æ ģȭÀûÀÌ¸ç ¾ö°ÝÇÑ ¾ÈÀü ±âÁØÀ» ÃæÁ·ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.

±ÔÁ¦¿Í ½ÃÀå µ¿ÇâÀº Ç×°ø¿ìÁÖ ÇÃ¶ó½ºÆ½ ³­¿¬Á¦¿¡ ¾î¶² ¿µÇâÀ» ¹ÌÄ¡°í Àִ°¡?

FAR 25.853(Ç×°ø±â ³»ÀåÀçÀÇ °¡¿¬¼º ¿ä°Ç)°ú °°Àº ¾ö°ÝÇÑ Ç×°ø ¾ÈÀü ±âÁØÀº Ç×°ø¿ìÁÖ Á¦Á¶¿¡ ÀÖ¾î ÷´Ü ³­¿¬¼º ¼ÒÀçÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÃֽŠÇ×°ø±â ¼³°è¿¡¼­ ź¼Ò¼¶À¯°­È­ÇÃ¶ó½ºÆ½(CFRP)ÀÇ »ç¿ëÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ±¸Á¶Àû ¹«°á¼ºÀ» À¯ÁöÇϸ鼭 ³­¿¬¼º ¿ä°ÇÀ» ÃæÁ·Çϴ Ư¼ö ³­¿¬Á¦¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Àü±â Ç×°ø±â¿Í ÇÏÀ̺긮µå Ç×°ø±âÀÇ È®´ë·Î ÀÎÇØ ¹èÅ͸® ÇϿ조ú °íÀü¾Ð Àü±â ½Ã½ºÅÛ¿ë ³»È­ Àç·áÀÇ °³¼±ÀÌ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Áö¼Ó °¡´ÉÇÑ Ç×°ø ¼ÒÀç¿¡ ´ëÇÑ ¿ä±¸´Â ¹«ÇØÇϰí ÇҷΰÕÀÌ ¾ø´Â ³­¿¬Á¦ °³¹ßÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

Ç×°ø¿ìÁÖ ÇÃ¶ó½ºÆ½¿ë ³­¿¬Á¦ ½ÃÀåÀÇ ÇâÈÄ ¼ºÀå µ¿·ÂÀº?

Ç×°ø¿ìÁÖ ÇÃ¶ó½ºÆ½¿ë ³­¿¬Á¦ÀÇ ¹Ì·¡´Â AI¸¦ Ȱ¿ëÇÑ Àç·á °úÇÐ, ½º¸¶Æ® ³­¿¬ ÄÚÆÃ, Â÷¼¼´ë Ç×°ø±â ¼³°èÀÇ ¹ßÀüÀ¸·Î Çü¼ºµÇ°í ÀÖ½À´Ï´Ù. Ç×°ø¿ìÁÖ »ý»ê¿¡¼­ ÀûÃþ°¡°ø(3D ÇÁ¸°ÆÃ)ÀÇ È°¿ëÀÌ Áõ°¡ÇÔ¿¡ µû¶ó º¹ÀâÇÑ ºÎǰ Çü»ó¿¡ ÅëÇÕÇÒ ¼ö ÀÖ´Â ³­¿¬¼º Æú¸®¸Ó ¼ö¿ä°¡ Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ³­¿¬¼º¿¡ Àڱ⺹¿ø¼º°ú ³»Ãæ°Ý¼ºÀ» °âºñÇÑ ´Ù±â´É Ç×°ø¿ìÁÖ ¼ÒÀçÀÇ °³¹ßÀº ¾ÈÀü¼º°ú ³»±¸¼ºÀ» ´õ¿í Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. Ç×°ø »ê¾÷ÀÌ °æ·®, °í¼º´É, ģȯ°æ ¼ÒÀ縦 ¿ì¼±½ÃÇÏ´Â °¡¿îµ¥, Ç×°ø¿ìÁÖ ÇÃ¶ó½ºÆ½¿ë ³­¿¬Á¦´Â Â÷¼¼´ë Ç×°ø±â Á¦Á¶¿¡¼­ Áß¿äÇÑ ¿ªÇÒÀ» °è¼ÓÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

ºÎ¹®

Á¦Ç°(»êÈ­ ¾ÈƼ¸ó, ¾Ë·ç¹Ì´½ »ï¼öÈ­¹°, À¯±â Àλ꿰/ÀÎ È­ÇÕ¹°, ºØ¼Ò È­ÇÕ¹°, ±âŸ); ¿ëµµ(ź¼Ò ¼¶À¯ °­È­ ÇÃ¶ó½ºÆ½, À¯¸® °­È­ ÇÃ¶ó½ºÆ½, Æú¸®Ä«º¸³×ÀÌÆ®, ¿­°æÈ­¼º Æú¸®À̵̹å, ¾ÆÅ©¸±·Î´ÏÆ®¸± ºÎŸµð¿£ ½ºÆ¼·», ¾Æ¼¼Å»/Æú¸®¿Á½Ã¸ÞÆ¿·», ¿¡Æø½Ã, ±âŸ).

Á¶»ç ´ë»ó ±â¾÷ ¿¹

AI ÅëÇÕ

´ç»ç´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Flame Retardants for Aerospace Plastics Market to Reach US$45.9 Million by 2030

The global market for Flame Retardants for Aerospace Plastics estimated at US$32.3 Million in the year 2024, is expected to reach US$45.9 Million by 2030, growing at a CAGR of 6.0% over the analysis period 2024-2030. Antimony Oxide, one of the segments analyzed in the report, is expected to record a 7.7% CAGR and reach US$17.4 Million by the end of the analysis period. Growth in the Aluminum Trihydrate segment is estimated at 5.5% CAGR over the analysis period.

The U.S. Market is Estimated at US$8.8 Million While China is Forecast to Grow at 9.8% CAGR

The Flame Retardants for Aerospace Plastics market in the U.S. is estimated at US$8.8 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$9.5 Million by the year 2030 trailing a CAGR of 9.8% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 2.8% and 6.0% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 4.0% CAGR.

Global Flame Retardants for Aerospace Plastics Market - Key Trends & Drivers Summarized

Why Are Flame Retardants for Aerospace Plastics Essential?

Flame retardants for aerospace plastics play a crucial role in ensuring passenger safety, aircraft durability, and compliance with fire safety regulations in aviation. These materials are used in aircraft cabin interiors, insulation panels, wiring systems, and structural components to reduce fire risk and improve heat resistance. With increasing air travel demand and the expansion of lightweight composite materials in aircraft manufacturing, the need for advanced flame retardant solutions is growing. Additionally, regulatory authorities such as the Federal Aviation Administration (FAA) and European Aviation Safety Agency (EASA) mandate strict fire resistance standards for aerospace materials, further driving market demand.

What Technological Advancements Are Improving Flame Retardants for Aerospace Plastics?

Innovations in high-performance polymer additives, nanocomposite flame retardants, and intumescent coatings are enhancing the fire resistance of aerospace plastics. The development of lightweight, high-temperature-resistant polymer blends is improving aircraft fuel efficiency while maintaining safety standards. AI-powered thermal simulation tools are optimizing the formulation of flame retardant materials, ensuring superior fire protection without compromising mechanical properties. Additionally, the rise of halogen-free flame retardant systems is addressing environmental concerns and improving the sustainability of aerospace plastics. These advancements are making flame retardants for aerospace applications more effective, eco-friendly, and compliant with stringent safety standards.

How Are Regulations and Market Trends Influencing Flame Retardants in Aerospace Plastics?

Strict aviation safety standards, such as FAR 25.853 (flammability requirements for aircraft interiors), are driving the adoption of advanced flame retardant materials in aerospace manufacturing. The increasing use of carbon-fiber-reinforced plastics (CFRPs) in modern aircraft design is creating demand for specialized flame retardants that maintain structural integrity while meeting fire resistance requirements. Additionally, the expansion of electric and hybrid aircraft is necessitating improved fire-resistant materials for battery enclosures and high-voltage electrical systems. The push for sustainable aviation materials is also encouraging the development of non-toxic, halogen-free flame retardant solutions.

What’s Driving the Future Growth of the Flame Retardants for Aerospace Plastics Market?

The future of flame retardants for aerospace plastics is being shaped by advancements in AI-powered material science, smart fire-resistant coatings, and next-generation aircraft designs. The increasing use of additive manufacturing (3D printing) in aerospace production is expected to drive demand for flame retardant polymers that can be integrated into complex component geometries. The development of multifunctional aerospace materials, combining fire resistance with self-healing and impact-resistant properties, will further enhance safety and durability. As the aviation industry prioritizes lightweight, high-performance, and eco-friendly materials, flame retardants for aerospace plastics will continue to play a vital role in next-generation aircraft manufacturing.

SCOPE OF STUDY:

The report analyzes the Flame Retardants for Aerospace Plastics market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Product (Antimony Oxide, Aluminum Trihydrate, Organophosphates / Phosphorous Compounds, Boron Compounds, Others); Application (Carbon Fiber Reinforced Plastic, Glass Reinforced Plastic, Polycarbonate, Thermoset Polyimide, Acrylonitrile Butadiene Styrene, Acetal / Polyoxymethylene, Epoxies, Others)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 37 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â