¼¼°èÀÇ ½ÇÇè½Ç ¿Âµµ Á¦¾î ÀåÄ¡ ½ÃÀå
Laboratory Temperature Control Units
»óǰÄÚµå : 1774966
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 376 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,239,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,719,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°è ½ÇÇè½Ç ¿Âµµ Á¦¾î ÀåÄ¡ ½ÃÀåÀº 2030³â±îÁö 7¾ï 9,030¸¸ ´Þ·¯¿¡ À̸¦ Àü¸Á

2024³â¿¡ 6¾ï 4,510¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â ½ÇÇè½Ç ¿Âµµ Á¦¾î ÀåÄ¡ ¼¼°è ½ÃÀåÀº 2030³â¿¡´Â 7¾ï 9,030¸¸ ´Þ·¯¿¡ À̸£°í, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 3.4%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ½ÇÇè½Ç¿ë ¿Âµµ ÄÁÆ®·Ñ·¯´Â CAGR 2.9%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 3¾ï 4,720¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ½ÃÇè½Ç¿ë ¼­¸ð½ºÅÈ ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£Áß CAGR 2.8%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº ¾à 1¾ï 7,580¸¸ ´Þ·¯, Áß±¹Àº CAGR 6.3%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ½ÇÇè½Ç ¿Âµµ Á¦¾î ÀåÄ¡ ½ÃÀåÀº 2024³â¿¡´Â 1¾ï 7,580¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 1¾ï 5,630¸¸ ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 6.3%·Î ÃßÁ¤µË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î¼­´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 1.4%¿Í 2.6%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 2.0%·Î ¼ºÀåÇÒ Àü¸ÁÀÔ´Ï´Ù.

¼¼°è ½ÇÇè½Ç ¿Âµµ Á¦¾î ÀåÄ¡ ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ ¿ä¾à

¿Âµµ Á¦¾î ÀåÄ¡°¡ ½ÇÇè½Ç ¾÷¹«¿¡ ÇʼöÀûÀÎ ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

TCU´Â °úÇÐ ¿¬±¸, Á¦¾à Á¦Á¶ ¹× Áø´Ü ÀÀ¿ë ºÐ¾ß¿¡¼­ ÇʼöÀûÀÎ ±¸¼º ¿ä¼ÒÀÔ´Ï´Ù. ÀÌ Á¤¹ÐÇÏ°Ô ¼³°èµÈ Àåºñ´Â ƯÁ¤ ¿Âµµ ¹üÀ§¸¦ Á¶ÀýÇϰí À¯ÁöÇÏ¸ç »ýÈ­ÇÐ ¹ÝÀÀ, ½Ã·á º¸Á¸, ½ÇÇè½Ç ½ÇÇèÀÇ ¾ÈÁ¤¼º°ú Á¤È®¼ºÀ» º¸ÀåÇÕ´Ï´Ù. ´Ù¾çÇÑ »ê¾÷¿¡¼­ ¿¬±¸°³¹ß(R&&D) Ȱµ¿ÀÌ È®´ëµÊ¿¡ µû¶ó ½Å·ÚÇÒ ¼ö ÀÖ´Â ¿Âµµ Á¦¾î ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖÀ¸¸ç, TCU´Â Çö´ë ½ÇÇè½Ç ÀÎÇÁ¶óÀÇ ÇÙ½É ¿ä¼Ò·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù. ÀÇ·á ½ÇÇè½Ç¿¡¼­ºÎÅÍ »ý¸í°øÇÐ ±â¾÷, ȯ°æ Å×½ºÆ® ¼¾ÅÍ¿¡ À̸£±â±îÁö Á¤È®ÇÑ ¿Âµµ Á¶°ÇÀ» À¯ÁöÇÏ´Â °ÍÀÌ ¿ì¼±¼øÀ§°¡ µÇ¾î ½ÃÀå ¼ºÀåÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

°úÇÐ ¿¬±¸¿¡¼­ÀÇ ÀçÇö¼º°ú Á¤È®¼º¿¡ ´ëÇÑ Á߿伺ÀÌ ³ô¾ÆÁü¿¡ µû¶ó ÷´Ü ¿Âµµ Á¦¾î ±â¼úÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¿Âµµ ÆíÂ÷´Â È­ÇÐ ¹× »ý¹°ÇÐÀû ½Ã·áÀÇ ¹«°á¼º¿¡ Å« ¿µÇâÀ» ¹ÌÃÄ ºÎÁ¤È®ÇÑ ½ÇÇè °á°ú¿Í Á¦Ç° ǰÁú ÀúÇÏ·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù. µû¶ó¼­ ½ÇÇè½ÇÀº ½Ç½Ã°£ ¸ð´ÏÅ͸µ, ÀÚµ¿ ±³Á¤ ¹× ¿ø°Ý Á¦¾î ±â´ÉÀ» °®Ãá °íÁ¤¹Ð TCU¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. Á¦¾à ¹× ÀÓ»ó ½ÇÇè½ÇÀÇ GLP(Good Laboratory Practice) ¹× ¾ö°ÝÇÑ Ç°Áú °ü¸® ±ÔÁ¤ÀÇ ºÎ»óÀº ±¹Á¦ Ç¥ÁØÀ» ÁؼöÇÏ´Â ¿Âµµ Á¦¾î ¼Ö·ç¼ÇÀÇ Çʿ伺À» ´õ¿í °­È­ÇÏ¿© ½ÇÇè½ÇÀÇ ¿öÅ©Ç÷οìÀÇ ½Å·Ú¼ºÀ» º¸ÀåÇϰí ÀÖ½À´Ï´Ù.

±â¼ú ¹ßÀüÀÌ ¿Âµµ °ü¸® ¼Ö·ç¼ÇÀ» ¾î¶»°Ô Çâ»ó½Ã۰í Àִ°¡?

½ÇÇè½Ç ¿Âµµ Á¦¾î ÀåÄ¡ ½ÃÀåÀº º¸´Ù È¿À²ÀûÀÌ°í ½Å·ÚÇÒ ¼ö ÀÖÀ¸¸ç ȯ°æÀûÀ¸·Î Áö¼Ó °¡´ÉÇÑ ½Ã½ºÅÛÀ¸·Î À̾îÁö´Â ³î¶ó¿î ±â¼ú ¹ßÀüÀ» °æÇèÇß½À´Ï´Ù. °¡Àå ÁÖ¸ñÇÒ ¸¸ÇÑ ±â¼ú Çõ½Å Áß Çϳª´Â ½º¸¶Æ® ¿Âµµ Á¦¾î ½Ã½ºÅÛ°ú »ç¹°ÀÎÅͳÝ(IoT) ±â´ÉÀÇ ÅëÇÕÀ¸·Î, IoT Áö¿ø TCU¸¦ ÅëÇØ ½ÇÇè½Ç¿¡¼­ ¿ø°ÝÀ¸·Î ¿Âµµ ¼³Á¤À» ¸ð´ÏÅ͸µÇϰí Á¶Á¤ÇÒ ¼ö ÀÖ¾î ½Ã·á ¿­È­ ¹× ½ÇÇè ½ÇÆÐÀÇ À§ÇèÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Ŭ¶ó¿ìµå ±â¹Ý µ¥ÀÌÅÍ ·Î±ë ¹× ½Ç½Ã°£ ¾Ë¸²Àº ÀÚµ¿ ¿Âµµ ÃßÀû ¹× ±ÔÁ¤ Áؼö º¸°í¼­¸¦ Á¦°øÇÏ¿© ¾ö°ÝÇÑ ±ÔÁ¦ ¿ä°ÇÀ» ÁؼöÇϵµ·Ï º¸ÀåÇÔÀ¸·Î½á ½ÇÇè½ÇÀÇ È¿À²¼ºÀ» ³ôÀÔ´Ï´Ù.

¶Ç ´Ù¸¥ ÁÖ¿ä ¹ßÀüÀº Á¤È®ÇÑ ¿Âµµ Á¶°ÇÀ» À¯ÁöÇϸ鼭 Àü·Â ¼Òºñ¸¦ ÃÖ¼ÒÈ­ÇÏ´Â ¿¡³ÊÁö È¿À²ÀûÀÎ ³Ãµ¿ ¹× ³­¹æ ±â¼úÀÇ °³¹ßÀÔ´Ï´Ù. ÃֽŠTCU´Â ȯ°æ ģȭÀûÀÎ ³Ã¸Å, °íü ³Ã°¢ ¸ÞÄ¿´ÏÁò, °í±Þ ´Ü¿­À縦 »ç¿ëÇÏ¿© ¼º´É ÀúÇÏ ¾øÀÌ È¯°æ ¹ßÀÚ±¹À» ÁÙÀÔ´Ï´Ù. Áö¼Ó°¡´É¼ºÀ¸·ÎÀÇ ÀüȯÀº Á¦Á¶¾÷üµéÀÌ ÀÌ»êȭź¼Ò ¹èÃâ·®ÀÌ ÀûÀº ¿Âµµ Á¦¾î ÀåÄ¡¸¦ °³¹ßÇϵµ·Ï À¯µµÇÏ¿© ģȯ°æ ½ÇÇè Àåºñ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ´ëÀÀÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¸¶ÀÌÅ©·ÎÇ÷çÀ̵ñ½º°øÇÐ ¹× Á¤¹Ð °¡¿­/³Ã°¢ ±â¼úÀÇ ¹ßÀüÀ¸·Î ºÐÀÚ»ý¹°ÇÐ, ¼¼Æ÷¹è¾ç, ¾à¹° Á¦Á¦ ¿¬±¸ ºÐ¾ß¿¡¼­ ÃÊÁ¤¹Ð ¿Âµµ Á¦¾î°¡ °¡´ÉÇØÁ® TCUÀÇ ¿ë·®ÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù.

ÀüÅëÀûÀÎ ½ÇÇè½Ç¿ëµµ ¿Ü¿¡ ½ÃÀåÀÌ È®´ëµÇ°í Àִ°¡?

TCU´Â ÀüÅëÀûÀ¸·Î ¿¬±¸ ¹× Á¦¾à ¿¬±¸¼Ò¿¡¼­ »ç¿ëµÇ¾î ¿ÔÁö¸¸, ±× ¿ëµµ´Â ½Äǰ ¾ÈÀü, ȯ°æ ½ÃÇè, ¹ýÀÇÇÐ, »ê¾÷ Á¦Á¶ µî ´Ù¾çÇÑ »ê¾÷À¸·Î È®´ëµÇ°í ÀÖ½À´Ï´Ù. ½ÄÀ½·á ¾÷°è¿¡¼­´Â Á¦Ç°ÀÇ ¾ÈÁ¤¼º, À¯Åë±âÇÑ, ¹Ì»ý¹° ¿À¿° µîÀ» ºÐ¼®Çϱâ À§ÇØ ¿Âµµ Á¦¾îÇü ½ÃÇè½Ç Àåºñ¸¦ Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. ¸¶Âù°¡Áö·Î ȯ°æ ½ÃÇè¼Ò¿¡¼­´Â ¼öÁú Æò°¡, È­ÇÐÀû ¾ÈÁ¤¼º Á¶»ç, ±âÈÄ ¿µÇâ Á¶»ç¿¡ TCU¸¦ »ç¿ëÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿ëµµÀÇ È®ÀåÀº TCU ½ÃÀå ¹üÀ§¸¦ ³ÐÈ÷°í, ¼ºÀå°ú Çõ½ÅÀÇ »õ·Î¿î ±âȸ¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù.

°úÇÐ ¿¬±¸ ¿Ü¿¡µµ ÀÓ»ó Áø´Ü ºÐ¾ßµµ ¿Âµµ Á¦¾î ÀåÄ¡ÀÇ Áß¿äÇÑ ¼ÒºñÀÚ·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ÀÇ·á ¿¬±¸¼Ò¿¡¼­´Â Ç÷¾× º¸Á¸, Àå±â º¸Á¸, ¹é½Å Á¦Á¶¸¦ À§ÇØ °íÁ¤¹Ð ¿Âµµ °ü¸® ½Ã½ºÅÛÀÌ ÇÊ¿äÇÕ´Ï´Ù. ¹ÙÀÌ¿À ÀǾàǰ°ú °³ÀÎ ¸ÂÃãÇü ÀÇ·áÀÇ ±Þ¼ÓÇÑ È®ÀåÀº ´ÜŬ·Ð Ç×ü, À¯ÀüÀÚ Ä¡·á, ¼¼Æ÷ ±â¹Ý Ä¡·áÁ¦¸¦ Æ÷ÇÔÇÑ »ý¹°ÇÐÀû Á¦Á¦ÀÇ ¾ÈÁ¤¼ºÀ» À¯ÁöÇϴ Ư¼ö TCU¿¡ ´ëÇÑ ¼ö¿ä¸¦ ´õ¿í Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù. ÀÓ»ó ¹× Áø´Ü ½ÇÇè½ÇÀÌ °è¼Ó ¹ßÀüÇÔ¿¡ µû¶ó °í¼º´É ¿Âµµ Á¦¾î ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä´Â °è¼Ó Áõ°¡ÇÒ °ÍÀ̸ç, ÇコÄÉ¾î »ê¾÷¿¡¼­ TCUÀÇ Áß¿äÇÑ ¿ªÇÒÀº ´õ¿í °­È­µÉ °ÍÀÔ´Ï´Ù.

½ÇÇè½Ç ¿Âµµ Á¦¾î ÀåÄ¡ ½ÃÀåÀÇ ÁÖ¿ä ¼ºÀå ÃËÁø¿äÀÎÀº ¹«¾ùÀΰ¡?

½ÇÇè½Ç ¿Âµµ Á¦¾î ÀåÄ¡ ½ÃÀåÀÇ ¼ºÀåÀº °úÇÐ ¿¬±¸¿¡¼­ Á¤¹ÐÇÑ ¿Âµµ Á¦¾î¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, »ý¸í °øÇÐ ¹× Á¦¾à ¿¬±¸ °³¹ßÀÇ È®´ë, ÀÚµ¿È­µÇ°í ¿¡³ÊÁö È¿À²ÀûÀÎ ¿Âµµ Á¦¾î ¼Ö·ç¼ÇÀÇ ±â¼ú ¹ßÀü µî ¿©·¯ °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ÁÖ¿ä ÃËÁø¿äÀÎ Áß Çϳª´Â ½ÇÇè½Ç ȯ°æ¿¡¼­ ½ÇÇè ÀçÇö¼º°ú ±ÔÁ¦ Áؼö¿¡ ´ëÇÑ Á߿伺ÀÌ ³ô¾ÆÁö¸é¼­ ISO17025 ¹× FDA cGMP ±ÔÁ¤°ú °°Àº ±¹Á¦ ǰÁú Ç¥ÁØÀ» ÃæÁ·Çϱâ À§ÇØ Á¶Á÷ÀÌ ³ë·ÂÇÔ¿¡ µû¶ó °íÁ¤¹Ð TCU¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ¿© ½Å·ÚÇÒ ¼ö ÀÖ°í Ç¥ÁØÈ­µÈ ½ÇÇè½Ç ¿öÅ©Ç÷ο츦 º¸ÀåÇϰí ÀÖ½À´Ï´Ù.

½ÃÀå È®´ë¸¦ À̲ô´Â ¶Ç ´Ù¸¥ ÁÖ¿ä ¿äÀÎÀº µðÁöÅÐ ¹× IoT Áö¿ø ½ÇÇè½Ç ÀåºñÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ¿ø°Ý ¸ð´ÏÅ͸µ, ÀÚµ¿ ±³Á¤, ¿¹Áöº¸Àü ±â´ÉÀ» °®Ãá ½º¸¶Æ® TCUÀÇ º¸±ÞÀÌ È®´ëµÇ¸é¼­ ½ÇÇè½ÇÀÇ È¿À²¼ºÀ» ³ôÀÌ°í ¾÷¹« Áß´ÜÀ» ÃÖ¼ÒÈ­ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¿Âµµ Á¦¾î ½Ã½ºÅÛ¿¡ ÀΰøÁö´É(AI)ÀÌ ÅëÇյǸ鼭 ¿¹Ãø ºÐ¼®ÀÌ ´õ¿í °­È­µÇ¾î ½ÇÇè½ÇÀº ´Ù¾çÇÑ ½ÇÇè ¿ä±¸¿¡ ¸Â°Ô ¿Âµµ Á¶°ÇÀ» ÃÖÀûÈ­ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. µðÁöÅÐ ÀüȯÀÌ ½ÇÇè½Ç ȯ°æÀ» À籸¼ºÇÏ´Â °¡¿îµ¥ Áö´ÉÇü ¿Âµµ Á¦¾î ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä´Â °è¼Ó Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¹ÙÀÌ¿À Á¦¾à »ê¾÷ÀÇ È®´ë´Â ƯÈ÷ ¹é½Å °³¹ß, »ý¹°ÇÐÀû Á¦Á¦ Á¦Á¶, À¯ÀüÀÚ Ä¡·á ¿¬±¸ ºÐ¾ß¿¡¼­ ½ÃÀå ¼ºÀå¿¡ Å©°Ô ±â¿©Çϰí ÀÖ½À´Ï´Ù. ÄݵåüÀÎ ¹°·ù ¹× ÀǾàǰ Á¦Á¶¿¡¼­ ¿Âµµ Á¦¾î ȯ°æÀÇ Çʿ伺ÀÌ ±î´Ù·Î¿î ¿Âµµ ¾ÈÁ¤¼ºÀ» À¯ÁöÇÏ´Â °í¼º´É TCU¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Äڷγª19 ¹× ½ÅÁ¾ ¹ÙÀÌ·¯½º À§ÇùÀ» Æ÷ÇÔÇÑ °¨¿°º´ ¿¬±¸°¡ Àü ¼¼°èÀûÀ¸·Î ÁÖ¸ñÀ» ¹ÞÀ¸¸é¼­ ¹é½Å º¸°ü ¹× Áø´Ü °Ë»ç¿¡ ÀÖ¾î ½Å·ÚÇÒ ¼ö ÀÖ´Â ¿Âµµ Á¦¾î ÀåÄ¡ÀÇ Á߿伺ÀÌ Ä¿Áö°í ÀÖ½À´Ï´Ù.

¶ÇÇÑ, Áö¼Ó °¡´ÉÇÏ°í ¿¡³ÊÁö È¿À²ÀûÀÎ ½ÇÇè½Ç Àåºñ·ÎÀÇ ÀüȯÀº Á¦Á¶¾÷üµé¿¡°Ô ģȯ°æÀûÀÎ ¿Âµµ Á¦¾î ¼Ö·ç¼ÇÀ» °³¹ßÇÒ ¼ö ÀÖ´Â »õ·Î¿î ±âȸ¸¦ °¡Á®´ÙÁÖ¾ú½À´Ï´Ù. Áö¼Ó °¡´ÉÇÑ ³Ã¸Å, Àú¿¡³ÊÁö ¼Òºñ ¼³°è, ÀÚµ¿ ¿¡³ÊÁö Àý¾à ¸ðµåÀÇ Ã¤ÅÃÀº ½ÇÇè½ÇÀÇ Åº¼Ò ¹ßÀÚ±¹À» ÁÙÀÌ·Á´Â Àü ¼¼°èÀûÀÎ ³ë·Â°ú ÀÏÄ¡ÇÏ¿© ¸¹Àº ÁöÁö¸¦ ¹Þ°í ÀÖ½À´Ï´Ù. ´Ù¾çÇÑ ºÐ¾ßÀÇ ½ÇÇè½ÇÀÌ ÀÎÇÁ¶ó¸¦ Çö´ëÈ­ÇÔ¿¡ µû¶ó ÷´Ü ¿Âµµ Á¦¾î ÀåÄ¡¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ°í °úÇÐ ¹× »ê¾÷ ¿¬±¸ ºÐ¾ß¿¡¼­ Áß¿äÇÑ ±¸¼º ¿ä¼Ò·Î¼­ÀÇ ¿ªÇÒÀÌ °­È­µÉ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ºÎ¹®

Á¦Ç°(½ÇÇè½Ç¿ë ¿Âµµ ÄÁÆ®·Ñ·¯, ½ÇÇè½Ç¿ë ¼­¸ð½ºÅÈ, ½ÇÇè½Ç¿ë Ä¥·¯, ½ÇÇè½Ç¿ë ¼­Å§·¹ÀÌÅÍ, ±âŸ ½ÇÇè½Ç¿ë ¿Âµµ Á¦¾î Á¦Ç°), ¸ð´Þ¸®Æ¼(½ºÅĵå¾ó·Ð/º¥Ä¡Å¾Çü, ÈÞ´ë¿ë/ÇÚµåÇïµåÇü), ÃÖÁ¾»ç¿ëÀÚ(º´¿ø ÃÖÁ¾»ç¿ëÀÚ, Á¦¾à£¦¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö ÃÖÁ¾»ç¿ëÀÚ, È­ÇÐ ÃÖÁ¾»ç¿ëÀÚ, ½Äǰ ¹× À½·á ÃÖÁ¾»ç¿ëÀÚ, ±âŸ ÃÖÁ¾»ç¿ëÀÚ)

Á¶»ç ´ë»ó ±â¾÷ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ¼­, ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°èº° SLM Äõ¸®¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ´ë·® ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Laboratory Temperature Control Units Market to Reach US$790.3 Million by 2030

The global market for Laboratory Temperature Control Units estimated at US$645.1 Million in the year 2024, is expected to reach US$790.3 Million by 2030, growing at a CAGR of 3.4% over the analysis period 2024-2030. Laboratory Temperature Controllers, one of the segments analyzed in the report, is expected to record a 2.9% CAGR and reach US$347.2 Million by the end of the analysis period. Growth in the Laboratory Thermostats segment is estimated at 2.8% CAGR over the analysis period.

The U.S. Market is Estimated at US$175.8 Million While China is Forecast to Grow at 6.3% CAGR

The Laboratory Temperature Control Units market in the U.S. is estimated at US$175.8 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$156.3 Million by the year 2030 trailing a CAGR of 6.3% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 1.4% and 2.6% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 2.0% CAGR.

Global Laboratory Temperature Control Units Market - Key Trends & Drivers Summarized

Why Are Temperature Control Units Essential in Laboratory Operations?

Laboratory temperature control units (TCUs) have become an indispensable component in scientific research, pharmaceutical manufacturing, and diagnostic applications. These precision-engineered devices regulate and maintain specific temperature ranges, ensuring the stability and accuracy of biochemical reactions, sample storage, and laboratory experiments. As research and development (R&D) activities expand across various industries, the demand for reliable temperature control solutions has surged, making TCUs a critical element in modern laboratory infrastructure. From medical research laboratories to biotechnology firms and environmental testing centers, maintaining precise thermal conditions has become a priority, further propelling market growth.

The increasing emphasis on reproducibility and accuracy in scientific studies has also driven the adoption of advanced temperature control technologies. Variations in temperature can significantly impact the integrity of chemical and biological samples, leading to inaccurate experimental results and compromised product quality. Consequently, laboratories are investing in high-precision TCUs with real-time monitoring, automated calibration, and remote control capabilities. The rise of good laboratory practices (GLP) and stringent quality control regulations in pharmaceutical and clinical laboratories has further reinforced the need for temperature control solutions that comply with international standards, ensuring the reliability of laboratory workflows.

How Are Technological Advancements Enhancing Temperature Control Solutions?

The laboratory temperature control units market has experienced significant technological advancements, leading to more efficient, reliable, and environmentally sustainable systems. One of the most notable innovations is the integration of smart temperature control systems with Internet of Things (IoT) capabilities. IoT-enabled TCUs allow laboratories to monitor and adjust temperature settings remotely, reducing the risk of sample degradation and experimental failure. Additionally, cloud-based data logging and real-time alerts enhance laboratory efficiency by providing automated temperature tracking and compliance reporting, ensuring adherence to strict regulatory requirements.

Another key advancement is the development of energy-efficient refrigeration and heating technologies that minimize power consumption while maintaining precise temperature conditions. Modern TCUs incorporate eco-friendly refrigerants, solid-state cooling mechanisms, and advanced insulation materials, reducing their environmental footprint without compromising performance. The shift toward sustainability has encouraged manufacturers to develop temperature control units with lower carbon emissions, addressing the growing demand for green laboratory equipment. Furthermore, advancements in microfluidics and precision heating/cooling technologies have expanded the capabilities of TCUs, enabling ultra-precise thermal control in molecular biology, cell culture, and drug formulation research.

Is the Market Expanding Beyond Traditional Laboratory Applications?

While TCUs have traditionally been used in research and pharmaceutical laboratories, their applications have expanded into diverse industries, including food safety, environmental testing, forensic science, and industrial manufacturing. The food and beverage industry relies on temperature-controlled laboratory equipment to analyze product stability, shelf-life, and microbial contamination. Similarly, environmental testing laboratories use TCUs for water quality assessments, chemical stability studies, and climate impact research. These expanding applications have broadened the market reach of TCUs, creating new opportunities for growth and innovation.

In addition to scientific research, the clinical diagnostics sector has emerged as a significant consumer of temperature control units. Medical laboratories require highly accurate thermal management systems for blood storage, organ preservation, and vaccine production. The rapid expansion of biopharmaceuticals and personalized medicine has further driven the demand for specialized TCUs that maintain the stability of biologics, including monoclonal antibodies, gene therapies, and cell-based treatments. As clinical and diagnostic laboratories continue to advance, the need for high-performance temperature control solutions will remain strong, reinforcing the critical role of TCUs in the healthcare industry.

What Are the Key Growth Drivers Fueling the Laboratory Temperature Control Units Market?

The growth in the laboratory temperature control units market is driven by several factors, including the increasing demand for precision temperature management in scientific research, the expansion of biotechnology and pharmaceutical R&D, and technological advancements in automated and energy-efficient temperature control solutions. One of the primary drivers is the growing emphasis on experimental reproducibility and regulatory compliance in laboratory settings. As organizations strive to meet international quality standards such as ISO 17025 and FDA cGMP regulations, the demand for high-precision TCUs has intensified, ensuring reliable and standardized laboratory workflows.

Another major factor fueling market expansion is the rising adoption of digital and IoT-enabled laboratory equipment. Smart TCUs with remote monitoring, automated calibration, and predictive maintenance capabilities have become increasingly popular, enabling laboratories to improve efficiency and minimize operational disruptions. The integration of artificial intelligence (AI) in temperature control systems has further enhanced predictive analytics, allowing laboratories to optimize thermal conditions for different experimental needs. As digital transformation continues to reshape the laboratory environment, demand for intelligent temperature control solutions is expected to rise.

The expanding biopharmaceutical industry has also contributed significantly to market growth, particularly in the areas of vaccine development, biologics manufacturing, and gene therapy research. The need for temperature-controlled environments in cold chain logistics and pharmaceutical production has driven investment in high-performance TCUs that maintain stringent temperature stability. Additionally, the global focus on infectious disease research, including COVID-19 and emerging viral threats, has reinforced the importance of reliable temperature control units in vaccine storage and diagnostic testing.

Moreover, the shift toward sustainability and energy-efficient laboratory equipment has created new opportunities for manufacturers to develop eco-friendly temperature control solutions. The adoption of sustainable refrigerants, low-energy consumption designs, and automated energy-saving modes has gained traction, aligning with global efforts to reduce laboratory carbon footprints. As laboratories across various sectors continue to modernize their infrastructure, the demand for advanced temperature control units is expected to grow, solidifying their role as a critical component in scientific and industrial research.

SCOPE OF STUDY:

The report analyzes the Laboratory Temperature Control Units market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Product (Laboratory Temperature Controllers, Laboratory Thermostats, Laboratory Chillers, Laboratory Circulators, Other Laboratory Temperature Control Products); Modality (Standalone / Benchtop Modality, Portable / Handheld Modality); End-Use (Hospitals End-Use, Pharma & Biotech End-Use, Chemical End-Use, Food & Beverage End-Use, Other End-Uses)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 34 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â