¼¼°èÀÇ ÀÇ·á °Ëü ÃßÀû ½Ã½ºÅÛ ½ÃÀå
Medical Specimen Tracking Systems
»óǰÄÚµå : 1775008
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 469 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,239,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,719,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

ÀÇ·á °Ëü ÃßÀû ½Ã½ºÅÛ ¼¼°è ½ÃÀåÀº 2030³â±îÁö 41¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 22¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ÀÇ·á °Ëü ÃßÀû ½Ã½ºÅÛ ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 11.2%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 41¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®Çϰí ÀÖ´Â ºÎ¹® Áß ÇϳªÀÎ ¼ÒÇÁÆ®¿þ¾î´Â CAGR 12.3%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 26¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Çϵå¿þ¾î ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 9.3%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 5¾ï 8,780¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 15.3%·Î ¼ºÀåÀ» ¿¹Ãø

¹Ì±¹ÀÇ ÀÇ·á °Ëü ÃßÀû ½Ã½ºÅÛ ½ÃÀåÀº 2024³â¿¡ 5¾ï 8,780¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 8¾ï 5,150¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 15.3%¸¦ ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 8.0%¿Í 10.0%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 8.8%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ÀÇ·á °Ëü ÃßÀû ½Ã½ºÅÛ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

ÀÇ·á °Ëü ÃßÀû ½Ã½ºÅÛÀº »ý¹°ÇÐÀû »ùÇÃÀÇ Ã¤ÃëºÎÅÍ ºÐ¼®±îÁö Á¤È®ÇÑ ½Ç½Ã°£ ÃßÀûÀ» º¸ÀåÇÏ¿© ½ÇÇè½Ç °ü¸®, Áø´Ü ¹× ȯÀÚ ¾ÈÀü¿¡ Çõ¸íÀ» ÀÏÀ¸Ä×½À´Ï´Ù. º´¸®°Ë»ç½ÇÀÇ ¿À·ù °¨¼Ò, ±ÔÁ¦ Áؼö, È¿À²¼º¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ RFID(Radio-Frequency Identification), ¹ÙÄÚµå ±â¹Ý, Ŭ¶ó¿ìµå ÅëÇÕ ÃßÀû ¼Ö·ç¼ÇÀÇ µµÀÔÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº °Ëü È¥ÀÔÀ» ¹æÁöÇϰí, Áø´Ü ¿À·ù¸¦ ÁÙÀ̸ç, º´¿ø, ÀÓ»ó ½ÇÇè½Ç, ¿¬±¸ ½Ã¼³ÀÇ ¿öÅ©Ç÷οì ÀÚµ¿È­¸¦ °­È­ÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ³ôÀº ¼öÁØÀÇ ¿À·ù ¾ø´Â °Ëü 󸮿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ÀÇ·á °Ëü ÃßÀû ±â¼úÀº AI ±â¹Ý ºÐ¼®, ºí·ÏüÀÎ º¸¾È, °ËüÀÇ ¹«°á¼ºÀ» º¸ÀåÇÏ´Â ½Ç½Ã°£ ¿Âµµ ¸ð´ÏÅ͸µÀ¸·Î ¹ßÀüÇϰí ÀÖ½À´Ï´Ù.

ÀÇ·á °Ëü ÃßÀû ½Ã½ºÅÛ ½ÃÀåÀ» º¯È­½Ãų »õ·Î¿î Æ®·»µå´Â ¹«¾ùÀϱî?

½Ã·á ÃßÀû ½ÃÀåÀÇ °¡Àå Áß¿äÇÑ Æ®·»µå Áß Çϳª´Â RFID¿Í IoT Áö¿ø ½Ã·á ÃßÀû ½Ã½ºÅÛÀÇ ÅëÇÕÀÔ´Ï´Ù. ÀüÅëÀûÀÎ ¹ÙÄÚµå ÃßÀûÀº ÇöÀçµµ ³Î¸® »ç¿ëµÇ°í ÀÖÁö¸¸, RFID ÅÂ±×¿Í IoT ¼¾¼­·Î º¸¿ÏµÇ°Å³ª ´ëüµÇ°í ÀÖÀ¸¸ç, ¼öÀÛ¾÷ ½ºÄµÀÌ ÇÊ¿ä ¾ø´Â ½Ç½Ã°£ ÀÚµ¿ ½Ã·á ¸ð´ÏÅ͸µÀÌ °¡´ÉÇØÁ³½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀº Chain-of-CustodyÀÇ °¡½Ã¼ºÀ» ³ôÀ̰í Ç÷¾×, Á¶Á÷, ¼Òº¯, À¯ÀüÀÚ »ùÇÃÀ» Æ÷ÇÔÇÑ ÀÇ·á °Ëü°¡ Áø´Ü ¿öÅ©Ç÷ο츦 ÅëÇØ Á¤È®ÇÏ°Ô ÃßÀûµÉ ¼ö ÀÖµµ·Ï º¸ÀåÇÕ´Ï´Ù. ¶ÇÇÑ, RFID ±â¹ÝÀÇ °Ëü ÃßÀûÀº ¹èÄ¡ ó¸®ÀÇ È¿À²¼ºÀ» °³¼±Çϰí, ´ë·® °Ë»ç½Ç¿¡¼­ °Ëü ¿ÀÀÎ½Ä ¹× °Ëü ȸ¼ö Áö¿¬À» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù.

¶Ç ´Ù¸¥ Áß¿äÇÑ Æ®·»µå´Â Ŭ¶ó¿ìµå ±â¹Ý ¶Ç´Â ºí·ÏüÀÎÀ¸·Î º¸È£µÇ´Â ½Ã·á ÃßÀû Ç÷§ÆûÀÇ È®ÀåÀÔ´Ï´Ù. Ŭ¶ó¿ìµå ±â¹Ý ¼Ö·ç¼ÇÀº µ¥ÀÌÅÍ Á¢±ÙÀÇ Áß¾Ó ÁýÁßÈ­, ¿©·¯ °Ë»ç½Ç¿¡¼­ÀÇ Çù¾÷, º´¿ø EHR(Electronic Health Record)°úÀÇ ¿øÈ°ÇÑ ÅëÇÕÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ¶ÇÇÑ, °Ëü Ãë±Þ¿¡ ´ëÇÑ º¯Á¶ ¹æÁö·Î ºÒº¯ÀÇ ±â·ÏÀ» »ý¼ºÇϱâ À§ÇØ ºí·ÏüÀÎ ±â¼úÀ» µµÀÔÇÏ¿© HIPAA, CLIA, GDPR µîÀÇ ±ÔÁ¦ ±âÁØÀ» ÁؼöÇÒ ¼ö ÀÖµµ·Ï Çϰí ÀÖ½À´Ï´Ù. ȯÀÚ µ¥ÀÌÅÍ¿Í °ËüÀÇ ÃßÀû¼ºÀ» È®º¸ÇÔÀ¸·Î½á ºí·ÏüÀÎÀ» Ȱ¿ëÇÑ ÃßÀûÀº º´¸®°Ë»ç½Ç¿¡¼­ÀÇ ºÎÁ¤, ÀÎÀû ¿À·ù, µ¥ÀÌÅÍ À¯Ãâ°ú °ü·ÃµÈ À§ÇèÀ» ÃÖ¼ÒÈ­ÇÕ´Ï´Ù.

¿Âµµ¿¡ ¹Î°¨ÇÑ ½Ã·á ÃßÀû ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿äµµ ƯÈ÷ ¹ÙÀÌ¿À¹ðÅ©, Àå±â À̽Ä, °¨¿° Áø´Ü ºÐ¾ß¿¡¼­ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¸¹Àº °Ë»ç½Ç°ú ÀÇ·á ¼­ºñ½º Á¦°øÀÚµéÀº ¿Âµµ ÆíÂ÷°¡ ¹ß»ýÇϸé Áï½Ã °æ°í¸¦ º¸³»´Â ½Ç½Ã°£ ¿Âµµ-½Àµµ ¸ð´ÏÅ͸µ ¼¾¼­¸¦ äÅÃÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Çõ½ÅÀº ±ØÀú¿Â ½Ã·á, ¹é½Å º¸Á¸, ¹ýÀÇÇÐ DNA ½Ã·áÀÇ ¹«°á¼ºÀ» À¯ÁöÇϰí ȯ°æ º¯È­·Î ÀÎÇÑ ½Ã·á ¿­È­ À§ÇèÀ» ÁÙÀÌ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù.

±â¼ú ¹ßÀüÀº ½Ã·á ÃßÀû È¿À²À» ¾î¶»°Ô Çâ»ó½Ã۰í Àִ°¡?

ÀÚµ¿È­, AI¸¦ Ȱ¿ëÇÑ ºÐ¼®, ·Îº¿À» ÀÌ¿ëÇÑ ½Ã·á ó¸® µîÀÇ ±â¼ú Çõ½ÅÀº ½Ã·á ÃßÀû È¿À²À» Å©°Ô Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ÁÖ¿ä ¹ßÀü Áß Çϳª´Â AI¸¦ Ȱ¿ëÇÑ °Ëü ÀνÄ-ÀÌ»ó °¨Áö ½Ã½ºÅÛ °³¹ßÀÔ´Ï´Ù. ¸Ó½Å·¯´× ¾Ë°í¸®ÁòÀº ½Ç½Ã°£À¸·Î °Ëü µ¥ÀÌÅ͸¦ ºÐ¼®ÇÏ¿© °Ëü ¶óº§ÀÇ ºÒÀÏÄ¡, ¼ö·® ºÒÀÏÄ¡, º¸°ü Àå¼ÒÀÇ ¿À·ù µîÀ» Áø´Ü ¿À·ù·Î À̾îÁö±â Àü¿¡ ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ¿¹Ãø ºÐ¼®À» ÅëÇØ °Ë»ç½ÇÀº °Ëü ºÐ½ÇÀ̳ª ¿ÀºÐ·ù µîÀ» ¹æÁöÇÏ°í °Ë»ç °á°úÀÇ Á¤È®µµ¸¦ ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù.

¶Ç ´Ù¸¥ Å« Çõ½ÅÀº ½Ã·áÀÇ ¼±º° ¹× ȸ¼ö °úÁ¤¿¡¼­ ·Îº¿À» ÅëÇÑ ÀÚµ¿È­¸¦ ÅëÇÕÇÏ´Â °ÍÀÔ´Ï´Ù. ·Îº¿ ¾Ï°ú º§Æ® ÄÁº£ÀÌ¾î ¼ÒÆÃÀÌ ÀåÂøµÈ ÀÚµ¿ °Ëü ó¸® ½Ã½ºÅÛÀº ¼öÀÛ¾÷¿¡ ÀÇÇÑ Á¶ÀÛ ¿À·ù¸¦ ¾ø¾Ö±â À§ÇØ °í ½º·çDz °Ë»ç½Ç¿¡ µµÀԵǰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ¹ÙÄÚµå ¹× RFID ÃßÀû ¼Ö·ç¼Ç°ú ¿¬µ¿ÇÏ¿© ½Ã·á°¡ Á¤È®ÇÏ°Ô ±â·Ï, ºÐ·ù ¹× ¿î¹ÝµÇµµ·Ï º¸ÀåÇÕ´Ï´Ù. À½¼º ÀÛµ¿ ¹× ºñÁ¢ÃË½Ä ÃßÀû ¼Ö·ç¼ÇÀÇ ÅëÇÕµµ Àα⸦ ²ø°í ÀÖÀ¸¸ç, °Ë»çÀÚ°¡ Á÷Á¢ ¹°¸®Àû »óÈ£ ÀÛ¿ë ¾øÀÌ °Ëü Àç°í¸¦ °ü¸®ÇÒ ¼ö ÀÖ¾î ¿À¿° À§ÇèÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù.

º´¿ø°ú Áø·á¼Ò¿¡¼­ ½º¸¶Æ® °Ëü ÃßÀû Ű¿À½ºÅ©°¡ µîÀåÇϸ鼭 °Ëü ¼öÁý ¹× ¿î¼Û ¹°·ù°¡ ´õ¿í °³¼±µÇ°í ÀÖ½À´Ï´Ù. ÀÚµ¿ ¶óº§ Àμâ, °Ëü ½ºÄµ, AI¸¦ ÅëÇÑ È¯ÀÚ È®ÀÎ ±â´ÉÀ» °®Ãá ÀÌ ¼¿ÇÁ¼­ºñ½º Ű¿À½ºÅ©´Â ¿À·ù ¾øÀÌ °Ëü¸¦ Á¦ÃâÇϰí ÀûÀýÇÑ Áø´Ü ¼¾ÅÍ·Î ¿¬°áµÇµµ·Ï º¸ÀåÇÕ´Ï´Ù. ¶ÇÇÑ, ÀϺΠº´¿ø¿¡¼­´Â ÃßÀû ¼ÒÇÁÆ®¿þ¾î¿Í ÅëÇÕµÈ ½º¸¶Æ® °ø¾Ð Æ©ºê ½Ã½ºÅÛÀ» µµÀÔÇÏ¿© º´¿ø ³» ¿©·¯ ºÎ¼­ÀÇ °Ëü ¿î¼ÛÀ» ½Ç½Ã°£À¸·Î ÀÚµ¿ ¸ð´ÏÅ͸µÇÒ ¼ö ÀÖµµ·Ï Çϰí ÀÖ½À´Ï´Ù.

ÀÇ·á °Ëü ÃßÀû ½Ã½ºÅÛ ½ÃÀåÀÇ ¼ºÀåÀ» ÃËÁøÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

ÀÇ·á °Ëü ÃßÀû ½Ã½ºÅÛ ½ÃÀåÀÇ ¼ºÀåÀº Á¤È®ÇÑ Áø´Ü¿¡ ´ëÇÑ ¼¼°è ¼ö¿ä Áõ°¡, ½Ã·á ÃßÀû °¡´É¼º¿¡ ´ëÇÑ ±ÔÁ¦ °­È­, ÀÚµ¿È­ ±â¼ú ¹ßÀü, °Ë»ç½Ç ¿À·ù °¨¼ÒÀÇ Çʿ伺 µî ¿©·¯ ¿äÀÎÀ¸·Î ÀÎÇØ ¹ß»ýÇÕ´Ï´Ù. ÀÇ·á ½Ã½ºÅÛÀÌ µ¥ÀÌÅÍ Áß½ÉÀÌ µÇ¸é¼­ °ËüÀÇ ¹«°á¼º°ú ÃßÀû Á¤È®¼ºÀ» º¸ÀåÇÏ´Â °ÍÀº º´¿ø, Áø´Ü ½ÇÇè½Ç, ¿¬±¸¼Ò¿¡¼­ ¸Å¿ì Áß¿äÇÑ ¿ì¼±¼øÀ§°¡ µÇ°í ÀÖ½À´Ï´Ù.

Áø´Ü °Ë»ç·®ÀÇ Áõ°¡, ƯÈ÷ COVID-19, ¾Ï °ËÁø ÇÁ·Î±×·¥, À¯ÀüÀÚ ¿¬±¸ÀÇ È®´ë¿¡ µû¶ó ÇÏÀ̽º·çDzÀ¸·Î ÀÚµ¿È­µÈ °Ëü ÃßÀû ½Ã½ºÅÛÀÇ Çʿ伺ÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ºÐÀÚÁø´Ü, ¸ÂÃãÇü ÀÇ·á, ¾×ü »ý°Ë °Ë»ç´Â Á¤È®ÇÑ °Ëü ½Äº°°ú ¿î¼ÛÀÌ ÇÊ¿äÇϱ⠶§¹®¿¡ ÀÚµ¿ °Ëü ÃßÀû ¼Ö·ç¼ÇÀº º¹ÀâÇÑ Áø´Ü ¿öÅ©Ç÷ο츦 °ü¸®ÇÏ´Â µ¥ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ¾Ò½À´Ï´Ù.

±ÔÁ¦ Áؼö ¶ÇÇÑ Áß¿äÇÑ ¿øµ¿·ÂÀÔ´Ï´Ù. FDA, CDC, WHO¿Í °°Àº Á¤ºÎ ¹× º¸°Ç ±â°üÀº °Ëü Ãë±Þ¿¡ ´ëÇÑ ¾ö°ÝÇÑ ÃßÀû¼º ¿ä°ÇÀ» ¼³Á¤ÇÏ¿© ½ÇÇè½Ç ¹× ÀÇ·á ¼­ºñ½º Á¦°øÀÚ°¡ ¾ÈÀüÇÏ°í °¨»ç °¡´ÉÇÑ ÃßÀû ½Ã½ºÅÛÀ» µµÀÔÇϵµ·Ï º¸ÀåÇϰí ÀÖ½À´Ï´Ù. HIPAA, CLIA, CAP ÀÎÁõ ±âÁØÀ» ÁؼöÇϱâ À§ÇØ ISO ÀÎÁõ ½ÇÇè½Ç Á¤º¸°ü¸® ½Ã½ºÅÛ(LIMS)°ú µðÁöÅÐ CoC ¼Ö·ç¼ÇÀÇ µµÀÔÀÌ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù.

¶Ç ´Ù¸¥ Å« ¼ºÀå ¿äÀÎÀº ºÐ»êÇü Áø´Ü °Ë»ç ¹× ÀçÅà Áø´Ü °Ë»çÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ¿ø°ÝÀÇ·á, ÀçÅà °Ëü äÃë ¼­ºñ½º, ¼ÒºñÀÚ Á÷Á¢ °Ë»ç½Ç °Ë»çÀÇ Áõ°¡·Î ÀÎÇØ ¾ÈÀüÇÏ°í ¿Ïº®ÇÑ °Ëü ÃßÀû¿¡ ´ëÇÑ ¿ä±¸°¡ ÀüÅëÀûÀÎ ÀÓ»ó ÇöÀåÀ» ³Ñ¾î È®ÀåµÇ°í ÀÖ½À´Ï´Ù. ÀçÅà Áø´Ü ŰƮ¸¦ Á¦°øÇÏ´Â ±â¾÷µéÀº ¼öÁýµÈ °Ëü°¡ ¾ÈÀüÇÏ°Ô °Ë»ç½Ç¿¡ µµÂøÇÏ°í ¿À·ù ¾øÀÌ Ã³¸®µÉ ¼ö ÀÖµµ·Ï ¹ÙÄÚµå Áö¿ø ÃßÀû ¾Û, º¯Á¶ ¹æÁö Æ÷Àå, µðÁöÅРȯÀÚ ½Äº° ½Ã½ºÅÛÀ» ÅëÇÕÇϰí ÀÖ½À´Ï´Ù.

Á¤È®¼º, ÀÚµ¿È­, ÄÄÇöóÀ̾𽺿¡ ´ëÇÑ ¿ä±¸°¡ Áö¼ÓÀûÀ¸·Î Áõ°¡ÇÔ¿¡ µû¶ó ÀÇ·á ½Ã·á ÃßÀû ½ÃÀåÀº Å©°Ô È®´ëµÉ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. AI ±â¹Ý ºÐ¼®, IoT ±â¹Ý ÃßÀû, µðÁöÅÐ Çコ ÅëÇÕÀÇ Áö¼ÓÀûÀÎ ¹ßÀüÀ¸·Î °Ëü ÃßÀû ½Ã½ºÅÛÀº °Ë»ç½Ç È¿À²¼º Çâ»ó, Áø´Ü Á¤È®µµ Çâ»ó, ¼¼°è ÇコÄÉ¾î ³×Æ®¿öÅ©¿¡¼­ ȯÀÚ ¾ÈÀüÀ» º¸ÀåÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÏ°Ô µÉ °ÍÀÔ´Ï´Ù.

ºÎ¹®

Á¦Ç°(¼ÒÇÁÆ®¿þ¾î, Çϵå¿þ¾î, ¼Ò¸ðǰ), ±â¼ú(¹ÙÄÚµå, RFID, GPS, ±âŸ ±â¼ú), °Ëü À¯Çü(ȯÀÚ °Ë»ç, ÀÓ»ó½ÃÇè °Ë»ç, ±âŸ °Ëü À¯Çü), ÃÖÁ¾»ç¿ëÀÚ(º´¿ø ¹× Ŭ¸®´Ð, º´¸® °Ë»ç½Ç, ±âŸ ÃÖÁ¾»ç¿ëÀÚ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

°ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM ¹× ¾÷°èº° SLM Äõ¸®¸¦ µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Medical Specimen Tracking Systems Market to Reach US$4.1 Billion by 2030

The global market for Medical Specimen Tracking Systems estimated at US$2.2 Billion in the year 2024, is expected to reach US$4.1 Billion by 2030, growing at a CAGR of 11.2% over the analysis period 2024-2030. Software, one of the segments analyzed in the report, is expected to record a 12.3% CAGR and reach US$2.6 Billion by the end of the analysis period. Growth in the Hardware segment is estimated at 9.3% CAGR over the analysis period.

The U.S. Market is Estimated at US$587.8 Million While China is Forecast to Grow at 15.3% CAGR

The Medical Specimen Tracking Systems market in the U.S. is estimated at US$587.8 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$851.5 Million by the year 2030 trailing a CAGR of 15.3% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 8.0% and 10.0% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 8.8% CAGR.

Global Medical Specimen Tracking Systems Market - Key Trends & Drivers Summarized

Medical specimen tracking systems are revolutionizing laboratory management, diagnostics, and patient safety by ensuring accurate, real-time tracking of biological samples from collection to analysis. With the increasing emphasis on error reduction, regulatory compliance, and efficiency in pathology labs, the adoption of RFID (Radio-Frequency Identification), barcode-based, and cloud-integrated tracking solutions is accelerating. These systems are playing a crucial role in preventing specimen mix-ups, reducing diagnostic errors, and enhancing workflow automation in hospitals, clinical laboratories, and research facilities. As the demand for high-throughput, error-free sample processing grows, medical specimen tracking technologies are advancing with AI-driven analytics, blockchain security, and real-time temperature monitoring to ensure sample integrity.

What Emerging Trends Are Transforming the Medical Specimen Tracking Systems Market?

One of the most significant trends in the specimen tracking market is the integration of RFID and IoT-enabled specimen tracking systems. Traditional barcode-based tracking, while still widely used, is being supplemented or replaced by RFID tags and IoT sensors that allow for real-time, automated sample monitoring without the need for manual scanning. These technologies enhance chain-of-custody visibility, ensuring that medical specimens-including blood, tissue, urine, and genetic samples-are accurately tracked throughout the diagnostic workflow. RFID-based specimen tracking also improves batch processing efficiency, reducing sample misidentification and retrieval delays in high-volume laboratories.

Another key trend is the expansion of cloud-based and blockchain-secured specimen tracking platforms. Cloud-based solutions allow centralized data access, multi-lab collaboration, and seamless integration with hospital electronic health records (EHRs). Additionally, blockchain technology is being introduced to create tamper-proof, immutable records of sample handling, ensuring compliance with regulatory standards such as HIPAA, CLIA, and GDPR. By securing patient data and specimen traceability, blockchain-powered tracking minimizes the risks associated with fraud, human error, and data breaches in pathology labs.

The demand for temperature-sensitive specimen tracking solutions is also rising, particularly for biobanking, organ transplantation, and infectious disease diagnostics. Many laboratories and healthcare providers are adopting real-time temperature and humidity monitoring sensors that send instant alerts in case of temperature deviations. These innovations are essential for preserving the integrity of cryogenic samples, vaccine storage, and forensic DNA specimens, reducing the risk of specimen degradation due to environmental fluctuations.

How Are Technological Advancements Improving Specimen Tracking Efficiency?

Technological innovations in automation, AI-powered analytics, and robotic sample handling are significantly enhancing specimen tracking efficiency. One of the key advancements is the development of AI-driven sample recognition and anomaly detection systems. Machine learning algorithms can analyze sample data in real time, identifying discrepancies in sample labeling, volume mismatches, or storage location errors before they lead to diagnostic mistakes. This predictive analysis helps laboratories proactively prevent specimen loss and misclassification, ensuring higher accuracy in test results.

Another major breakthrough is the integration of robotic automation in specimen sorting and retrieval. Automated specimen processing systems equipped with robotic arms and conveyor belt sorting are being implemented in high-throughput laboratories to eliminate manual handling errors. These systems work in tandem with barcode and RFID tracking solutions, ensuring that specimens are logged, sorted, and transported with precision. The integration of voice-activated and touchless tracking solutions is also gaining traction, allowing laboratory technicians to manage specimen inventory without direct physical interaction, reducing contamination risks.

The rise of smart specimen tracking kiosks in hospitals and clinics is further improving sample collection and transportation logistics. These self-service kiosks, equipped with automated label printing, specimen scanning, and AI-assisted patient verification, ensure error-free sample submission and routing to the appropriate diagnostic center. Additionally, some hospitals are deploying smart pneumatic tube systems integrated with tracking software, allowing for automated and real-time monitoring of specimen transport across hospital departments.

What Factors Are Driving the Growth of the Medical Specimen Tracking Systems Market?

The growth in the medical specimen tracking systems market is driven by several factors, including the rising global demand for accurate diagnostics, increasing regulatory mandates for sample traceability, technological advancements in automation, and the need to reduce laboratory errors. As healthcare systems become more data-driven, ensuring specimen integrity and tracking accuracy has become a critical priority for hospitals, diagnostic labs, and research facilities.

The increase in diagnostic testing volumes, particularly in the wake of COVID-19, cancer screening programs, and genetic research expansion, has fueled the need for high-throughput and automated specimen tracking systems. Molecular diagnostics, personalized medicine, and liquid biopsy testing require precise sample identification and transport, making automated specimen tracking solutions essential for managing complex diagnostic workflows.

Regulatory compliance is another key driver. Governments and health agencies such as the FDA, CDC, and WHO have established strict traceability requirements for specimen handling, ensuring that laboratories and healthcare providers implement secure, auditable tracking systems. The adoption of ISO-certified laboratory information management systems (LIMS) and digital chain-of-custody solutions is becoming a necessity for compliance with HIPAA, CLIA, and CAP accreditation standards.

Another major growth factor is the increasing adoption of decentralized and home-based diagnostic testing. With the rise of telemedicine, home sample collection services, and direct-to-consumer lab testing, the need for secure, end-to-end specimen tracking has expanded beyond traditional clinical settings. Companies offering at-home diagnostic kits are integrating barcode-enabled tracking apps, tamper-evident packaging, and digital patient identification systems to ensure that collected specimens reach laboratories securely and are processed without errors.

As the demand for accuracy, automation, and compliance continues to rise, the medical specimen tracking market is poised for significant expansion. With continued advancements in AI-driven analytics, IoT-enabled tracking, and digital health integration, specimen tracking systems will play a vital role in enhancing laboratory efficiency, improving diagnostic accuracy, and ensuring patient safety across global healthcare networks.

SCOPE OF STUDY:

The report analyzes the Medical Specimen Tracking Systems market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Product (Software, Hardware, Consumables); Technology (Barcode, RFID, GPS, Other technologies); Specimen Type (Patient testing, Clinical trial testing, Other specimen type); End-Use (Hospitals & Clinics, Pathology labs, Other End-Users)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 37 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â