¼¼°èÀÇ ¾ß»ýµ¿¹° °Ç°­ ½ÃÀå
Wildlife Health
»óǰÄÚµå : 1773951
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 469 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,239,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,719,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¾ß»ýµ¿¹° °Ç°­ ¼¼°è ½ÃÀåÀº 2030³â±îÁö 42¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 26¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¾ß»ýµ¿¹° °Ç°­ ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 8.4%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 42¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ Æ÷À¯·ù´Â CAGR 10.2%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 18¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Á¶·ù ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 6.3%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 7¾ï 540¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 13.4%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ¾ß»ýµ¿¹° °Ç°­ ½ÃÀåÀº 2024³â¿¡ 7¾ï 540¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGR 13.4%·Î 2030³â±îÁö 9¾ï 2,510¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 4.1%¿Í 8.1%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 5.6%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°è ¾ß»ýµ¿¹° °Ç°­ ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ ¿ä¾à

¾ß»ýµ¿¹° °Ç°­Àº ¾î¶»°Ô º¸Àü°ú °ø°ø¾ÈÀü¿¡ ÀÖ¾î Áß¿äÇÑ °ü½É»ç°¡ µÇ¾úÀ»±î?

¾ß»ýµ¿¹° °Ç°­Àº º¸Àü »ý¹°ÇÐ, »ýÅÂÇÐÀû ±ÕÇü, °øÁß º¸°Ç °ü¸®¿¡¼­ ¸Å¿ì Áß¿äÇÑ ºÐ¾ß·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. COVID-19, Á¶·ùµ¶°¨, ¿¡º¼¶ó µî Àμö°øÅëÀü¿°º´ÀÇ ÃâÇöÀ¸·Î ¾ß»ýµ¿¹°, °¡Ãà, Àΰ£ °£ÀÇ Áúº´ ÀüÆÄ À§ÇèÀÌ Å©°Ô Áõ°¡Çϰí ÀÖÀ¸¸ç, ¾ß»ýµ¿¹°°ú Àΰ£ °Ç°­ÀÇ »óÈ£°ü°è¸¦ °­Á¶ÇÏ°í ¾ß»ýµ¿¹° Áúº´À» º¸´Ù È¿°úÀûÀ¸·Î °¨½ÃÇÏ°í °ü¸®Çϱâ À§ÇÑ Àü ¼¼°èÀÇ ³ë·ÂÀ» Ã˱¸Çϰí ÀÖ½À´Ï´Ù. ¾ß»ý»ý¹°ÀÇ Áúº´À» º¸´Ù È¿°úÀûÀ¸·Î °¨½ÃÇÏ°í °ü¸®Çϱâ À§ÇÑ Àü ¼¼°èÀÇ ³ë·ÂÀ» Ã˱¸Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ±âÈĺ¯È­´Â »ýŰ踦 º¯È­½Ã۰í Áúº´ ÆÐÅÏÀ» º¯È­½ÃŰ¸ç ¾ß»ýµ¿¹° Á¾À» °¨¿°, ±â»ýÃæ, ¼­½ÄÁö °ü·Ã ½ºÆ®·¹½º ¿äÀο¡ ´õ Ãë¾àÇÏ°Ô ¸¸µé°í ÀÖ½À´Ï´Ù. »ê¾÷ È®Àå, »ï¸² ¹úä, ¾ß»ýµ¿¹° ºÒ¹ý °Å·¡µµ ¾ß»ýµ¿¹°ÀÇ °Ç°­ À§ÇùÀ» ¾ÇÈ­½Ã۰í, À¯ÀüÀû ´Ù¾ç¼ºÀ» °¨¼Ò½Ã۸ç, °³Ã¼±ºÀÇ Ãë¾à¼ºÀ» Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù. ¾ß»ýµ¿¹° ¼öÀÇ»ç, ¿¬±¸ÀÚ, º¸È£ Ȱµ¿°¡µéÀº ÀÌ·¯ÇÑ ¹®Á¦¸¦ ÇØ°áÇϱâ À§ÇØ ¿øÇコ ÀÌ´Ï¼ÅÆ¼ºê¿Í °°Àº ÅëÇÕÀû Á¢±Ù¹ýÀ» äÅÃÇϰí ÀÖ½À´Ï´Ù. ÀÌ Àü·«Àº ȯ°æ, µ¿¹°, Àΰ£ÀÇ °Ç°­ÀÌ »óÈ£ ¿¬°üµÇ¾î ÀÖÀ½À» °­Á¶Çϰí, »ý¹°´Ù¾ç¼ºÀ» º¸È£ÇÏ°í ¼¼°èÀÎÀÇ °Ç°­¿¡ ´ëÇÑ À§ÇèÀ» ÁÙÀ̱â À§ÇÑ Á¾ÇÕÀûÀÎ ¸ð´ÏÅ͸µ ¹× Áúº´ °ü¸® ÇÁ·Î±×·¥À» ¿ËÈ£Çϰí ÀÖ½À´Ï´Ù.

÷´Ü ±â¼ú°ú À¯Àüü ¿¬±¸´Â ¸ð´ÏÅ͸µÀ» ¾î¶»°Ô º¯È­½Ã۰í Àִ°¡?

¿ø°Ý °¨Áö, ÀΰøÁö´É(AI), À¯Àüü ¿¬±¸¿Í °°Àº ÷´Ü ±â¼úÀÇ ÅëÇÕÀº ¾ß»ýµ¿¹° °Ç°­ ¸ð´ÏÅ͸µ°ú Áúº´ ¸ð´ÏÅ͸µ¿¡ Çõ¸íÀ» °¡Á®¿ÔÀ¸¸ç, AI¸¦ Ȱ¿ëÇÑ ºÐ¼®Àº ¾ß»ýµ¿¹° °³Ã¼ ¼ö ÃßÀû, Çൿ ÀÌ»ó °¨Áö, Áúº´ ¹ß»ýÀÇ Ãʱâ ¡Èĸ¦ ÆÄ¾ÇÇÏ´Â µ¥ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. ¿ø°Ý °¨Áö ¹× À§¼ºÀ» ÀÌ¿ëÇÑ ÃßÀû ½Ã½ºÅÛÀ» ÅëÇØ ÀÚ¿¬º¸È£ Ȱµ¿°¡µéÀº µ¿¹°ÀÇ À̵¿ ÆÐÅÏ, ¼­½ÄÁö º¯È­, ȯ°æÀû ½ºÆ®·¹½º ¿äÀÎÀ» ½Ç½Ã°£À¸·Î ¸ð´ÏÅ͸µÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. À¯Àüü ¿¬±¸´Â ¾ß»ýµ¿¹°ÀÇ Áúº´ Áø´Ü¿¡µµ Å« ¿ªÇÒÀ» Çϰí ÀÖÀ¸¸ç, ¿¬±¸ÀÚµéÀº Áúº´¿¡ ´ëÇÑ À¯ÀüÀû ¼ÒÀÎÀ» ÆÄ¾ÇÇϰí Ç¥ÀûÈ­µÈ °³ÀÔ Àü·«À» °³¹ßÇÒ ¼ö ÀÖÀ¸¸ç, CRISPR°ú DNA ¿°±â¼­¿­ ºÐ¼® ±â¼úÀÇ Àû¿ëÀ¸·Î ¾ß»ýµ¿¹°¿¡¼­ º´¿ø±ÕÀÇ ½Å¼ÓÇÑ °ËÃâÀÌ ¿ëÀÌÇØÁ® °¨¿°ÁõÀÇ Á¶±â Áø´Ü°ú ºÀ¼â¸¦ µ½°í ÀÖ½À´Ï´Ù. °¨¿°ÁõÀÇ Á¶±â Áø´Ü°ú ºÀ¼â¿¡ µµ¿òÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ȯ°æ DNA(eDNA) »ùÇøµ ¹× Àû¿Ü¼± ¿­È­»ó ÃÔ¿µ°ú °°Àº ºñħ½ÀÀû Áø´Ü µµ±¸´Â ¾ß»ýµ¿¹° °Ç°­¿¡ ´ëÇÑ ±ÍÁßÇÑ ÀλçÀÌÆ®¸¦ Á¦°øÇÏ´Â µ¿½Ã¿¡ ÀÎÀ§ÀûÀÎ °£¼·À» ÃÖ¼ÒÈ­Çϰí ÀÖ½À´Ï´Ù. »ý¸í°øÇÐ ¹× AI ±â¹Ý ºÐ¼® ±â¼úÀÇ ÅëÇÕÀÌ ÁøÇàµÊ¿¡ µû¶ó ¾ß»ýµ¿¹° °Ç°­ °ü¸®´Â ´õ¿í Á¤È®ÇÏ°í ´Éµ¿ÀûÀÌ¸ç µ¥ÀÌÅÍ¿¡ ±â¹ÝÇÑ °ü¸®·Î ¹ßÀüÇϰí ÀÖÀ¸¸ç, ÀÚ¿¬º¸È£ Ȱµ¿°¡µéÀº È¿°úÀûÀÎ °Ç°­ °³ÀÔÀ» ´ë±Ô¸ð·Î ½ÃÇàÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.

È¿°úÀûÀÎ ¾ß»ýµ¿¹° °Ç°­ °ü¸®¸¦ ¹æÇØÇÏ´Â ¿äÀÎÀº ¹«¾ùÀϱî?

±â¼ú°ú Á¶»çÀÇ ¹ßÀü¿¡µµ ºÒ±¸Çϰí È¿°úÀûÀÎ ¾ß»ýµ¿¹° °Ç°­ °ü¸®¸¦ ¹æÇØÇÏ´Â ¸î °¡Áö ¹®Á¦°¡ ÀÖ½À´Ï´Ù. ƯÈ÷ »ý¹°´Ù¾ç¼ºÀÌ ³ôÀº °³¹ßµµ»ó±¹¿¡¼­´Â ¾ß»ýµ¿¹° Áúº´ °¨½Ã¸¦ À§ÇÑ ÃæºÐÇÑ Àڱݰú ÀÎÇÁ¶ó°¡ ºÎÁ·ÇÑ °ÍÀÌ ÁÖ¿ä ¹®Á¦ Áß ÇϳªÀÔ´Ï´Ù. ¸¹Àº º¸Àü ÇÁ·Î±×·¥Àº ÇÑÁ¤µÈ Àç¿ø¿¡ ÀÇÁ¸Çϰí Àֱ⠶§¹®¿¡ ´ë±Ô¸ð ¸ð´ÏÅ͸µ ¹× ´ëÀÀ ½Ã½ºÅÛ µµÀÔÀÌ ¾î·Æ½À´Ï´Ù. ¶ÇÇÑ, ±¹°¡¸¶´Ù Áúº´ ¸ð´ÏÅ͸µ, ¾ß»ýµ¿¹° º¸È£, Á¶»ç Çù·Â¿¡ °üÇÑ ±ÔÁ¤ÀÌ ´Ù¸£±â ¶§¹®¿¡ Á¤Ä¡Àû, ¹ýÀû À庮ÀÌ ±¹°æÀ» ÃÊ¿ùÇÑ °ü¸® ³ë·ÂÀ» º¹ÀâÇÏ°Ô ¸¸µå´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. ¾ß»ýµ¿¹°, °¡Ãà, Àΰ£ °£ÀÇ »óÈ£ ÀÛ¿ëÀÌ ¿¹ÃøÇÒ ¼ö ¾ø´Â °¨¿° °æ·Î¸¦ ¸¸µé¾î ³»±â ¶§¹®¿¡ ¿©·¯ Á¾ÀÌ °øÁ¸Çϴ ȯ°æ¿¡¼­ÀÇ Áúº´ ÀüÆÄÀÇ º¹À⼺Àº ¿ÏÈ­ Àü·«À» ´õ¿í º¹ÀâÇÏ°Ô ¸¸µì´Ï´Ù. »ýŰèÀÇ ±ÕÇüÀ» À¯ÁöÇϰí Àü¿°º´À» ¿¹¹æÇÏ´Â µ¥ ÀÖ¾î ¾ß»ýµ¿¹° °Ç°­ÀÌ Áß¿äÇÏ´Ù´Â ÀνÄÀÌ ³Î¸® ÆÛÁ®ÀÖÁö ¾ÊÀº °Íµµ Å« µµÀü °úÁ¦ÀÔ´Ï´Ù. ±¤¹üÀ§ÇÑ ±³À°°ú Á¤Ã¥Àû Áö¿øÀÌ ¾ø´Ù¸é, ¾ß»ýµ¿¹° Àü¿°º´°ú °ü·ÃµÈ À§ÇèÀº °è¼Ó °ú¼ÒÆò°¡µÉ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹®Á¦¸¦ ÇØ°áÇϱâ À§Çؼ­´Â ±¹Á¦ Çù·Â °­È­, ¿¬±¸ ¹× °¨½Ã ÇÁ·Î±×·¥¿¡ ´ëÇÑ ÀÚ±Ý Áö¿ø °­È­, ¾ß»ýµ¿¹° º¸°Ç °Å¹ö³Í½º¸¦ À§ÇÑ Ç¥ÁØÈ­µÈ Á¤Ã¥ °³¹ßÀÌ ÇÊ¿äÇÕ´Ï´Ù.

¾ß»ýµ¿¹° °Ç°­ ½ÃÀåÀÇ ¼ºÀåÀ» ÃËÁøÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

¾ß»ýµ¿¹° °Ç°­ ½ÃÀåÀÇ ¼ºÀåÀº ÀÚ¿¬º¸È£ ¿¬±¸¿¡ ´ëÇÑ Á¤ºÎ ¹× ºñÁ¤ºÎ ±â°üÀÇ ÅõÀÚ Áõ°¡, ¾ß»ýµ¿¹° Áúº´ ¸ð´ÏÅ͸µ ÇÁ·Î±×·¥ È®´ë, »ý¸í°øÇÐ ¹× AI¸¦ Ȱ¿ëÇÑ ºÐ¼® ±â¼úÀÇ ¹ßÀü µî ¿©·¯ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. Àμö°øÅëÀü¿°º´ÀÇ À§Çè¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁü¿¡ µû¶ó °¢±¹ Á¤ºÎ´Â ¾ß»ýµ¿¹° °Ç°­ ¸ð´ÏÅ͸µ ÀÌ´Ï¼ÅÆ¼ºê¿¡ ´õ ¸¹Àº ÀÚ¿øÀ» ÇÒ´çÇϰí Áúº´ ¿¹¹æ ³ë·ÂÀ» °­È­Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÚ¿¬º¸È£´Üü¿Í ¿¬±¸±â°üµéÀº ÃÖ÷´Ü À¯Àüü µµ±¸¿Í AI¸¦ Ȱ¿ëÇÑ ¸ð´ÏÅ͸µ ½Ã½ºÅÛÀ» Ȱ¿ëÇÏ¿© ¾ß»ýµ¿¹°ÀÇ Áúº´ Áø´Ü°ú »ýÅÂÇÐÀû Æò°¡¸¦ °³¼±Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌÇØ°ü°èÀÚµéÀÌ »ý¹°´Ù¾ç¼º º¸Á¸°ú »ýÅÂ°è º¹¿ø·ÂÀ» ¿ì¼±¼øÀ§·Î »ïÀ¸¸é¼­ »ýŰü±¤°ú Áö¼Ó°¡´ÉÇÑ ¾ß»ýµ¿¹° °ü¸® ÀÌ´Ï¼ÅÆ¼ºê°¡ È®´ëµÇ´Â °Íµµ ½ÃÀå ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ¾ß»ýµ¿¹° °Ç°­ ÇÁ·Î±×·¥¿¡ µðÁöÅÐ °Ç°­ Ç÷§Æû°ú ½Ç½Ã°£ µ¥ÀÌÅÍ ºÐ¼®ÀÌ ÅëÇյǸ鼭 Áúº´ ¹ß»ýÀ» °¨Áö, ¿¹Ãø, ´ëÀÀÇÒ ¼ö ÀÖ´Â ´É·ÂÀÌ ´õ¿í Çâ»óµÇ¾ú½À´Ï´Ù. ¾ß»ýµ¿¹° °Ç°­, ȯ°æ Áö¼Ó°¡´É¼º, Àΰ£ ¾ÈÀüÀÇ ±³Â÷Á¡ÀÌ ´õ¿í ¸íÈ®ÇØÁü¿¡ µû¶ó Çõ½ÅÀûÀÎ ¾ß»ýµ¿¹° °Ç°­ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ¿© º¸Àü °úÇаú ¼¼°è º¸°Ç ¾Èº¸ÀÇ ¹Ì·¡¸¦ Çü¼ºÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ºÎ¹®

µ¿¹° À¯Çü(Æ÷À¯·ù, Á¶·ù, ¾î·ù, ÆÄÃæ·ù, ¾ç¼­·ù), À¯Çü(ÀǾàǰ, ±â±â¡¤¼Ò¸ðǰ), Åõ¿© °æ·Î(°æ±¸Á¦, ÁÖ»çÁ¦, ±âŸ), ÃÖÁ¾ ¿ëµµ(µ¿¹°¿ø, ¾ß»ýµ¿¹° º¸È£±¸, ¾ß»ýµ¿¹° ±¸Á¶¡¤ÀçȰ ¼¾ÅÍ, ±âŸ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

¿ì¸®´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM ¹× ¾÷°è °íÀ¯ÀÇ SLMÀ» Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹üÀ» µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Wildlife Health Market to Reach US$4.2 Billion by 2030

The global market for Wildlife Health estimated at US$2.6 Billion in the year 2024, is expected to reach US$4.2 Billion by 2030, growing at a CAGR of 8.4% over the analysis period 2024-2030. Mammals, one of the segments analyzed in the report, is expected to record a 10.2% CAGR and reach US$1.8 Billion by the end of the analysis period. Growth in the Birds segment is estimated at 6.3% CAGR over the analysis period.

The U.S. Market is Estimated at US$705.4 Million While China is Forecast to Grow at 13.4% CAGR

The Wildlife Health market in the U.S. is estimated at US$705.4 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$925.1 Million by the year 2030 trailing a CAGR of 13.4% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 4.1% and 8.1% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 5.6% CAGR.

Global Wildlife Health Market - Key Trends & Drivers Summarized

How Is Wildlife Health Becoming a Critical Concern in Conservation and Public Safety?

Wildlife health has emerged as a crucial area of focus in conservation biology, ecological balance, and public health management. As human activities continue to encroach upon natural habitats, the risk of disease transmission between wildlife, domestic animals, and humans has increased significantly. The emergence of zoonotic diseases, including COVID-19, avian influenza, and Ebola, has underscored the interconnectedness between wildlife and human health, prompting global efforts to monitor and manage wildlife diseases more effectively. Additionally, climate change is altering ecosystems and shifting disease patterns, making wildlife species more susceptible to infections, parasites, and habitat-related stressors. Industrial expansion, deforestation, and illegal wildlife trade have also exacerbated health threats to wild species, reducing genetic diversity and increasing population vulnerability. Wildlife veterinarians, researchers, and conservationists are increasingly adopting integrated approaches, such as One Health initiatives, to address these challenges. These strategies emphasize the interconnectedness of environmental, animal, and human health, advocating for comprehensive monitoring and disease management programs that safeguard biodiversity and mitigate risks to global health.

How Are Advanced Technologies and Genomic Research Transforming Wildlife Health Monitoring?

The integration of advanced technologies, such as remote sensing, artificial intelligence (AI), and genomic research, has revolutionized wildlife health monitoring and disease surveillance. AI-powered analytics are being used to track wildlife populations, detect behavioral abnormalities, and identify early signs of disease outbreaks. Remote sensing and satellite-based tracking systems allow conservationists to monitor animal migration patterns, habitat changes, and environmental stressors in real time. Genomic research has also played a transformative role in wildlife disease diagnostics, enabling researchers to identify genetic predispositions to diseases and develop targeted intervention strategies. The application of CRISPR and DNA sequencing technologies has facilitated rapid pathogen detection in wildlife, aiding in the early diagnosis and containment of infectious diseases. Additionally, non-invasive diagnostic tools, such as environmental DNA (eDNA) sampling and infrared thermography, are minimizing human interference while providing valuable insights into wildlife health. With the increasing integration of biotechnology and AI-driven analytics, wildlife health management is becoming more precise, proactive, and data-driven, enabling conservationists to implement effective health interventions at scale.

What Challenges Are Hindering Effective Wildlife Health Management?

Despite advancements in technology and research, several challenges continue to hinder effective wildlife health management. One of the primary issues is the lack of adequate funding and infrastructure for wildlife disease surveillance, particularly in developing regions with high biodiversity. Many conservation programs rely on limited financial resources, making it difficult to implement large-scale monitoring and response systems. Additionally, political and legal barriers often complicate cross-border wildlife health management efforts, as different countries have varying regulations regarding disease monitoring, wildlife protection, and research collaboration. The complexity of disease transmission in multi-species environments further complicates mitigation strategies, as interactions between wild animals, domestic livestock, and human populations create unpredictable transmission pathways. Another significant challenge is the limited public awareness of the importance of wildlife health in maintaining ecological balance and preventing pandemics. Without widespread education and policy support, the risks associated with wildlife diseases may continue to be underestimated. Addressing these challenges requires greater international collaboration, enhanced funding for research and surveillance programs, and the development of standardized policies for wildlife health governance.

What Factors Are Driving the Growth of the Wildlife Health Market?

The growth in the wildlife health market is driven by several factors, including increasing government and non-governmental investments in conservation research, the expansion of wildlife disease surveillance programs, and advancements in biotechnology and AI-driven analytics. The rising awareness of zoonotic disease risks has prompted governments to allocate more resources to wildlife health monitoring initiatives, strengthening disease prevention efforts. Additionally, conservation organizations and research institutions are leveraging cutting-edge genomic tools and AI-powered monitoring systems to improve wildlife disease diagnostics and ecological assessments. The expansion of eco-tourism and sustainable wildlife management initiatives has also contributed to market growth, as stakeholders prioritize biodiversity conservation and ecosystem resilience. The integration of digital health platforms and real-time data analytics in wildlife health programs has further enhanced the ability to detect, predict, and respond to disease outbreaks. As the intersection between wildlife health, environmental sustainability, and human safety becomes more evident, the demand for innovative wildlife health solutions is expected to rise, shaping the future of conservation science and global health security.

SCOPE OF STUDY:

The report analyzes the Wildlife Health market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Animal Type (Mammals, Birds, Fish, Reptiles, Amphibians); Type (Medicines, Equipment & Consumables); Administration Route (Oral, Injectable, Others); End-Use (Zoos, Wildlife Sanctuaries, Wildlife Rescue & Rehab Centers, Others)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 34 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â