¼¼°èÀÇ ¿øÀڷ¹ßÀü¼Ò Á¦¾î ½Ã½ºÅÛ ½ÃÀå
Nuclear Power Plant Control System
»óǰÄÚµå : 1775036
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 383 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,239,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,719,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°è ¿øÀڷ¹ßÀü¼Ò Á¦¾î ½Ã½ºÅÛ ½ÃÀåÀº 2030³â±îÁö 7¾ï 9,730¸¸ ´Þ·¯¿¡ À̸¦ Àü¸Á

2024³â¿¡ 6¾ï 4,970¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â ¿øÀڷ¹ßÀü¼Ò Á¦¾î ½Ã½ºÅÛ ¼¼°è ½ÃÀåÀº 2024-2030³â°£ CAGR 3.5%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 7¾ï 9,730¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ºÐ»ê Á¦¾î ½Ã½ºÅÛÀº CAGR 2.9%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 3¾ï 420¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. °¨½ÃÁ¦¾î ¹× µ¥ÀÌÅÍ ¼öÁý ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 3.0%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº ¾à 1¾ï 7,700¸¸ ´Þ·¯, Áß±¹Àº CAGR 6.3%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ¿øÀڷ¹ßÀü¼Ò Á¦¾î ½Ã½ºÅÛ ½ÃÀåÀº 2024³â¿¡ 1¾ï 7,700¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGR 6.3%·Î ¼ºÀåÀ» Áö¼ÓÇÏ¿© 2030³â±îÁö 1¾ï 5,780¸¸ ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î¼­´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 1.4%¿Í 2.6%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 2.0%·Î ¼ºÀåÇÒ Àü¸ÁÀÔ´Ï´Ù.

¼¼°èÀÇ ¿øÀڷ¹ßÀü¼Ò Á¦¾î ½Ã½ºÅÛ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

ÃֽŠÁ¦¾î ½Ã½ºÅÛÀº ¿øÀÚ·Â ¹ßÀü¼ÒÀÇ ¾ÈÀü°ú È¿À²¼ºÀ» ¾î¶»°Ô °³ÇõÇϰí Àִ°¡?

¿øÀÚ·Â ¹ßÀü »ê¾÷Àº Áß¿äÇÑ ±â¼úÀû ÁøÈ­¸¦ °Þ°í ÀÖÀ¸¸ç, Á¦¾î ½Ã½ºÅÛÀº ÀÌ·¯ÇÑ º¯È­ÀÇ ÇÙ½ÉÀ» ´ã´çÇϰí ÀÖ½À´Ï´Ù. ÀüÅëÀûÀ¸·Î ¿øÀÚ·Â ¹ßÀü¼ÒÀÇ Á¦¾î ½Ã½ºÅÛÀº ¾Æ³¯·Î±× ±â¼ú¿¡ ÀÇÁ¸ÇØ ¿ÔÀ¸¸ç, °ß°íÇϱâ´Â ÇÏÁö¸¸ ¿À´Ã³¯ÀÇ ¿¡³ÊÁö ÀÎÇÁ¶ó¿¡ ÇÊ¿äÇÑ Á¤È®¼º, È®À强, ½Ç½Ã°£ ÀÀ´ä¼ºÀÌ ºÎÁ·Çß½À´Ï´Ù. ¾ÈÀü¼º, °¡µ¿ ½Ã°£ ¹× ±ÔÁ¤ Áؼö¿¡ ´ëÇÑ ¿ä±¸°¡ ³ô¾ÆÁü¿¡ µû¶ó Â÷¼¼´ë ¿øÀÚ·Â ¹ßÀü¼Ò Á¦¾î ½Ã½ºÅÛÀº ÇöÀç µðÁöÅÐÈ­, ÀÚµ¿È­ ¹× »óÈ£¿¬°á¼ºÀ» ÅëÇØ ¿î¿µ ¾ÈÁ¤¼ºÀ» Çâ»ó½ÃŰ°í º¹ÀâÇÑ ¿øÀÚ·Î ¿î¿µÀ» °£¼ÒÈ­ÇÏ¿© °ü¸®Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛ¿¡´Â ºÐ»êÁ¦¾î½Ã½ºÅÛ(DCS), ÇÁ·Î±×·¡¸Óºí ·ÎÁ÷ ÄÁÆ®·Ñ·¯(PLC), ÈÞ¸Õ ¸Ó½Å ÀÎÅÍÆäÀ̽º(HMI), °¨½Ã Á¦¾î ¹× µ¥ÀÌÅÍ ¼öÁý(SCADA) Ç÷§ÆûÀÌ Æ÷ÇԵǸç, °¢°¢ ³ë½É ¿Âµµ, ³Ã°¢Àç ·¹º§, ¾Ð·Â Á¦¾î, ¹æ»ç¼± Â÷´ÜÀ» ¸ð´ÏÅ͸µÇÏ´Â µ¥ »ç¿ëµË´Ï´Ù. ¹× ¹æ»ç¼± ºÀ¼â¸¦ ¸ð´ÏÅ͸µÇÏ´Â ¿ªÇÒÀ» ÇÕ´Ï´Ù. ÷´Ü ¼¾¼­¿Í Áø´Ü ±â´ÉÀ» ÅëÇØ ¿¹Áöº¸Àü ¹× ÀÌ»ó ¡Èĸ¦ °¨ÁöÇÏ¿© ºñ¿ëÀÌ ¸¹ÀÌ µå´Â ´Ù¿îŸÀÓ°ú ¾ÈÀü»ç°í¸¦ ¹æÁöÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Áß¿ä ÀÎÇÁ¶ó¸¦ °Ü³ÉÇÑ »çÀ̹ö °ø°ÝÀÇ À§ÇùÀÌ Áõ°¡ÇÔ¿¡ µû¶ó »çÀ̹ö º¸¾È ÇÁ·¹ÀÓ¿öÅ©ÀÇ ÅëÇÕµµ ÇʼöÀûÀÔ´Ï´Ù. ´õ ºü¸¥ µ¥ÀÌÅÍ Ã³¸®, ÀûÀÀÇü Á¦¾î ÀÀ´ä, ¿î¿µÀÚÀÇ °¡½Ã¼º Çâ»óÀ» ÅëÇØ ÃֽŠÁ¦¾î ½Ã½ºÅÛÀº ¾ö°ÝÇÑ ¾ÈÀü ¿ä°ÇÀ» ÃæÁ·ÇÒ »Ó¸¸ ¾Æ´Ï¶ó ¿øÀÚ·Â ¿¡³ÊÁöÀÇ °æÁ¦¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ¿øÀÚ·Â ºÐ¾ß°¡ ¼ÒÇü ¸ðµâÇü ¿øÀÚ·Î(SMR)¿Í ¿øÀÚ·Î ¼ö¸í ¿¬ÀåÀ̶ó´Â »õ·Î¿î ¹°°á¿¡ ´ëºñÇÏ´Â °¡¿îµ¥, ÷´Ü Á¦¾î ½Ã½ºÅÛÀº ¿øÀÚ·Â ¹ßÀüÀÇ ¹Ì·¡¿¡ ÇʼöÀûÀÎ ÀÚ»êÀ¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

µðÁöÅÐÈ­´Â ¿øÀÚ·Â ¹ßÀü¼Ò ÀÚµ¿È­¿Í ÀÎÅÚ¸®Àü½ºÀÇ ´ÙÀ½ µµ¾àÀ» ¾î¶»°Ô ÃËÁøÇÒ °ÍÀΰ¡?

¿øÀÚ·Â ÀÎÇÁ¶óÀÇ µðÁöÅÐÈ­·ÎÀÇ ÀüȯÀº ´õ ³ôÀº È¿À²¼º, ½Ç½Ã°£ µ¥ÀÌÅÍ ºÐ¼®, º¹ÀâÇÑ °øÁ¤¿¡ ´ëÇÑ °­È­µÈ Á¦¾îÀÇ Çʿ伺¿¡ ÀÇÇØ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ÷´Ü µðÁöÅÐ Á¦¾î ½Ã½ºÅÛÀº ±âÁ¸ ¿øÀÚ·Î¿Í Â÷¼¼´ë ¿øÀÚ·Î ¸ðµÎ¿¡¼­ ±¸½Ä ¾Æ³¯·Î±× ¼³Á¤À» ´ëüÇÏ¿© º¸´Ù Áö´ÉÀûÀ̰í ÀûÀÀ·ÂÀÌ ¶Ù¾î³­ Ç÷£Æ® ȯ°æÀ» °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù. ÀΰøÁö´É(AI), ¸Ó½Å·¯´×, µðÁöÅÐ Æ®À© ±â¼úÀº ½Ã¹Ä·¹À̼Ç, °íÀå ¿¹Ãø, ºñ»ó ½Ã³ª¸®¿À¿¡ ´ëÇÑ °¡»ó Å×½ºÆ®¸¦ °¡´ÉÇÏ°Ô Çϱâ À§ÇØ Ç÷£Æ® ¿î¿µ¿¡ ÅëÇյǾî ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µðÁöÅÐ µµ±¸´Â ¼³ºñ ¸¶¸ð, ¿øÀÚ·Î °Åµ¿, ½Ã½ºÅÛ ÃÖÀûÈ­ ±âȸ¿¡ ´ëÇÑ ¿¹ÃøÀû ÅëÂû·ÂÀ» Ç÷£Æ® ¿î¿µÀÚ¿¡°Ô Á¦°øÇÔÀ¸·Î½á À§ÇèÀ» ÁÙÀ̰í ÀÇ»ç°áÁ¤À» °³¼±ÇÏ´Â µ¥ ±â¿©ÇÕ´Ï´Ù. Ŭ¶ó¿ìµå ±â¹Ý ¸ð´ÏÅ͸µ ½Ã½ºÅÛ°ú ¿§Áö ÄÄÇ»ÆÃ ¾ÆÅ°ÅØÃ³´Â ¿ø°Ý ¾×¼¼½º, ½Ã½ºÅÛ ÀÌÁßÈ­ ¹× ÀÀ´ä ½Ã°£ ´ÜÃàÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ¶ÇÇÑ, ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ Á¦¾î Ç÷§Æû°ú ¸ðµâ½Ä ÀÚµ¿È­ ÇÁ·¹ÀÓ¿öÅ©¸¦ ÅëÇØ ¿øÀÚ·Â ¹ßÀü¼Ò ¿î¿µÀÚ´Â ½Ã½ºÅÛÀ» ´Ü°èÀûÀ¸·Î ¾÷±×·¹À̵åÇÒ ¼ö ÀÖ¾î ¿ÏÀüÇÑ ¼Ë´Ù¿îÀ» ÇÇÇÏ°í ºñ¿ëÀ» ÃÖ¼ÒÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. Á¦¾î½ÇÀÇ µðÁöÅÐÈ­¿Í »ç¿ëÀÚ Ä£È­Àû ÀÎ ÀÎÅÍÆäÀ̽ºÀÇ ÅëÇÕÀº Àΰ£ ¿î¿µÀÚ¿¡°Ô º¸´Ù Á÷°üÀû ÀÎ Á¶ÀÛÀ» °¡´ÉÇϰÔÇÏ°í ¼öµ¿ ¿À·ùÀÇ À§ÇèÀ» ÁÙÀÌ°í ±³À° ¼º°ú¸¦ Çâ»ó½Ãŵ´Ï´Ù. ¿øÀÚ·ÂÀÌ ¼¼°è ¿¡³ÊÁö À§±â¿¡ ´ëÇÑ Àúź¼Ò ¼Ö·ç¼ÇÀ¸·Î ÀÚ¸®¸Å±èÇÔ¿¡ µû¶ó µðÁöÅÐ Á¦¾î ½Ã½ºÅÛÀº Ç÷£Æ® ¿î¿µÀÇ ½Å·Ú¼º, ¹Îø¼º ¹× Àå±âÀûÀÎ Áö¼Ó°¡´É¼ºÀ» ½ÇÇöÇÏ´Â Áß¿äÇÑ ¼ö´ÜÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ¿øÀÚ·Â R&D ¹× ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡ÇÔ¿¡ µû¶ó, µðÁöÅÐ Á¦¾î ±â¼úÀº Àü ¼¼°è ¿øÀÚ·Â ¹ßÀü¼ÒÀÇ Çö´ëÈ­ ³ë·ÂÀÇ Ãʼ®ÀÌ µÇ°í ÀÖ½À´Ï´Ù.

±ÔÁ¦, º¸¾È ¹× ¼ö¸íÁֱ⠰úÁ¦´Â Á¦¾î ½Ã½ºÅÛ ¾÷±×·¹ÀÌµå ¼ö¿ä¸¦ ¾î¶»°Ô Çü¼ºÇϰí Àִ°¡?

¿øÀÚ·Â ¹ßÀü¼Ò°¡ ³ëÈÄÈ­µÇ°í ¿î¿µ¿¡ ´ëÇÑ ±â´ëÄ¡°¡ ³ô¾ÆÁü¿¡ µû¶ó, Á¦¾î ½Ã½ºÅÛÀº ±ÔÁ¦ ´ç±¹°ú ¹ßÀü¼Ò ¿î¿µÀÚ ¸ðµÎ·ÎºÎÅÍ ´õ ¸¹Àº °¨½Ã¸¦ ¹Þ°í ÀÖ½À´Ï´Ù. ¿øÀÚ·Â ±ÔÁ¦ ´ç±¹Àº °èÃøÁ¦¾î(I&:C) ½Ã½ºÅÛÀÌ ÃֽоÈÀü ±âÁØ, »çÀ̹ö º¸¾È ±âÁØ, ¼º´É ±âÁØ¿¡ ºÎÇÕÇϵµ·Ï ¾ö°ÝÇÑ ¾÷µ¥ÀÌÆ®¸¦ ¿ä±¸Çϰí ÀÖ½À´Ï´Ù. ¸¹Àº ±¹°¡¿¡¼­ ³ëÈÄ ¿øÀÚ·ÎÀÇ ¼ö¸í ¿¬Àå °èȹÀº ¾ÈÀü ÇÁ·ÎÅäÄÝÀ» ¼Õ»ó½ÃŰÁö ¾Ê°í Á¦¾î ½Ã½ºÅÛÀ» Çö´ëÈ­ÇÒ ¼ö ÀÖ´ÂÁö¿¡ ´Þ·Á ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¾÷±×·¹À̵å´Â ±âÁ¸ Ç÷£Æ® ÀÎÇÁ¶ó¿ÍÀÇ ½Ã½ºÅÛ È£È¯¼ºÀ» º¸ÀåÇϱâ À§ÇØ ¸ÂÃãÇü ¿£Áö´Ï¾î¸µ°ú Á¾ÇÕÀûÀÎ Å×½ºÆ®°¡ ÇÊ¿äÇÑ °æ¿ì°¡ ¸¹±â ¶§¹®¿¡ ÀÌ ½ÃÀåÀº ¸Å¿ì Àü¹®ÀûÀÌ°í ±â¼úÀûÀ¸·Î ±î´Ù·Î¿î ½ÃÀåÀÔ´Ï´Ù. ÇÑÆí, »çÀ̹ö ħÀÔ¿¡ ´ëÇÑ ¿ì·Á°¡ ³ô¾ÆÁö¸é¼­ º¸¾È ¿ä±¸»çÇ×ÀÌ °­È­µÇ°í, ÀÓº£µðµå º¸È£, Áß¿ä ±â´ÉÀÇ ¼¼ºÐÈ­, ½Ç½Ã°£ À§Çù °¨Áö ±â´ÉÀÌ ÇÊ¿äÇÏ°Ô µÇ¾ú½À´Ï´Ù. Á¦¾î ½Ã½ºÅÛ °ø±Þ¾÷ü´Â ÇöÀç IEC 62645 ¹× ¹Ì±¹ NRC ±ÔÁ¦ °¡À̵å¿Í °°Àº ÇÁ·¹ÀÓ¿öÅ©¸¦ ÁؼöÇϸ鼭 ´Ù°èÃþ »çÀ̹ö º¸¾È ¾ÆÅ°ÅØÃ³¸¦ ÅëÇÕÇØ¾ß ÇÕ´Ï´Ù. ¶ÇÇÑ, Àü ¼¼°è ¿¡³ÊÁö ºÎ¹®ÀÌ ºÐ»êÇü ¹× ±×¸®µå ¹ÝÀÀÇü ¸ðµ¨À» äÅÃÇÔ¿¡ µû¶ó ¿øÀÚ·Â Á¦¾î ½Ã½ºÅÛÀº ºÎÇÏ ÃßÁ¾ ¿îÀü°ú ½Ç½Ã°£ ±×¸®µå Á¶Á¤ÀÌ °¡´ÉÇϵµ·Ï ÁøÈ­ÇØ¾ß Çϸç, SMR°ú 4¼¼´ë ¿øÀÚ·ÎÀÇ µµÀÔÀº ½Ã½ºÅÛ ¾ÆÅ°ÅØÃ³¿¡ ´ëÇÑ ±â´ëÄ¡¸¦ º¯È­½Ã۰í ÀÖ½À´Ï´Ù. ´õ ÀÛ°í, ´õ À¯¿¬Çϸç, Á¾Á¾ ¿ø°ÝÁö¿¡ ¼³Ä¡µÇ´Â °Í¿¡ ¸ÂÃß¾î È®Àå °¡´ÉÇÏ°í ¸ðµâÈ­µÈ ¼ÒÇÁÆ®¿þ¾î Áß½ÉÀÇ Á¦¾î ¼Ö·ç¼ÇÀ» ¿ä±¸Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿ä±¸»çÇ×ÀÇ º¯È­´Â Á¦¾î ½Ã½ºÅÛ °ø±Þ¾÷ü°¡ ½Ã½ºÅÛ ¼ö¸íÁֱ⠰ü¸®, À§Çè Æò°¡, Àå±âÀûÀÎ ±â¼ú Áö¿ø¿¡ Á¢±ÙÇÏ´Â ¹æ½ÄÀ» À籸¼ºÇϰí, ±Ã±ØÀûÀ¸·Î ½ÃÀå ±âȸ¸¦ È®´ëÇÏ´Â µ¿½Ã¿¡ ½Ã½ºÅÛ ¼º´É ¹× ±ÔÁ¤ Áؼö ¼öÁØÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù.

¿øÀڷ¹ßÀü¼Ò Á¦¾î½Ã½ºÅÛ ½ÃÀåÀÇ ¼¼°è ¼ºÀå ¿øµ¿·ÂÀº?

¿øÀÚ·Â ¹ßÀü¼Ò Á¦¾î ½Ã½ºÅÛ ½ÃÀåÀÇ ¼ºÀåÀº ±â¼ú ¹ßÀü, ¿¡³ÊÁö Á¤Ã¥, ÀÎÇÁ¶ó Çö´ëÈ­, ¿î¿µ À§Çè °ü¸®¿¡ ±â¹ÝÇÑ ¿©·¯ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ¿øÀÚ·Â ºÐ¾ßÀÇ ±Þ¼ÓÇÑ µðÁöÅÐÈ­·Î ÀÎÇØ Á¦¾î ½Ã½ºÅÛÀÌ °íµµÀÇ ºÐ¼®, ÀÚÀ² Áø´Ü ¹× ÀûÀÀÇü Á¦¾î ±â´ÉÀ» Á¦°øÇÏ¿© Ç÷£Æ® È¿À²À» ³ôÀÌ°í ¿î¿µ À§ÇèÀ» ÁÙÀÏ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. Á¤Ã¥Àû Â÷¿ø¿¡¼­ Żź¼ÒÈ­ ¸ñÇ¥¿Í Àú¹èÃâ ¿¡³ÊÁö¿øÀ¸·ÎÀÇ Àüȯ¿¡ µû¶ó °¢±¹ Á¤ºÎ´Â ½Å±Ô ¿øÀÚ·Â ÇÁ·ÎÁ§Æ®¿Í ¼ö¸í ¿¬Àå ÀÌ´Ï¼ÅÆ¼ºê¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖÀ¸¸ç, ÀÌ µÎ °¡Áö ÇÁ·ÎÁ§Æ®¿¡´Â ÃÖ½ÅÀÇ ½Å·ÚÇÒ ¼ö ÀÖ´Â Á¦¾î ½Ã½ºÅÛÀÌ ÇÊ¿äÇÕ´Ï´Ù. ¶ÇÇÑ, ¼ÒÇü ¸ðµâÇü ¿øÀÚ·Î ¹× Â÷¼¼´ë ¿øÀÚ·Î ¼³°èÀÇ È®»êÀ¸·Î ÀÎÇØ ¿ø°Ý ¸ð´ÏÅ͸µ ¹× ¸ðµâÈ­¸¦ Áö¿øÇÒ ¼ö ÀÖ´Â À¯¿¬Çϰí È®Àå °¡´ÉÇÑ Á¦¾î ¾ÆÅ°ÅØÃ³¿¡ ´ëÇÑ ¼ö¿äµµ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¿î¿µ Ãø¸é¿¡¼­´Â ºñ¿ë ºÎ´ã Áõ°¡¿Í ÀÚ»ê ³ëÈÄÈ­·Î ÀÎÇØ »ç¾÷ÀÚµéÀº ÁøÈ­ÇÏ´Â ¾ÈÀü ¹× »çÀ̹ö º¸¾È ±âÁØÀ» ÃæÁ·ÇÏ°í ¿øÀÚ·ÎÀÇ ¼ö¸íÀ» ¿¬ÀåÇÒ ¼ö ÀÖ´Â Á¦¾î ½Ã½ºÅÛ ¾÷±×·¹À̵忡 ÅõÀÚÇÒ Çʿ䰡 ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ±ÔÁ¦ ¸íȮȭ ¹× ±¹Á¦ Ç¥ÁØÈ­ ³ë·ÂÀÌ ½ÃÀåÀ» µÞ¹ÞħÇϰí ÀÖÀ¸¸ç, ÀÌ´Â ¹èÄ¡ À§ÇèÀ» ÁÙÀÌ°í ±â¼ú µµÀÔÀ» ÃËÁøÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ¶ÇÇÑ, ¿øÀÚ·Â »ê¾÷¿¡¼­ ¿¹Áöº¸Àü ¹× »óÅ ¸ð´ÏÅ͸µ¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ AI¸¦ Ȱ¿ëÇÑ ¼¾¼­ ÅëÇÕ Á¦¾î ¼Ö·ç¼Ç¿¡ ´ëÇÑ ºñÁî´Ï½º ±âȸ°¡ âÃâµÇ°í ÀÖ½À´Ï´Ù. º¥´õµéÀÇ °æÀï°ú Àü·«Àû Á¦ÈÞ´Â ±â¼ú Çõ½ÅÀ» °¡¼ÓÈ­Çϰí, ½Ã½ºÅÛ »óÈ£¿î¿ë¼ºÀ» È®´ëÇϸç, µµÀÔ ±â°£À» ´ÜÃàÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÃËÁø¿äÀεéÀº ÷´Ü ¿øÀÚ·Â Á¦¾î ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼¼°è ¼ö¿ä¸¦ ÀÚ±ØÇϰí Â÷¼¼´ë ¿øÀÚ·Â ÀÎÇÁ¶ó±îÁö ½ÃÀå ¼ºÀåÀ» Áö¼ÓÇÒ ¼ö ÀÖ´Â ¿©°ÇÀ» Á¶¼ºÇϰí ÀÖ½À´Ï´Ù.

ºÎ¹®

¼Ö·ç¼Ç(ºÐ»êÇü Á¦¾î ½Ã½ºÅÛ, °¨½ÃÁ¦¾î¡¤µ¥ÀÌÅÍ ¼öÁý, ÇÁ·Î±×·¡¸Óºí ³í¸® ÄÁÆ®·Ñ·¯, »ê¾÷¿ë ¾ÈÀü ¼Ö·ç¼Ç, ±âŸ ¼Ö·ç¼Ç), ÄÄÆ÷³ÍÆ®(Çϵå¿þ¾î, ¼ÒÇÁÆ®¿þ¾î, ¼­ºñ½º), ¿ëµµ(Åͺ󡤺¸Á¶ Á¦¾î ¿ëµµ, ¹ßÀü±â ¿©ÀÚ¡¤Àü±â Á¦¾î ¿ëµµ, º¸ÀÏ·¯¡¤º¸Á¶ Á¦¾î ¿ëµµ, ±âŸ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ¼­, ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Nuclear Power Plant Control System Market to Reach US$797.3 Million by 2030

The global market for Nuclear Power Plant Control System estimated at US$649.7 Million in the year 2024, is expected to reach US$797.3 Million by 2030, growing at a CAGR of 3.5% over the analysis period 2024-2030. Distributed Control Systems, one of the segments analyzed in the report, is expected to record a 2.9% CAGR and reach US$304.2 Million by the end of the analysis period. Growth in the Supervisory Control & Data Acquisition segment is estimated at 3.0% CAGR over the analysis period.

The U.S. Market is Estimated at US$177.0 Million While China is Forecast to Grow at 6.3% CAGR

The Nuclear Power Plant Control System market in the U.S. is estimated at US$177.0 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$157.8 Million by the year 2030 trailing a CAGR of 6.3% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 1.4% and 2.6% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 2.0% CAGR.

Global Nuclear Power Plant Control System Market - Key Trends & Drivers Summarized

How Are Modern Control Systems Reinventing Operational Safety and Efficiency in Nuclear Power Plants?

The nuclear power industry is undergoing a critical technological evolution, with control systems at the heart of this transformation. Traditionally, nuclear plant control systems relied on analog technology that, while robust, lacked the precision, scalability, and real-time responsiveness required by today’s energy infrastructure. In response to growing demands for safety, uptime, and compliance, next-generation nuclear power plant control systems are now being digitized, automated, and interconnected, leading to improved operational stability and streamlined management of complex reactor operations. These systems include distributed control systems (DCS), programmable logic controllers (PLCs), human-machine interfaces (HMIs), and supervisory control and data acquisition (SCADA) platforms-each playing a role in monitoring core temperatures, coolant levels, pressure control, and radiation containment. Advanced sensors and diagnostics enable predictive maintenance and anomaly detection, helping avert costly downtimes or safety incidents. Additionally, integration of cybersecurity frameworks has become essential, given the increasing threat of cyberattacks targeting critical infrastructure. By delivering faster data processing, adaptive control responses, and enhanced operator visibility, modern control systems not only meet stringent safety requirements but also improve the economic viability of nuclear energy. As the sector prepares for a new wave of small modular reactors (SMRs) and reactor life extensions, advanced control systems are positioning themselves as indispensable assets in the future of nuclear power generation.

How Is Digitalization Driving the Next Leap in Nuclear Plant Automation and Intelligence?

The global shift toward digitalized nuclear infrastructure is being accelerated by the need for higher efficiency, real-time data analysis, and enhanced control over complex processes. Advanced digital control systems are replacing outdated analog setups across both existing and next-generation nuclear reactors, enabling a more intelligent and adaptive plant environment. Artificial intelligence (AI), machine learning, and digital twin technologies are being integrated into plant operations to enable simulations, fault predictions, and virtual testing of emergency scenarios. These digital tools provide plant operators with predictive insights into equipment wear, reactor behavior, and system optimization opportunities-all of which contribute to reduced risk and improved decision-making. Cloud-based monitoring systems and edge computing architectures are further enabling remote access, system redundancy, and faster response times. Additionally, software-defined control platforms and modular automation frameworks are allowing nuclear operators to upgrade systems incrementally, avoiding full shutdowns and minimizing costs. The digitalization of control rooms and the integration of user-friendly interfaces are making operations more intuitive for human operators, reducing the risk of manual errors and improving training outcomes. As nuclear energy increasingly positions itself as a low-carbon solution to the global energy crisis, digital control systems are emerging as critical enablers of reliability, agility, and long-term sustainability in plant operations. With rising investments in nuclear R&D and infrastructure, digital control technologies are becoming a cornerstone of modernization efforts across global nuclear fleets.

How Are Regulatory, Security, and Lifecycle Challenges Reshaping Demand for Control System Upgrades?

As nuclear power plants age and operational expectations rise, control systems are facing increased scrutiny from both regulators and plant operators. Nuclear regulatory authorities are mandating stringent updates to instrumentation and control (I&C) systems to ensure they meet modern safety, cybersecurity, and performance standards. In many countries, life extension programs for aging reactors hinge on the ability to modernize control systems without compromising safety protocols. These upgrades often require custom engineering and comprehensive testing to ensure system compatibility with existing plant infrastructure, making the market highly specialized and technically demanding. Meanwhile, rising concerns around cyber-intrusions have led to heightened security requirements, necessitating built-in protections, segmentation of critical functions, and real-time threat detection capabilities. Control system vendors must now integrate multilayer cybersecurity architectures while ensuring compliance with frameworks such as IEC 62645 and U.S. NRC regulatory guides. Additionally, as the global energy sector embraces decentralized and grid-responsive models, nuclear control systems must evolve to enable load-following operations and real-time grid coordination-functions traditionally limited in older plant designs. The introduction of SMRs and Generation IV reactors is also changing system architecture expectations, demanding scalable, modular, and software-centric control solutions tailored to smaller, flexible, and often remote installations. These evolving demands are reshaping how control system providers approach system lifecycle management, risk assessment, and long-term technical support-ultimately expanding market opportunities while raising the bar for system performance and compliance.

What’s Driving the Global Growth of the Nuclear Power Plant Control System Market?

The growth in the nuclear power plant control system market is driven by several factors rooted in technology evolution, energy policy, infrastructure modernization, and operational risk management. The rapid digitalization of the nuclear sector is enabling control systems to deliver advanced analytics, autonomous diagnostics, and adaptive control functions that improve plant efficiency and reduce operational risks. At the policy level, decarbonization goals and the shift toward low-emission energy sources are leading governments to invest heavily in new nuclear projects and life extension initiatives, both of which require modern, reliable control systems. The rollout of small modular reactors and next-gen reactor designs is also creating demand for flexible and scalable control architectures that can support remote monitoring and modular deployment. On the operational front, rising cost pressures and aging assets are pushing operators to invest in control system upgrades that extend reactor life while meeting evolving safety and cybersecurity standards. The market is further supported by increased regulatory clarity and international standardization efforts, which reduce deployment risks and encourage technology adoption. Additionally, the nuclear industry's growing emphasis on predictive maintenance and condition-based monitoring is creating opportunities for AI-powered, sensor-integrated control solutions. Vendor competition and strategic collaborations are accelerating innovation, expanding system interoperability, and reducing deployment timeframes. Together, these drivers are catalyzing strong global demand for advanced nuclear control systems and are poised to sustain market growth well into the next generation of nuclear energy infrastructure.

SCOPE OF STUDY:

The report analyzes the Nuclear Power Plant Control System market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Solution (Distributed Control Systems, Supervisory Control & Data Acquisition, Programmable Logical Controllers, Industrial Safety Solutions, Other Solutions); Component (Hardware, Software, Services); Application (Turbine & Auxiliaries Control Application, Generator Excitation & Electrical Control Application, Boiler & Auxiliaries Control Application, Other Applications)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 41 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â