¼¼°èÀÇ ¼öÁß Åë½Å ½Ã½ºÅÛ ½ÃÀå
Underwater Communication Systems
»óǰÄÚµå : 1773929
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 480 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,239,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,719,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼öÁß Åë½Å ½Ã½ºÅÛ ¼¼°è ½ÃÀåÀº 2030³â±îÁö 70¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 39¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼öÁß Åë½Å ½Ã½ºÅÛ ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 9.9%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 70¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®Çϰí ÀÖ´Â ºÎ¹® Áß ÇϳªÀÎ Çϵå¿þ¾î´Â CAGR 9.4%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 41¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¼ÒÇÁÆ®¿þ¾î ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 11.2%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 11¾ï ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 13.4%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ¼öÁß Åë½Å ½Ã½ºÅÛ ½ÃÀåÀº 2024³â¿¡ 11¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 14¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 13.4%¸¦ ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 7.2%¿Í 8.7%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 7.8%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ¼öÁß Åë½Å ½Ã½ºÅÛ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

¹Ù´Ù ±íÀ̰¡ ²÷±è ¾ø´Â ¿¬°áÀÇ »õ·Î¿î °³Ã´Áö?

Àü ¼¼°è°¡ ¿ø°ÝÁö ¹× ¿­¾ÇÇÑ È¯°æ¿¡¼­ÀÇ ½Ç½Ã°£ µ¥ÀÌÅÍ Àü¼Û ¹× ¸ð´ÏÅ͸µ¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁü¿¡ µû¶ó ¼öÁß Åë½Å ½Ã½ºÅÛÀº ÇØ¾ç ÀÛ¾÷ÀÇ Áß¿äÇÑ ÀÎÇÁ¶ó·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº Àá¼öÇÔ, ¼öÁß µå·Ð, ÀÚÀ² ¼öÁß Ç×Çàü(AUV), ÇØÀú ¼¾¼­ µî ¼öÁß Ç÷§Æû °£ À½¼º, µ¥ÀÌÅÍ, ¿µ»ó ½ÅÈ£ÀÇ Àü¼ÛÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. Áö»óÀ̳ª À§¼ºÅë½Å ½Ã½ºÅÛ°ú ´Þ¸® ¼öÁß Åë½ÅÀº ¹°ÀÇ ÀüÆÄ °¨¼è·Î ÀÎÇØ À½ÆÄ¿¡ Å©°Ô ÀÇÁ¸Çϸç, °íµµ·Î Àü¹®È­µÈ Àåºñ°¡ ÇÊ¿äÇÕ´Ï´Ù. ±¹¹æ, ¼®À¯ ¹× °¡½º Ž»ç, ÇØ¾ç Àç»ý¿¡³ÊÁö, ÇØ¾ç Á¶»ç, ȯ°æ ¸ð´ÏÅ͸µ µî ÇØÀú ÀÎÇÁ¶óÀÇ Á߿伺ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó °ß°íÇϰí È®À强ÀÌ ³ôÀº ¼öÁß Åë½Å ³×Æ®¿öÅ©ÀÇ Çʿ伺ÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¼¼°è ÇØ¾ç ¾Èº¸¿¡ ´ëÇÑ ¿ì·Á°¡ ³ô¾ÆÁö°í ÇØÀú ¿µ¿ªÀÇ ÀνÄÀÌ Àü·«Àû ¿ì¼±¼øÀ§°¡ µÇ¸é¼­ Á¤ºÎ¿Í ¹Î°£ ±â¾÷Àº ¼öÁß Åë½Å ±â´ÉÀÇ Çö´ëÈ­ ¹× È®Àå¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ±âÁ¸ Åë½Å ±â¼ú·Î´Â ºÎÁ·ÇÑ ½ÉÇØ ȯ°æ¿¡¼­ÀÇ Çù·Â ÀÛÀü, ¹«ÀÎ Â÷·® Á¦¾î, ÇØÀú ¸ÅÇÎ, ½Ç½Ã°£ ¸ð´ÏÅ͸µÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÇØ¾çÀÌ ÁöÁ¤ÇÐÀû, »ó¾÷Àû, °úÇÐÀû ÀÌÀÍ¿¡ ´õ¿í Áß¿äÇØÁü¿¡ µû¶ó °í¼º´É ¼öÁß Åë½Å ½Ã½ºÅÛ¿¡ ´ëÇÑ ¿ä±¸°¡ Á¡Á¡ ´õ Ä¿Áö°í ÀÖ½À´Ï´Ù.

ÀÚÀ² ½Ã½ºÅÛ°ú ÇØÀú ÀÎÇÁ¶ó°¡ Åë½Å ¿ä±¸ »çÇ×À» º¯È­½ÃŰ´Â ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

¹«ÀÎ ÇØÀú Â÷·®ÀÇ º¸±Þ°ú ÇØÀú ½Ã¼³ÀÇ È®ÀåÀº ¼öÁß Åë½Å ½Ã½ºÅÛÀÇ ¿ä±¸ »çÇ×À» ÀçÁ¤ÀÇÇϰí ÀÖÀ¸¸ç, AUV ¹× ¿ø°Ý Á¶Á¾ ¼±¹Ú(ROV)Àº ÆÄÀÌÇÁ¶óÀÎ °Ë»ç ¹× ±¤»ê Ž»ç¿¡¼­ ÇØ¾ç µ¥ÀÌÅÍ ¼öÁý ¹× ÇØÀú ÄÉÀ̺í À¯Áöº¸¼ö¿¡ À̸£±â±îÁö ´Ù¾çÇÑ ÀÛ¾÷¿¡ Á¡Á¡ ´õ ¸¹ÀÌ µµÀԵǰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ¿ø°Ý ÃøÁ¤ µ¥ÀÌÅ͸¦ Àü¼ÛÇÏ°í ½Ç½Ã°£ Ç×ÇØ ¸í·ÉÀ» ¼ö½ÅÇϱâ À§ÇØ ¾ÈÀüÇϰí Áö¿¬ÀÌ ÀûÀº Åë½Å ä³Î¿¡ Å©°Ô ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. ¸¶Âù°¡Áö·Î, ÇØ»ó dz·Â¹ßÀü¼Ò, ½ÉÇØ ä±¼ ÀÛ¾÷, ÇØÀú ¼¾¼­ ³×Æ®¿öÅ©ÀÇ ½Å¼ÓÇÑ ±¸ÃàÀº ¿î¿µ ¹«°á¼º ¹× ȯ°æ Áؼö¸¦ À§ÇÑ Áö¼ÓÀûÀÎ Åë½ÅÀ» ÇÊ¿ä·Î ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¿ªµ¿ÀûÀÎ ¾ÖÇø®ÄÉÀ̼ÇÀ» Áö¿øÇϱâ À§ÇØ ¼öÁß Åë½Å ½Ã½ºÅÛÀº ³ôÀº ½Å·Ú¼º, ³ÐÀº Åë½Å °Å¸®, Á¡Á¡ ´õ ¸¹Àº ¼¾¼­ ¹× ÀÚÀ² Ç÷§Æû°úÀÇ È£È¯¼ºÀ» Á¦°øÇØ¾ß ÇÕ´Ï´Ù. ´ÜÀÏ ¸ðµå ½Ã½ºÅÛÀÇ ÇѰ踦 ±Øº¹Çϱâ À§ÇØ À½Çâ, ±¤ÇÐ, ÀüÀڱ⠹æ½ÄÀ» °áÇÕÇÑ ÇÏÀ̺긮µå Åë½Å ±â¼úÀÌ °³¹ßµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, °íÁ¤½Ä ÇØÀú Åë½Å ³ëµå¿Í ¼öÁß ¸ðµ©Àº ÅëÇÕµÈ ÇØ¾ç µ¥ÀÌÅÍ »ýŰèÀÇ ÇʼöÀûÀÎ ±¸¼º¿ä¼Ò°¡ µÇ¾î »óÈ£¿¬°áµÈ '¼öÁß IoT' ³×Æ®¿öÅ©ÀÇ ±¸ÃàÀ» Áö¿øÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÁøÈ­ÇÏ´Â ÀÎÇÁ¶óÀÇ ¿ä±¸´Â ½Ã½ºÅÛ ¼³°èÀڵ鿡°Ô ´ë¿ªÆø, Àü·Â È¿À²¼º, ¸ÖƼ µð¹ÙÀ̽º »óÈ£¿î¿ë¼º Ãø¸é¿¡¼­ Çõ½ÅÀ» ¿ä±¸Çϰí ÀÖÀ¸¸ç, ÀÌ´Â ½ÃÀå ¼ºÀå°ú ±â¼ú Áøº¸¸¦ ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

Â÷¼¼´ë ±â¼úÀº ¼öÁß µ¥ÀÌÅÍ Àü¼Û¿¡ Çõ¸íÀ» °¡Á®¿Ã °ÍÀΰ¡?

¼öÁß Åë½Å ±â¼úÀÇ ±Þ¼ÓÇÑ ¹ßÀüÀº ÇØÀú µ¥ÀÌÅÍ Àü¼ÛÀÇ ¼º´É°ú °¡´É¼ºÀ» Å©°Ô º¯È­½Ã۰í ÀÖ½À´Ï´Ù. ±âÁ¸ÀÇ À½Çâ Åë½Å ½Ã½ºÅÛÀÌ ÁÖ·ù¿´Áö¸¸ ½ÅÈ£ º¯Á¶, ÀûÀÀÇü ºö Æ÷¹Ö, ³ëÀÌÁî Á¦°Å ¾Ë°í¸®ÁòÀÇ °³¼±À¸·Î °­È­µÇ¾î ¿­¾ÇÇÑ ÇØ¾ç ȯ°æ¿¡¼­ÀÇ ½Å·Ú¼º°ú È¿À²¼ºÀÌ Çâ»óµÇ°í ÀÖ½À´Ï´Ù. µ¿½Ã¿¡, ±¤Åë½Å ½Ã½ºÅÛµµ ´Ü°Å¸®¿¡¼­ ´õ ³ôÀº µ¥ÀÌÅÍ Àü¼Û ¼Óµµ¸¦ ½ÇÇöÇϰí ROV ¹× Àá¼ö ÀÛ¾÷¿ë ½Ç½Ã°£ ºñµð¿À ½ºÆ®¸®¹ÖÀ» °¡´ÉÇÏ°Ô ÇÏ´Â µî ±¤Åë½Å ½Ã½ºÅÛµµ ¹ßÀüÇϰí ÀÖ½À´Ï´Ù. ÀüÀÚ±âÆÄ Åë½ÅÀº Åë½Å °Å¸®°¡ Á¦ÇÑÀûÀÌÁö¸¸ ¼Óµµ¿Í Á¤È®µµ°¡ Áß¿äÇÑ ¾èÀº ¼ö½ÉÀ̳ª Ư¼öÇÑ ¿ëµµ¿¡ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀΰøÁö´É°ú ¸Ó½Å·¯´×ÀÇ ÅëÇÕÀº ¿¹Ãø ºÐ¼®, µ¿Àû ä³Î ÃÖÀûÈ­, ÀÚÀ² ½Ã½ºÅÛ Á¦¾î¸¦ °¡´ÉÇÏ°Ô ÇÏ¿© ¿î¿µÀÇ ÀÀ´ä¼ºÀ» Å©°Ô Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¹èÅ͸® ±â¼ú ¹× ¿¡³ÊÁö ¼öÈ® ¼Ö·ç¼ÇÀÇ Çõ½ÅÀ¸·Î ¼öÁß Åë½Å ÀåºñÀÇ ¹èÄ¡ ½Ã°£ÀÌ ±æ¾îÁö°í À¯Áöº¸¼ö Çʿ伺ÀÌ °¨¼ÒÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ±ØÇÑÀÇ ¼ö½É¿¡¼­µµ ¾ÈÁ¤ÀûÀ¸·Î ÀÛµ¿ÇÒ ¼ö ÀÖ´Â ÄÄÆÑÆ®ÇÏ°í ³»±¸¼ºÀÌ ¶Ù¾î³ª¸ç ³»¾Ð¼ºÀÌ °­ÇÑ ºÎǰÀ» °³¹ßÇϱâ À§ÇØ Ã·´Ü ¼ÒÀç°¡ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ±¹°¡¿Í ±â¾÷ÀÌ ½º¸¶Æ® ¿À¼Ç ±¸»ó¿¡ ÅõÀÚÇÏ´Â °¡¿îµ¥, À§¼º°ú ¿¬°áµÈ Áö»ó ºÎÇ¥¿Í Å©·Î½º µµ¸ÞÀÎ Åë½Å Ç÷§ÆûÀÇ °³¹ß·Î ¼öÁß, Áö»ó, ¿ìÁÖ ±â¹Ý ³×Æ®¿öÅ© °£ÀÇ ¿øÈ°ÇÑ ¿¬°áÀÌ ±¸ÃàµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Â÷¼¼´ë ±â¼úÀº ¼öÁß Åë½Å ½Ã½ºÅÛ ½ÃÀåÀ» Æ´»õ ½ÃÀåÀÎ ±º»çÀû ¿ëµµ¿¡ ±¹ÇѵÇÁö ¾Ê°í º¸´Ù ±¤¹üÀ§ÇÑ »ó¾÷ ¹× °úÇÐ ºÐ¾ß·Î È®ÀåÇϰí ÀÖ½À´Ï´Ù.

¼öÁß Åë½Å ½Ã½ºÅÛ ½ÃÀå È®´ëÀÇ ¿øµ¿·ÂÀº?

¼öÁß Åë½Å ½Ã½ºÅÛ ½ÃÀåÀÇ ¼ºÀåÀº ±â¼ú ¹ßÀü, ÃÖÁ¾»ç¿ëÀÚÀÇ ¼ö¿ä Áõ°¡, ÇØ¾ç ºÎ¹® Àü¹ÝÀÇ ¿î¿µ ¿ä±¸ »çÇ×ÀÇ ÁøÈ­¿Í °ü·ÃµÈ ¸î °¡Áö »óÈ£ ¿¬°üµÈ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. Áß¿äÇÑ ¼ºÀå ¿äÀÎÀº ¹æÀ§ ¹× »ó¾÷ Ȱµ¿ ¸ðµÎ¿¡¼­ AUV¿Í ROVÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖÀ¸¸ç, Ç×ÇØ ¹× µ¥ÀÌÅÍ ±³È¯À» À§ÇØ ½Å·ÚÇÒ ¼ö ÀÖ´Â ½Ç½Ã°£ Åë½ÅÀÌ ÇÊ¿äÇÏ´Ù´Â Á¡ÀÔ´Ï´Ù. ¶ÇÇÑ ÇØ¾ç ¼®À¯ ¹× °¡½º Ž»ç ¹× ÇØÀú Àç»ý¿¡³ÊÁö ÇÁ·ÎÁ§Æ®ÀÇ È®´ë·Î ÀÎÇØ ¼öÁß ÀåºñÀÇ Áö¼ÓÀûÀÎ ¸ð´ÏÅ͸µ ¹× Á¦¾î¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÇØ±º Åë½Å ¹× ÇØÀú °¨½ÃÀÇ ±¹¹æ Çö´ëÈ­ ÇÁ·Î±×·¥Àº ƯÈ÷ ÇØ¾ç ¿µÅä ºÐÀï Áö¿ª¿¡¼­ Àü¼úÀû ÇØÀú ³×Æ®¿öÅ©¿¡ ´ëÇÑ Á¤ºÎ ÅõÀÚ¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. ÇÑÆí, ÇØ¾ç Á¶»ç ¹× ȯ°æ ¸ð´ÏÅ͸µÀÇ Áõ°¡´Â Àå±âÀûÀÎ ¼¾¼­ ÅëÇÕÇü ¼öÁß Åë½Å Ç÷§Æû¿¡ ´ëÇÑ ¼ö¿ä¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù. À½Çâ ¹× ±¤Åë½Å ±â¼úÀÇ ¹ßÀüÀ¸·Î º¸´Ù ¾ÈÁ¤ÀûÀÎ °í ´ë¿ªÆø ½Ã½ºÅÛÀÌ °¡´ÉÇØÁö¸é¼­ º¹ÀâÇÑ ¼öÁß ÀÓ¹«¿¡ äÅÃÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¼öÁß ¹æ¾î ¹× Áß¿ä ÀÎÇÁ¶ó º¸È£¿¡ ÀÖ¾î ¾ÈÀüÇÏ°í ¾ÏȣȭµÈ Åë½Å¿¡ ´ëÇÑ »õ·Î¿î ¿ä±¸»çÇ×µµ Á¦Ç° °³¹ß ¹× ¹èÄ¡¸¦ °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¼öÁß ¼¾¼­ÀÇ ¼ÒÇüÈ­¿Í ¼ÒÇü Åë½Å ¸ðµ©ÀÇ °³¹ß·Î ¼ÒÇü Ç÷§Æû°ú ¸ðµâÇü ½Ã½ºÅÛ¿¡ ±¤¹üÀ§ÇÏ°Ô ÅëÇÕÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÇØ¾ç Ȱµ¿ÀÌ È®´ëµÇ°í ½º¸¶Æ® ÇØ¾ç Àü·«ÀÌ ÁöÁöµÊ¿¡ µû¶ó ÀÌ·¯ÇÑ Áý¾àÀûÀÎ ÈûÀº ¼öÁß Åë½Å ½Ã½ºÅÛ ½ÃÀåÀÇ Áö¼ÓÀûÀÎ ¼ºÀåÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

ºÎ¹®

±¸¼º¿ä¼Ò(Çϵå¿þ¾î, ¼ÒÇÁÆ®¿þ¾î, ¼­ºñ½º), ¿¬°á¼º(À¯¼±, ¹«¼±), ¿ëµµ(±âÈÄ ¸ð´ÏÅ͸µ, ȯ°æ ¸ð´ÏÅ͸µ, ¼ö·ÎÇÐ, ÇØ¾çÇÐ, ¿À¿° ¸ð´ÏÅ͸µ, ±âŸ), ÃÖÁ¾»ç¿ëÀÚ(ÇØ¾ç, ±º¡¤¹æÀ§, ¼®À¯ ¹× °¡½º, °úÇÐ ¿¬±¸°³¹ß, ±âŸ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM ¹× ¾÷°è °íÀ¯ÀÇ SLM Äõ¸®¸¦ µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Underwater Communication Systems Market to Reach US$7.0 Billion by 2030

The global market for Underwater Communication Systems estimated at US$3.9 Billion in the year 2024, is expected to reach US$7.0 Billion by 2030, growing at a CAGR of 9.9% over the analysis period 2024-2030. Hardware, one of the segments analyzed in the report, is expected to record a 9.4% CAGR and reach US$4.1 Billion by the end of the analysis period. Growth in the Software segment is estimated at 11.2% CAGR over the analysis period.

The U.S. Market is Estimated at US$1.1 Billion While China is Forecast to Grow at 13.4% CAGR

The Underwater Communication Systems market in the U.S. is estimated at US$1.1 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$1.4 Billion by the year 2030 trailing a CAGR of 13.4% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 7.2% and 8.7% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 7.8% CAGR.

Global Underwater Communication System Market - Key Trends & Drivers Summarized

Is the Ocean’s Depth the New Frontier for Seamless Connectivity?

As the world becomes increasingly reliant on real-time data transmission and surveillance across remote and hostile environments, underwater communication systems are emerging as critical infrastructure for marine operations. These systems enable the transmission of voice, data, and video signals across submerged platforms such as submarines, underwater drones, autonomous underwater vehicles (AUVs), and seabed sensors. Unlike terrestrial or satellite communication systems, underwater communication relies heavily on acoustic waves due to water’s attenuation of radio frequencies, necessitating highly specialized equipment. The growing importance of subsea infrastructure for defense, oil & gas exploration, offshore renewable energy, marine research, and environmental monitoring is fueling the need for robust and scalable underwater communication networks. With global maritime security concerns on the rise and undersea domain awareness becoming a strategic priority, governments and private sector players are investing in the modernization and expansion of underwater communication capabilities. These systems are enabling coordinated operations, unmanned vehicle control, seabed mapping, and real-time monitoring in deep-sea environments where traditional communication technologies fall short. As oceans become more critical to geopolitical, commercial, and scientific interests, the demand for high-performance underwater communication systems continues to deepen.

Why Are Autonomous Systems and Seabed Infrastructure Transforming Communication Requirements?

The proliferation of unmanned underwater vehicles and the expansion of subsea installations are redefining the requirements for underwater communication systems. AUVs and remotely operated vehicles (ROVs) are increasingly being deployed for tasks ranging from pipeline inspection and mine detection to oceanographic data collection and subsea cable maintenance. These systems rely heavily on secure and low-latency communication channels to transmit telemetry data and receive real-time navigation commands. Likewise, the rapid buildout of offshore wind farms, deep-sea mining operations, and subsea sensor networks requires continuous communication for operational integrity and environmental compliance. To support these dynamic applications, underwater communication systems must offer high reliability, extended range, and compatibility with a growing range of sensors and autonomous platforms. Hybrid communication technologies that combine acoustic, optical, and electromagnetic methods are being developed to overcome the limitations of single-mode systems. In addition, fixed seabed communication nodes and underwater modems are becoming essential components of integrated marine data ecosystems, supporting the creation of interconnected “underwater IoT” networks. These evolving infrastructure needs are placing pressure on system designers to innovate in terms of bandwidth, power efficiency, and multi-device interoperability, further fueling market growth and technological advancement.

Could Next-Generation Technologies Revolutionize Underwater Data Transmission?

Rapid advancements in underwater communication technologies are transforming the performance and potential of subsea data transmission. Traditional acoustic communication systems, while dominant, are being enhanced through improvements in signal modulation, adaptive beamforming, and noise-cancellation algorithms, making them more reliable and efficient in challenging marine environments. At the same time, optical communication systems are gaining momentum, offering higher data transfer rates over short distances and enabling real-time video streaming for ROVs and diving operations. Electromagnetic communication, although limited by range, is being used in shallow water and specialized applications where speed and accuracy are critical. The integration of artificial intelligence and machine learning is enabling predictive analytics, dynamic channel optimization, and autonomous system control, significantly improving operational responsiveness. Furthermore, innovation in battery technology and energy harvesting solutions is allowing longer deployment times for underwater communication devices, reducing maintenance needs. Advanced materials are also being employed to develop compact, durable, and pressure-resistant components that can operate reliably at extreme depths. As nations and corporations invest in smart ocean initiatives, the development of satellite-linked surface buoys and cross-domain communication platforms is creating seamless links between underwater, surface, and space-based networks. These next-gen technologies are pushing the underwater communication system market beyond niche military use toward broader commercial and scientific applications.

What Is Driving the Expansion of the Underwater Communication System Market?

The growth in the underwater communication system market is driven by several interrelated factors associated with technology advancements, rising end-user demand, and evolving operational requirements across maritime sectors. A significant growth driver is the increasing adoption of AUVs and ROVs in both defense and commercial operations, requiring dependable, real-time communication for navigation and data exchange. The expansion of offshore oil & gas exploration and subsea renewable energy projects is also fueling demand for continuous monitoring and control of underwater equipment. Defense modernization programs in naval communication and underwater surveillance are spurring government investments in tactical underwater networks, especially in regions with maritime territorial disputes. Meanwhile, the growth of oceanographic research and environmental monitoring is generating demand for long-duration, sensor-integrated underwater communication platforms. Advancements in acoustic and optical communication technologies are enabling more reliable and higher bandwidth systems, encouraging adoption in complex underwater missions. Emerging requirements for secure, encrypted communication in underwater defense and critical infrastructure protection are also accelerating product development and deployment. Additionally, the miniaturization of underwater sensors and the development of compact communication modems are allowing broader integration into small platforms and modular systems. As marine activities expand and smart ocean strategies gain traction, these converging forces are collectively driving sustained growth in the underwater communication system market.

SCOPE OF STUDY:

The report analyzes the Underwater Communication Systems market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Component (Hardware, Software, Services); Connectivity (Hardwired, Wireless); Application (Climate monitoring, Environmental monitoring, Hydrography, Oceanography, Pollution monitoring, Others); End-User (Marine, Military & defense, Oil & Gas, Scientific research & development, Others)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 39 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â