¼¼°èÀÇ Ã¼¿ÜÁø´Ü(IVD)¿ë È¿¼Ò ½ÃÀå
In-Vitro Diagnostics Enzymes
»óǰÄÚµå : 1774957
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 478 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,239,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,719,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°è ü¿ÜÁø´Ü(IVD)¿ë È¿¼Ò ½ÃÀåÀº 2030³â±îÁö 55¾ï ´Þ·¯¿¡ À̸¦ Àü¸Á

2024³â¿¡ 33¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ü¿ÜÁø´Ü(IVD)¿ë È¿¼Ò ¼¼°è ½ÃÀåÀº 2024-2030³â°£ CAGR 8.9%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 55¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ÇÁ·ÎÅ×¾ÆÁ¦´Â CAGR 8.6%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 24¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Polymerase & Transcriptase ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£Áß CAGR10.0%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 8¾ï 9,870¸¸ ´Þ·¯·Î ÃßÁ¤¡¤¿¹Ãø, Áß±¹Àº CAGR13.7%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ Ã¼¿ÜÁø´Ü(IVD)¿ë È¿¼Ò ½ÃÀåÀº 2024³â¿¡ 8¾ï 9,870¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 12¾ï ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 13.7%·Î ÃßÁ¤µË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î¼­´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 4.6%¿Í 8.5%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 5.9%·Î ¼ºÀåÇÒ Àü¸ÁÀÔ´Ï´Ù.

ü¿ÜÁø´Ü(IVD) ¿ëÈ¿¼Ò-ÁÖ¿ä µ¿Çâ°ú ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ Á¤¸®

ü¿ÜÁø´Ü¿ë(IVD) È¿¼Ò ½ÃÀåÀº ±¤¹üÀ§ÇÑ Áø´Ü »ê¾÷¿¡¼­ Áß¿äÇÑ ºÎ¹®À¸·Î, ´Ù¾çÇÑ Áø´Ü ºÐ¼® ¹× °Ë»ç¿¡ ÇʼöÀûÀÎ »ýÈ­ÇÐÀû ±¸¼º¿ä¼Ò¸¦ Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ È¿¼Ò´Â ºÐÀÚÁø´Ü, ¸é¿ªÃøÁ¤, ÀÓ»óÈ­ÇÐ, ÇöÀåÁø´Ü(POCT)¿¡ ÇʼöÀûÀÎ ¿ä¼Ò·Î, Á¤È®Çϰí È¿À²ÀûÀÎ Áúº´ °ËÃâÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. Àü ¼¼°è ÇコÄÉ¾î ½Ã½ºÅÛÀÌ Áúº´ÀÇ Á¶±â Áø´Ü°ú °³ÀÎ ¸ÂÃãÇü ÀǷḦ Áß½ÃÇÏ´Â °¡¿îµ¥, °í¼º´É ü¿ÜÁø´Ü¿ë ÀǾàǰ È¿¼Ò¿¡ ´ëÇÑ ¼ö¿ä´Â Áö¼ÓÀûÀ¸·Î Áõ°¡Çϰí ÀÖ½À´Ï´Ù. °¨¿°¼º Áúȯ°ú ¸¸¼º Áúȯ Áõ°¡, ºÐ»êÇü °Ë»ç ½Ã¼³ÀÇ È®´ë´Â È¿¼Ò Áø´Ü ¼Ö·ç¼ÇÀÇ ¹ßÀüÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

±â¼úÀÇ ¹ßÀüÀº ü¿Ü Áø´Ü¿ë È¿¼ÒÀÇ ÀÀ¿ëÀ» ¾î¶»°Ô °³¼±Çϰí Àִ°¡?

ÃÖ±Ù ±â¼ú Çõ½ÅÀº ü¿ÜÁø´Ü(IVD)¿ë È¿¼ÒÀÇ ¼º´É, ¾ÈÁ¤¼º, ƯÀ̼ºÀ» Å©°Ô Çâ»ó½ÃÄÑ ´Ù¾çÇÑ Áø´Ü ¿ëµµ·ÎÀÇ Æø³ÐÀº äÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. °¡Àå ÁÖ¸ñÇÒ ¸¸ÇÑ ¹ßÀü Áß Çϳª´Â À¯Àü°øÇÐ ¹× ÀçÁ¶ÇÕ È¿¼Ò ±â¼úÀ̸ç, À̸¦ ÅëÇØ ¾ÈÁ¤ÀûÀ̰í È¿À²ÀûÀÎ È¿¼Ò Á¦Á¦ÀÇ °³¹ßÀÌ °¡´ÉÇØÁ³½À´Ï´Ù. ÀçÁ¶ÇÕ È¿¼Ò´Â ¿ì¼öÇÑ Àϰü¼º, ¹èÄ¡ °£ º¯µ¿¼º °¨¼Ò, È®À强 Çâ»óÀ¸·Î ´ë±Ô¸ð Áø´ÜÁ¦Á¦ »ý»ê¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. ¶ÇÇÑ, ´Ü¹éÁú °øÇÐÀÇ ¹ßÀüÀ¸·Î Ç¥Àû ºÐ¼®¹°¿¡ ´ëÇÑ ¹Î°¨µµ¿Í ƯÀ̼ºÀ» ³ôÀ̱â À§ÇØ È¿¼Ò Ư¼ºÀ» ¸ÂÃãÈ­ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.

¶Ç ´Ù¸¥ Áß¿äÇÑ ±â¼ú Çõ½ÅÀº È¿¼Ò ±â¹Ý Áø´Ü¿¡ ³ª³ë±â¼úÀÇ ÅëÇÕÀÔ´Ï´Ù. ±Ý ³ª³ëÀÔÀÚ³ª ¾çÀÚÁ¡°ú °°Àº ³ª³ëÀÔÀÚ°¡ È¿¼Ò¿Í °áÇÕÇÏ¿© °ËÃâ ½ÅÈ£¸¦ ÁõÆø½ÃÄÑ ºÐ¼®ÀÇ ¹Î°¨µµ¿Í Á¤È®µµ¸¦ Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. À̴ ƯÈ÷ Ãʱ⠴ܰèÀÇ Áúº´ °¨Áö ¹× ½Å¼Ó Áø´Ü °Ë»ç¿¡ À¯¿ëÇÕ´Ï´Ù. ¶ÇÇÑ, Áø´Ü Ç÷§ÆûÀÇ ¼ÒÇüÈ­ ¹× ·¦¿ÂĨ(LOC) ±â¼úÀÇ °³¹ß·Î È¿¼Ò ±â¹Ý ºÐ¼®ÀÇ È¿À²¼ºÀÌ Çâ»óµÇ°í, ½Ã¾àÀÇ ¾çÀÌ ÁÙ¾îµé¾î ÇöÀå Áø´Ü ¿ëµµÀÇ È޴뼺ÀÌ Çâ»óµÇ°í ÀÖ½À´Ï´Ù.

ÀÚµ¿È­µµ IVD È¿¼Ò ÀÀ¿ë ºÐ¾ßÀÇ ¹ßÀü¿¡ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. Áø´Ü ½ÇÇè½Ç¿¡¼­ ·Îº¿ ¾×ü ó¸® ½Ã½ºÅÛ°ú °í󸮷® ½ºÅ©¸®´× ±â¼úÀÌ µµÀԵǸ鼭 È¿¼Ò ±â¹Ý ºÐ¼®ÀÇ È¿À²¼º°ú ÀçÇö¼ºÀÌ Çâ»óµÇ°í ÀÖ½À´Ï´Ù. Áø´Ü Ç÷§Æû¿¡ ÀΰøÁö´É(AI)°ú ¸Ó½Å·¯´×(ML)À» ÅëÇÕÇÏ¿© µ¥ÀÌÅÍ ºÐ¼®À» ´õ¿í ÃÖÀûÈ­ÇÏ°í º¸´Ù ½Å¼ÓÇϰí Á¤È®ÇÑ È¯ÀÚ Áø´ÜÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú °³¼±Àº ü¿Ü Áø´Ü °Ë»çÀÇ Á¤È®µµ¸¦ ³ôÀÏ »Ó¸¸ ¾Æ´Ï¶ó, °³ÀÎ ¸ÂÃãÇü ÀǷḦ À§ÇÑ Â÷¼¼´ë Áø´Ü ¾àǰÀÇ °³¹ßÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.

ü¿ÜÁø´Ü(IVD)¿ë È¿¼Ò »ê¾÷ÀÇ ¼ºÀåÀ» ÁÖµµÇÏ´Â ½ÃÀå µ¿ÇâÀº?

¸î °¡Áö Áß¿äÇÑ Æ®·»µå°¡ ü¿ÜÁø´Ü¿ë ÀǾàǰ È¿¼Ò ½ÃÀåÀ» ÀçÆíÇϰí ÀÖÀ¸¸ç, Àüü ÇコÄÉ¾î ºÎ¹®ÀÇ ¼ºÀå°ú äÅÿ¡ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. °¡Àå Áß¿äÇÑ Æ®·»µå Áß Çϳª´Â ƯÈ÷ °¨¿°¼º ¹× À¯Àü¼º ÁúȯÀÇ °ËÃâ¿¡ ÀÖ¾î ºÐÀÚÁø´Ü¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ½Å¼ÓÇÏ°í ¹Î°¨ÇÑ Áø´Ü µµ±¸¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡Çϸ鼭 ÁßÇÕÈ¿¼Ò ¿¬¼â¹ÝÀÀ(PCR)°ú µî¿ÂÁõÆø ±â¼úÀÌ ºÐÀÚ °Ë»çÀÇ Ç¥ÁØÀÌ µÇ¾î Taq ÁßÇÕÈ¿¼Ò, ¿ªÀü»ç È¿¼Ò, ¸®°¡Á¦ µîÀÇ È¿¼Ò ¼ö¿ä¸¦ ÁÖµµÇϰí ÀÖ½À´Ï´Ù. Â÷¼¼´ë ¿°±â¼­¿­ ºÐ¼®(NGS)°ú CRISPR ±â¹Ý Áø´Ü Ç÷§ÆûÀÇ º¸±ÞÀº ¾ÈÁ¤¼º°ú È¿À²¼ºÀ» ³ôÀΠƯ¼ö È¿¼ÒÀÇ Çʿ伺À» ´õ¿í °¡¼ÓÈ­½Ã۰í ÀÖ½À´Ï´Ù.

¶Ç ´Ù¸¥ Áß¿äÇÑ Æ®·»µå´Â ÇöÀåÁø´Ü(POCT)°ú ºÐ»êÇü Áø´ÜÀÇ È®´ëÀÔ´Ï´Ù. ƯÈ÷ ÀÚ¿øÀÌ Á¦ÇÑµÈ È¯°æ¿¡¼­´Â ÈÞ´ë¿ë ¹× ½Å¼ÓÇÑ Áø´Ü ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼±È£µµ°¡ ³ô¾ÆÁö¸é¼­ Ãø¸é È帧 ºÐ¼®, ¹ÙÀÌ¿À¼¾¼­, ¸¶ÀÌÅ©·ÎÇ÷çÀ̵ñ½º ÀåÄ¡¿¡ »ç¿ëµÇ´Â È¿¼Ò¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¾ç °íÃß³ÃÀÌ °ú»êÈ­È¿¼Ò(HRP), Æ÷µµ´ç »êÈ­È¿¼Ò, ¾ËÄ®¸®¼º Æ÷½ºÆÄŸÁ¦ µîÀÇ È¿¼Ò´Â ´Ù¾çÇÑ ¹ÙÀÌ¿À¸¶Ä¿¸¦ ºü¸£°í ¾ÈÁ¤ÀûÀ¸·Î °ËÃâÇÒ ¼ö ÀÖ´Â POCT Àåºñ¿¡ ³Î¸® »ç¿ëµÇ°í ÀÖÀ¸¸ç, Äڷγª19 ÆÒµ¥¹ÍÀ¸·Î ÀÎÇØ ºÐ»êÇü °Ë»ç·ÎÀÇ ÀüȯÀÌ ´õ¿í °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. Àü¿°º´ ´ëºñ ¹× ´ëÀÀ Àü·«¿¡¼­ ½Å¼ÓÇÑ È¿¼Ò ±â¹Ý ºÐ¼®ÀÇ Á߿伺À» °­Á¶Çϰí ÀÖ½À´Ï´Ù.

°³ÀÎ ¸ÂÃãÇü ÀÇ·á¿Í µ¿¹Ý Áø´Ü¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁø °Íµµ ½ÃÀå µ¿Çâ¿¡ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. Á¤¹ÐÀÇ·á°¡ È®»êµÊ¿¡ µû¶ó °³ÀÎÀÇ À¯ÀüÀÚ ÇÁ·ÎÆÄÀϰú Áúº´ ¸¶Ä¿¿¡ ¸ÂÃá Áø´Ü ºÐ¼®¿¡´Â ÀúÁ¸·® ¹ÙÀÌ¿À¸¶Ä¿¸¦ °ËÃâÇÒ ¼ö ÀÖ´Â ³ôÀº ƯÀ̼ºÀ» °¡Áø È¿¼Ò°¡ ÇÊ¿äÇÕ´Ï´Ù. À̸¦ À§ÇØ Ä£È­·Â°ú Ȱ¼ºÀ» ³ôÀÎ È¿¼ÒÀÇ °³¹ßÀÌ ÁøÇàµÇ¾î º¸´Ù Á¤È®ÇÏ°í °³ÀÎÈ­µÈ Áø´Ü °á°ú¸¦ ¾òÀ» ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ, ³ëÀÎ Àα¸ Áõ°¡¿Í ¾Ï, ´ç´¢º´, ½ÉÇ÷°ü Áúȯ°ú °°Àº ¸¸¼º ÁúȯÀÇ À¯ÇàÀº Áúº´ÀÇ Á¶±â ¹ß°ß ¹× ¸ð´ÏÅ͸µÀ» ÃËÁøÇÏ´Â È¿¼Ò ±â¹Ý Áø´Ü °Ë»ç¿¡ ´ëÇÑ ¼ö¿ä¸¦ Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù.

ü¿ÜÁø´Ü¿ë ÀǾàǰ È¿¼Ò ½ÃÀåÀÇ ¼ºÀå ¿øµ¿·ÂÀº?

ü¿ÜÁø´Ü(IVD)¿ë È¿¼Ò ½ÃÀåÀÇ ¼ºÀåÀº °¨¿° ¹× ¸¸¼ºÁúȯÀÇ À¯º´·ü Áõ°¡, ºÐÀÚÁø´ÜÇÐÀÇ ¹ßÀü, ÇöÀå Áø·á ¹× ºÐ»êÇü °Ë»ç¿¡¼­ È¿¼Ò ±â¹Ý ºÐ¼®ÀÇ Àû¿ë È®´ë µî ¿©·¯ °¡Áö ¿äÀο¡ ÀÇÇØ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. ÁÖ¿ä ¼ºÀå ¿äÀÎ Áß Çϳª´Â ³ôÀº 󸮷®°ú ÀÚµ¿È­µÈ Áø´Ü ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡ÀÔ´Ï´Ù. ÀÇ·á½Ã¼³°ú °Ë»ç½ÇÀº °Ë»ç ½Ã°£ ´ÜÃà°ú °Ë»ç °á°úÀÇ Á¤È®µµ Çâ»óÀ» ¿ä±¸Çϰí ÀÖÀ¸¸ç, È¿¼Ò ±â¹Ý Áø´Ü Ç÷§ÆûÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

¶Ç ´Ù¸¥ ÁÖ¿ä ÃËÁø¿äÀÎÀº È¿¼Ò °øÇÐ ¹× ÀçÁ¶ÇÕ ´Ü¹éÁú »ý»êÀÇ ±â¼úÀû Áøº¸ÀÔ´Ï´Ù. ¾ÈÁ¤¼º, È¿À²¼º ¹× ƯÀ̼ºÀÌ Çâ»óµÈ È¿¼Ò¸¦ »ý»êÇÒ ¼ö ÀÖ°Ô µÊ¿¡ µû¶ó Áø´Ü ºÐ¼®ÀÇ ½Å·Ú¼ºÀÌ Å©°Ô Çâ»óµÇ¾î º¹ÀâÇÏ°í ¹Î°¨ÇÑ ÀÀ¿ë ºÐ¾ß¿¡ ÀûÇÕÇÏ°Ô µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ, ¹ÙÀÌ¿À¼¾¼­ ¹× ¿þ¾î·¯ºí Áø´ÜÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÔ¿¡ µû¶ó È¿¼Ò ±â¹Ý °ËÃâ ±â¼ú, ƯÈ÷ Áö¼ÓÀû Æ÷µµ´ç ¸ð´ÏÅ͸µ(CGM)°ú ½Ç½Ã°£ °Ç°­ ¸ð´ÏÅ͸µ¿¡¼­ »õ·Î¿î ±âȸ°¡ âÃâµÇ°í ÀÖ½À´Ï´Ù.

¹ÙÀÌ¿ÀÀǾàǰ »ê¾÷ÀÇ È®´ë¿Í Áø´Ü ±â¾÷, Çаè, ¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö ±â¾÷ °£ÀÇ ¿¬±¸ Çù·Âµµ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù. ƯÈ÷ ¾×ü »ý°ËÀ» À§ÇÑ »õ·Î¿î È¿¼Ò Á¦Á¦ ¹× µðÁöÅÐ PCR ºÐ¼® µî Áø´Ü ÀǾàǰ ¿¬±¸°³¹ß¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡´Â ¾÷°èÀÇ ±â¼ú Çõ½ÅÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, È¿¼Ò ±â¹Ý Áø´Ü Å×½ºÆ®¿¡ ´ëÇÑ ±ÔÁ¦ ´ç±¹ÀÇ ½ÂÀÎ Áõ°¡¿Í Áúº´ÀÇ Á¶±â ¹ß°ßÀ» ÃËÁøÇϱâ À§ÇÑ Á¤ºÎÀÇ Àû±ØÀûÀÎ ³ë·ÂÀº ½ÃÀå È®´ë¸¦ ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

¸¶Áö¸·À¸·Î, ÀÇ·áÁø°ú ¼ÒºñÀÚµé »çÀÌ¿¡¼­ Áúº´ ¿¹¹æ ¹× Á¶±â ¹ß°ß Àü·«¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁö¸é¼­ ÀÏ»óÀûÀÎ °Ç°­ °ËÁø ¹× Áúº´ ¸ð´ÏÅ͸µÀ» À§ÇÑ È¿¼Ò ±â¹Ý Áø´Ü °Ë»ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. Áø´Ü ±â¼úÀÌ °è¼Ó ¹ßÀüÇÔ¿¡ µû¶ó ü¿Ü Áø´Ü¿ë È¿¼Ò°¡ ÀÇ·á ¼º°ú¸¦ °³¼±Çϰí Á¤¹ÐÀǷḦ ÃËÁøÇÏ´Â µ¥ ÀÖ¾î ü¿Ü Áø´Ü¿ë È¿¼ÒÀÇ ¿ªÇÒÀÌ È®´ëµÇ¾î ÇâÈÄ ¸î ³â µ¿¾È °­·ÂÇÑ ½ÃÀå ±Ëµµ¸¦ º¸ÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ºÎ¹®

È¿¼Ò(ÇÁ·ÎÅ×¾ÆÁ¦, Æú¸®¸Þ¶óÁ¦£¦Æ®·£½ºÅ©¸³Å¸Á¦, ¸®º¸´ºÅ¬·¹¾ÆÁ¦, ±âŸ), Áúȯ À¯Çü(°¨¿°Áõ, ´ç´¢º´, Á¾¾ç, ½ÉÀ庴, ½ÅÀ庴, ÀÚ°¡¸é¿ªÁúȯ), ±â¼ú(Á¶Á÷ÇÐÀû ¾î¼¼ÀÌ, ºÐÀÚÁø´Ü, ÀÓ»óÈ­ÇÐ), ÃÖÁ¾»ç¿ëÀÚ(Á¦¾à ¹× ¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö, º´¿ø ¹× Áø´Ü½ÇÇè½Ç, °è¾à ¿¬±¸±â°ü, Çмú ¿¬±¸±â°ü)

Á¶»ç ´ë»ó ±â¾÷ ¿¹

AI ÅëÇÕ

´ç»ç´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global In-Vitro Diagnostics Enzymes Market to Reach US$5.5 Billion by 2030

The global market for In-Vitro Diagnostics Enzymes estimated at US$3.3 Billion in the year 2024, is expected to reach US$5.5 Billion by 2030, growing at a CAGR of 8.9% over the analysis period 2024-2030. Proteases, one of the segments analyzed in the report, is expected to record a 8.6% CAGR and reach US$2.4 Billion by the end of the analysis period. Growth in the Polymerase & Transcriptase segment is estimated at 10.0% CAGR over the analysis period.

The U.S. Market is Estimated at US$898.7 Million While China is Forecast to Grow at 13.7% CAGR

The In-Vitro Diagnostics Enzymes market in the U.S. is estimated at US$898.7 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$1.2 Billion by the year 2030 trailing a CAGR of 13.7% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 4.6% and 8.5% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 5.9% CAGR.

In-Vitro Diagnostics (IVD) Enzymes - Key Trends & Market Drivers Summarized

The in-vitro diagnostics (IVD) enzymes market has become a critical segment within the broader diagnostics industry, providing essential biochemical components for various diagnostic assays and tests. These enzymes are integral to molecular diagnostics, immunoassays, clinical chemistry, and point-of-care testing (POCT), enabling accurate and efficient disease detection. As global healthcare systems emphasize early disease diagnosis and personalized medicine, demand for high-performance IVD enzymes continues to surge. The increasing prevalence of infectious diseases, chronic conditions, and the expansion of decentralized testing facilities are further driving advancements in enzymatic diagnostic solutions.

How Are Technological Advancements Improving IVD Enzyme Applications?

Recent technological innovations have significantly enhanced the performance, stability, and specificity of IVD enzymes, driving their widespread adoption across diverse diagnostic applications. One of the most notable advancements is genetic engineering and recombinant enzyme technology, which has allowed for the development of highly stable and efficient enzyme formulations. Recombinant enzymes offer superior consistency, reduced batch-to-batch variation, and improved scalability, making them ideal for large-scale diagnostic production. Additionally, advancements in protein engineering have enabled the customization of enzyme properties to enhance sensitivity and specificity for target analytes.

Another key innovation is the integration of nanotechnology in enzyme-based diagnostics. Nanoparticles, such as gold nanoparticles and quantum dots, are being conjugated with enzymes to amplify detection signals, improving assay sensitivity and accuracy. This is particularly beneficial in early-stage disease detection and rapid diagnostic testing. Furthermore, the miniaturization of diagnostic platforms and the development of lab-on-a-chip (LOC) technologies have increased the efficiency of enzyme-based assays, reducing the volume of reagents required and enhancing portability for point-of-care applications.

Automation is also playing a crucial role in the advancement of IVD enzyme applications. The incorporation of robotic liquid handling systems and high-throughput screening techniques in diagnostic laboratories has improved the efficiency and reproducibility of enzyme-based assays. The integration of artificial intelligence (AI) and machine learning (ML) in diagnostic platforms further optimizes data interpretation, allowing for faster and more accurate patient diagnosis. These technological improvements are not only enhancing the precision of in-vitro diagnostic tests but also enabling the development of next-generation diagnostics for personalized medicine.

What Market Trends Are Shaping the Growth of the IVD Enzymes Industry?

Several key trends are reshaping the IVD enzymes market, influencing its growth and adoption across the healthcare sector. One of the most significant trends is the rising demand for molecular diagnostics, particularly in the detection of infectious diseases and genetic disorders. With the increasing need for rapid and highly sensitive diagnostic tools, polymerase chain reaction (PCR) and isothermal amplification technologies have become the gold standard for molecular testing, driving the demand for enzymes such as Taq polymerase, reverse transcriptase, and ligases. The widespread adoption of next-generation sequencing (NGS) and CRISPR-based diagnostic platforms is further accelerating the need for specialized enzymes with enhanced stability and efficiency.

Another crucial trend is the expansion of point-of-care testing (POCT) and decentralized diagnostics. The growing preference for portable and rapid diagnostic solutions, particularly in resource-limited settings, has fueled the demand for enzymes used in lateral flow assays, biosensors, and microfluidic devices. Enzymes such as horseradish peroxidase (HRP), glucose oxidase, and alkaline phosphatase are widely used in POCT devices, enabling quick and reliable detection of various biomarkers. The COVID-19 pandemic further accelerated the shift toward decentralized testing, highlighting the importance of rapid enzyme-based assays in pandemic preparedness and response strategies.

The increasing focus on personalized medicine and companion diagnostics is also influencing market trends. As precision medicine gains traction, diagnostic assays tailored to individual genetic profiles and disease markers require highly specific enzymes to detect low-abundance biomarkers. This has led to the development of engineered enzymes with enhanced affinity and activity, ensuring more accurate and individualized diagnostic outcomes. Additionally, the rising geriatric population and the prevalence of chronic diseases, such as cancer, diabetes, and cardiovascular conditions, are driving the demand for enzyme-based diagnostic tests that facilitate early disease detection and monitoring.

What Is Driving the Growth of the IVD Enzymes Market?

The growth in the in-vitro diagnostics enzymes market is driven by several factors, including the increasing prevalence of infectious and chronic diseases, advancements in molecular diagnostics, and the expanding application of enzyme-based assays in point-of-care and decentralized testing. One of the primary growth drivers is the rising demand for high-throughput and automated diagnostic solutions. With healthcare facilities and laboratories seeking faster turnaround times and improved accuracy in test results, the adoption of enzyme-based diagnostic platforms is on the rise.

Another major driver is the technological advancements in enzyme engineering and recombinant protein production. The ability to produce enzymes with enhanced stability, efficiency, and specificity has significantly improved the reliability of diagnostic assays, making them more suitable for complex and high-sensitivity applications. Additionally, the increasing adoption of biosensors and wearable diagnostics is creating new opportunities for enzyme-based detection technologies, particularly in continuous glucose monitoring (CGM) and real-time health monitoring.

The expansion of the biopharmaceutical industry and research collaborations between diagnostic companies, academic institutions, and biotechnology firms is also fueling market growth. Increased investments in diagnostic R&D, particularly in the development of novel enzyme formulations for liquid biopsy and digital PCR assays, are driving innovation in the industry. Moreover, the growing regulatory approvals for enzyme-based diagnostic tests and favorable government initiatives promoting early disease detection are further propelling market expansion.

Finally, the rising awareness of disease prevention and early detection strategies among healthcare professionals and consumers is increasing the demand for enzyme-based diagnostic tests for routine health screening and disease monitoring. As diagnostic technologies continue to evolve, the role of IVD enzymes in improving healthcare outcomes and facilitating precision medicine is expected to grow, ensuring a strong market trajectory in the coming years.

SCOPE OF STUDY:

The report analyzes the In-Vitro Diagnostics Enzymes market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Enzyme (Proteases, Polymerase & Transcriptase, Ribonuclease, Others); Disease Type (Infectious disease, Diabetes, Oncology, Cardiology, Nephrology, Autoimmune diseases); Technology (Histology Assays, Molecular Diagnostics, Clinical Chemistry); End-Use (Pharma & Biotech, Hospital & Diagnostic Labs, Contract Research Organizations, Academic Labs)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 34 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â