¼¼°èÀÇ À̺¥Æ® ½ºÆ®¸² ó¸® ½ÃÀå
Event Stream Processing
»óǰÄÚµå : 1768949
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 142 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,222,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,666,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ À̺¥Æ® ½ºÆ®¸² ó¸® ½ÃÀåÀº 2030³â±îÁö 91¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 33¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ À̺¥Æ® ½ºÆ®¸² ó¸® ½ÃÀåÀº 2024-2030³â¿¡ CAGR 18.1%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 91¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ ¼Ö·ç¼ÇÀº CAGR 18.9%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 63¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¼­ºñ½º ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ÀÇ CAGR·Î 16.3%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 9¾ï 6,280¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 17.7%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ À̺¥Æ® ½ºÆ®¸² ó¸® ½ÃÀåÀº 2024³â¿¡ 9¾ï 6,280¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 14¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³âÀÇ CAGRÀº 17.7%ÀÔ´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 16.1%¿Í 14.8%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 12.3%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°è À̺¥Æ® ½ºÆ®¸² ó¸® ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ Á¤¸®

À̺¥Æ® ½ºÆ®¸² 󸮰¡ ½Ç½Ã°£ µ¥ÀÌÅÍ ºÐ¼®À» ¾î¶»°Ô º¯È­½Ãų °ÍÀΰ¡?

À̺¥Æ® ½ºÆ®¸² ó¸®(Event Stream Processing, ESP)´Â ±â¾÷ÀÌ À̺¥Æ® ¹ß»ý½Ã ´ë·®ÀÇ ½Ç½Ã°£ µ¥ÀÌÅ͸¦ ó¸®ÇÏ¿© Áï°¢ÀûÀÎ ÀλçÀÌÆ®¸¦ ¾ò°í Áï°¢ÀûÀÎ Á¶Ä¡¸¦ ÃëÇÒ ¼ö ÀÖµµ·Ï ÇÔÀ¸·Î½á µ¥ÀÌÅÍ ºÐ¼® ºÐ¾ß¿¡ Çõ¸íÀ» ÀÏÀ¸Ä×½À´Ï´Ù. ¿òÁ÷ÀÌ´Â µ¥ÀÌÅ͸¦ ºÐ¼®ÇÏ´Â ÀÌ ±â¼úÀº ±ÝÀ¶, ¼Ò¸Å, Åë½Å, ÀÇ·á µî ºü¸£°í ½Å¼ÓÇÑ ºÐ¼®ÀÌ ÇÊ¿äÇÑ ¸ðµç ºÐ¾ß¿¡ Àû¿ëµÇ°í ÀÖÀ¸¸ç, ESP¸¦ ÅëÇØ Á¶Á÷Àº ¼¾¼­, Æ®·£Àè¼Ç, »ç¿ëÀÚ ÀÎÅÍ·¢¼Ç, IoT ±â±â¿¡¼­ ¹ß»ýÇÏ´Â ¸ðµç µ¥ÀÌÅ͸¦ Áö¼ÓÀûÀ¸·Î ºÐ¼®ÇÒ ¼ö ÀÖ½À´Ï´Ù. µ¥ÀÌÅ͸¦ Áö¼ÓÀûÀ¸·Î ÃßÀûÇÏ°í ºÐ¼®ÇÏ¿© ¹Ð¸®ÃÊ À̳»¿¡ °á°ú¸¦ µµÃâÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î ±ÝÀ¶ ¼­ºñ½º¿¡¼­´Â Áö¿¬ÀÌ Å« ¼Õ½Ç·Î À̾îÁú ¼ö ÀÖ´Â »ç±â °¨Áö ¹× ½Ç½Ã°£ °Å·¡¿¡ ESP°¡ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ¼Ò¸Å¾÷¿¡¼­´Â °í°´ÀÌ ¿Â¶óÀÎ ¶Ç´Â ¿ÀÇÁ¶óÀÎ ¸ÅÀåÀ» ÀÌ¿ëÇÒ ¶§ µ¥ÀÌÅ͸¦ ó¸®ÇÏ¿© °³ÀÎÈ­µÈ ÇÁ·Î¸ð¼Ç, Àç°í °ü¸®, °í°´ °æÇè Çâ»óÀ» Áö¿øÇÕ´Ï´Ù. Áö¼ÓÀûÀÎ µ¥ÀÌÅÍ ½ºÆ®¸²À» ±â¹ÝÀ¸·Î ½Ç½Ã°£ ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖ´Â ´É·ÂÀº ±â¾÷¿¡ °æÀï ¿ìÀ§¸¦ °¡Á®´ÙÁÖ¸ç, Áï°¢ÀûÀÎ °í·Á°¡ Àü·«Àû ¿ìÀ§¸¦ °¡Á®´ÙÁÖ´Â ½Ã´ë¿¡ ESP´Â Çʼö ºÒ°¡°áÇÕ´Ï´Ù.

ESPÀÇ Á߿伺Àº »ê¾÷ ±â°è, ½º¸¶Æ®È¨ ±â±â µîÀ¸·ÎºÎÅÍ ²÷ÀÓ¾ø´Â µ¥ÀÌÅÍ ½ºÆ®¸²À» »ý¼ºÇÏ´Â IoT ¹× Ä¿³ØÆ¼µå µð¹ÙÀ̽ºÀÇ µîÀåÀ¸·Î ´õ¿í Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î ½º¸¶Æ® ½ÃƼ¿¡¼­´Â ESP¸¦ ÅëÇØ ±³Åë, ¿¡³ÊÁö »ç¿ë, Ä¡¾ÈÀ» ½Ç½Ã°£À¸·Î ¸ð´ÏÅ͸µÇÏ¿© È¿À²ÀûÀÎ ÀÚ¿ø ÇÒ´ç°ú »ç°í ´ëÀÀÀ» Áö¿øÇÕ´Ï´Ù. ÇコÄÉ¾î ºÐ¾ß¿¡¼­µµ ESP´Â ȯÀÚÀÇ Áö¼ÓÀûÀÎ ¸ð´ÏÅ͸µ¿¡ Ȱ¿ëµÇ°í ÀÖÀ¸¸ç, ºñÁ¤»óÀûÀÎ ÃøÁ¤°ª¿¡ ´ëÇÑ »çÀü °³ÀÔÀ» À§ÇØ ½Ç½Ã°£ ¾Ë¸²ÀÌ ÇʼöÀûÀÔ´Ï´Ù. Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. µ¥ÀÌÅͺ£À̽º ÀÇ»ç°áÁ¤¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁü¿¡ µû¶ó ESP´Â ÃֽŠ´ëÀÀ °¡´ÉÇÑ µ¥ÀÌÅÍ ¾ÆÅ°ÅØÃ³ÀÇ ±â¹Ý ±â¼úÀÌ µÇ°í ÀÖ½À´Ï´Ù.

¾î¶² ±â¼ú Çõ½ÅÀÌ À̺¥Æ® ½ºÆ®¸² 󸮸¦ ¹ßÀü½Ã۰í Àִ°¡?

±â¼úÀÇ ¹ßÀüÀ¸·Î À̺¥Æ® ½ºÆ®¸² ó¸® Ç÷§ÆûÀÇ ±â´ÉÀÌ Å©°Ô Çâ»óµÇ¾î ´õ ºü¸¥ ó¸®, È®À强, ´õ ³ôÀº ¼öÁØÀÇ µ¥ÀÌÅÍ ºÐ¼®ÀÌ °¡´ÉÇØÁ³½À´Ï´Ù. ¸Ó½Å·¯´×(ML)°ú ÀΰøÁö´É(AI)À» ESP Ç÷§Æû¿¡ ÅëÇÕÇÔÀ¸·Î½á ½Ç½Ã°£ µ¥ÀÌÅ͸¦ ±â¹ÝÀ¸·Î ÀÌ»ó ¡Èĸ¦ °¨ÁöÇϰí, Ãß¼¼¸¦ ¿¹ÃøÇϰí, ÀÚµ¿È­µÈ ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖ´Â Áö´ÉÇü ½Ã½ºÅÛÀ» ±¸ÇöÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¿¹¸¦ µé¾î °ú°Å µ¥ÀÌÅ͸¦ ±â¹ÝÀ¸·Î ÈÆ·ÃµÈ ¸Ó½Å·¯´× ¸ðµ¨À» ¶óÀÌºê µ¥ÀÌÅÍ ½ºÆ®¸²¿¡ Àû¿ëÇÏ¿© ESP ½Ã½ºÅÛÀÌ ºñÁ¤»óÀûÀÎ ÆÐÅÏ¿¡ Áï°¢ÀûÀ¸·Î Ç÷¡±×¸¦ °É ¼ö ÀÖµµ·Ï Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ Áß¾Ó ÁýÁß½Ä Å¬¶ó¿ìµå°¡ ¾Æ´Ñ µ¥ÀÌÅÍ ¼Ò½º¿Í °¡±î¿î °÷¿¡¼­ µ¥ÀÌÅ͸¦ ó¸®ÇÏ´Â ¿§Áö ÄÄÇ»ÆÃÀÇ ¹ßÀüÀº ƯÈ÷ ÀúÁö¿¬ÀÌ Áß¿äÇÑ IoT ¿ëµµ¿¡¼­ ESPÀÇ È¿À²¼º°ú ÀÀ´ä¼ºÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù.

¶ÇÇÑ ¿ÀǼҽº ÇÁ·¹ÀÓ¿öÅ©¿Í Ŭ¶ó¿ìµå ±â¹Ý ESP Ç÷§ÆûÀº ÀÌ ±â¼úÀ» º¸´Ù ½±°Ô »ç¿ëÇÒ ¼ö ÀÖµµ·Ï ÇÏ¿© ¸ðµç ±Ô¸ðÀÇ ±â¾÷ÀÌ È®Àå °¡´ÉÇÏ°í ºñ¿ë È¿À²ÀûÀÎ ¼Ö·ç¼ÇÀ» ±¸ÃàÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÕ´Ï´Ù. Ŭ¶ó¿ìµå ³×ÀÌÆ¼ºê ESP ¼Ö·ç¼ÇÀº ºÐ»ê ÄÄÇ»ÆÃ°ú ¸¶ÀÌÅ©·Î¼­ºñ½º ¾ÆÅ°ÅØÃ³¸¦ Ȱ¿ëÇÏ¿© Áö¿ªÀûÀ¸·Î ºÐ»êµÈ Àå¼Ò¿¡¼­ ´ë±Ô¸ðÀÇ ½Ç½Ã°£ µ¥ÀÌÅÍ Ã³¸®¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ À¯¿¬¼ºÀº º¹ÀâÇÑ ¾÷¹«¸¦ Á¶Á¤Çϱâ À§ÇØ ½Ç½Ã°£ ÀλçÀÌÆ®°¡ ÇÊ¿äÇÑ Åë½Å, ¹°·ù µî ±¤¹üÀ§ÇÑ µ¥ÀÌÅÍ ³×Æ®¿öÅ©¸¦ º¸À¯ÇÑ »ê¾÷¿¡ ÇʼöÀûÀÔ´Ï´Ù. µ¥ÀÌÅ͸¦ RAM¿¡ ÀúÀåÇϰí Ãʰí¼Ó ¾×¼¼½º¸¦ °¡´ÉÇÏ°Ô ÇÏ´Â Àθ޸𸮠ÄÄÇ»ÆÃÀÇ Çõ½ÅÀº ESPÀÇ ´É·ÂÀ» ´õ¿í °¡¼ÓÈ­ÇÏ¿© ÃÖ¼ÒÇÑÀÇ Áö¿¬À¸·Î ³ôÀº 󸮷®ÀÇ µ¥ÀÌÅÍ ½ºÆ®¸²À» ó¸®ÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú ¹ßÀüÀ¸·Î ÀÎÇØ ESP´Â ½Ç½Ã°£ µ¥ÀÌÅÍ Ã³¸®¿¡ ´ëÇÑ ´Ù¾çÇÑ ¼ö¿ä¿¡ ´ëÀÀÇÒ ¼ö ÀÖ´Â ´Ù¿ëµµÇÑ Åø·Î °¢±¤¹Þ°í ÀÖ½À´Ï´Ù.

À̺¥Æ® ½ºÆ®¸² 󸮰¡ »õ·Î¿î ¿ëµµÀ¸·Î È®»êµÇ°í ÀÖ´Â ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

»ý¼ºµÈ µ¥ÀÌÅ͸¦ ó¸®ÇÏ°í ºÐ¼®ÇÏ´Â ESPÀÇ ´É·ÂÀº ±ÝÀ¶¿¡¼­ ȯ°æ ¸ð´ÏÅ͸µ, °ø±Þ¸Á ¹°·ù¿¡ À̸£±â±îÁö ´Ù¾çÇÑ »ê¾÷¿¡ °ÉÃÄ »õ·Î¿î ¿ëµµ¸¦ °³¹ßÇϰí ÀÖ½À´Ï´Ù. ±ÝÀ¶ »ê¾÷¿¡¼­ ESP´Â °íºóµµ °Å·¡ ¹× »ç±â ¹æÁö¿¡ ÇʼöÀûÀ̸ç, ÀºÇà°ú ÅõÀÚȸ»ç°¡ ºÒ±ÔÄ¢ÇÑ °Å·¡¸¦ °¨ÁöÇÏ°í ¹Ð¸®ÃÊ ´ÜÀ§·Î °Å·¡¸¦ ½ÇÇàÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. Åë½Å »ç¾÷ÀÚ´Â ½Ç½Ã°£ ³×Æ®¿öÅ© ¸ð´ÏÅ͸µ ¹× ¹®Á¦ ÇØ°á¿¡ ESP¸¦ »ç¿ëÇÏ¿© ¼­ºñ½º ǰÁú¿¡ ¿µÇâÀ» ¹ÌÄ¡±â Àü¿¡ ¹®Á¦¸¦ »çÀü¿¡ ÇØ°áÇÒ ¼ö ÀÖ½À´Ï´Ù. ¼Ò¸Å¾÷üµéÀº ½Ç½Ã°£À¸·Î ¼îÇΰ´ÀÇ ÇൿÀ» ºÐ¼®ÇÏ¿© °³ÀÎÈ­µÈ ¸¶ÄÉÆÃ°ú Áï°¢ÀûÀÎ ¼ö¿ä¿¡ ±â¹ÝÇÑ µ¿Àû °¡°Ý Ã¥Á¤À» °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á °í°´ °æÇèÀ» Çâ»ó½Ã۱â À§ÇØ ESP¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³ôÀ̰í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ÝÀÀÇü Á¢±Ù ¹æ½ÄÀ» ÅëÇØ Á¶Á÷Àº ºü¸£°Ô ÀûÀÀÇÏ°í °³ÀÎÈ­µÈ ´ëÈ­¸¦ ÅëÇØ °í°´ÀÇ ½Å·Ú¿Í Ãæ¼ºµµ¸¦ È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.

ȯ°æ ¹× À¯Æ¿¸®Æ¼ ºÎ¹®µµ ESP¸¦ Ȱ¿ëÇÏ¿© ¼öÁú, ´ë±â¿À¿°, ¿¡³ÊÁö ¼Òºñ¿Í °°Àº Áß¿äÇÑ ÀÎÇÁ¶ó¸¦ ¸ð´ÏÅ͸µÇϰí ÀÖ½À´Ï´Ù. ESP´Â ¼¾¼­ÀÇ Áö¼ÓÀûÀÎ µ¥ÀÌÅÍ ½ºÆ®¸²À» ó¸®ÇÔÀ¸·Î½á Áö¹æÁ¤ºÎ°¡ ÀÌ»ó ¡Èĸ¦ °¨ÁöÇϰí, À¯Áöº¸¼ö Çʿ伺À» ¿¹ÃøÇϰí, ÀÚ¿ø »ç¿ëÀ» ÃÖÀûÈ­ÇÒ ¼ö ÀÖ°Ô ÇØÁÖ¸ç, ÀÌ´Â ½º¸¶Æ® ½ÃƼ ±¸»ó¿¡¼­´Â ƯÈ÷ °¡Ä¡°¡ ÀÖ½À´Ï´Ù. ¶ÇÇÑ ESP´Â ¹°·ù ¹× ¿î¼Û °ü¸®¿¡µµ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ°í ÀÖÀ¸¸ç, ¹è¼Û, ±³Åë ÆÐÅÏ, Â÷·® »óÅÂÀÇ ½Ç½Ã°£ ÃßÀûÀ» Áö¿øÇϰí ÀÖ½À´Ï´Ù. °ø±Þ¸ÁÀÇ È¥¶õ°ú ¿î¼Û Áö¿¬ÀÌ Áß¿äÇÑ ºñÁî´Ï½º °úÁ¦ÀÎ °¡¿îµ¥, ESP´Â ±â¾÷¿¡ ½Ç½Ã°£ ´ëÀÀ ´É·ÂÀ» Á¦°øÇÏ¿© ¹è¼Û °æ·Î¸¦ ÃÖÀûÈ­ÇÏ°í º¯È­¿¡ µ¿ÀûÀ¸·Î ´ëÀÀÇÒ ¼ö ÀÖ´Â ´É·ÂÀ» Á¦°øÇÕ´Ï´Ù. ÀÌó·³ ´Ù¾çÇÑ ¿ëµµÀ¸·Î È®´ëµÇ°í ÀÖ´Â ESPÀÇ ¹ü¿ë¼º°ú È®À强Àº ESP°¡ Á¡Á¡ ´õ µ¥ÀÌÅÍ Áß½ÉÀûÀÎ ¼¼»ó¿¡¼­ ´ëÀÀ·Â°ú ȸº¹·ÂÀ» À¯ÁöÇϰíÀÚ ÇÏ´Â Á¶Á÷¿¡°Ô Áß¿äÇÑ ±â¼ú·Î ÀÚ¸®¸Å±èÇϰí ÀÖÀ½À» ¹Ý¿µÇÕ´Ï´Ù.

¼¼°èÀÇ À̺¥Æ® ½ºÆ®¸² ó¸® ½ÃÀå ¼ºÀåÀÇ ¿øµ¿·ÂÀº?

À̺¥Æ® ½ºÆ®¸² ó¸® ½ÃÀåÀÇ ¼ºÀåÀº ±â¼ú ¹ßÀü, ½Ç½Ã°£ ÀλçÀÌÆ®¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, ºÎ¹® °£ ¿ëµµ È®´ë µî ¿©·¯ °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ÁÖ¿ä ¿äÀÎ Áß Çϳª´Â Ä¿³ØÆ¼µå µð¹ÙÀ̽º¿Í IoTÀÇ ºÎ»óÀ¸·Î È¿°úÀûÀÎ ÀÇ»ç°áÁ¤À» À§ÇØ Áï°¢ÀûÀÎ ºÐ¼®ÀÌ ÇÊ¿äÇÑ µ¥ÀÌÅÍ ½ºÆ®¸²ÀÌ Áö¼ÓÀûÀ¸·Î »ý¼ºµÇ°í ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. Á¦Á¶¾÷, ¼Ò¸Å¾÷, ÇコÄÉ¾î µîÀÇ »ê¾÷¿¡¼­ IoT¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁü¿¡ µû¶ó ÀÌ·¯ÇÑ ½Ç½Ã°£ µ¥ÀÌÅÍ ½ºÆ®¸²À» È¿À²ÀûÀ¸·Î ó¸®ÇÏ°í °ü¸®Çϱâ À§Çؼ­´Â ESP ±â¼úÀÌ ÇʼöÀûÀÔ´Ï´Ù. ÀÌ»ó ¡ÈÄ °¨ÁöºÎÅÍ ¿¹Ãø ¸ðµ¨¸µ¿¡ À̸£±â±îÁö º¸´Ù °íµµÈ­µÈ µ¥ÀÌÅÍ ºÐ¼® ±â´ÉÀ» Á¦°øÇÏ´Â ESP´Â ±ÝÀ¶ ¹× °ø°ø¾ÈÀü°ú °°Àº Áß¿äÇÑ È¯°æ¿¡¼­ ¸Å¿ì À¯¿ëÇÏ°Ô È°¿ëµÇ°í ÀÖ½À´Ï´Ù.

Ŭ¶ó¿ìµå ±â¹Ý µ¥ÀÌÅÍ ¼Ö·ç¼ÇÀ¸·ÎÀÇ Àüȯ°ú ¿§Áö ÄÄÇ»ÆÃÀÇ È®»êµµ ½ÃÀå ¼ºÀå¿¡ Å©°Ô ±â¿©Çϰí ÀÖ½À´Ï´Ù. Ŭ¶ó¿ìµå ³×ÀÌÆ¼ºê ESP Ç÷§ÆûÀ» ÅëÇØ ±â¾÷Àº µ¥ÀÌÅÍ Ã³¸® ´É·ÂÀ» À¯¿¬ÇÏ°Ô È®ÀåÇÒ ¼ö ÀÖ½À´Ï´Ù. ÇÑÆí, ¿§Áö ÄÄÇ»ÆÃÀº µ¥ÀÌÅÍ ¼Ò½º¿Í °¡±î¿î °÷¿¡¼­ µ¥ÀÌÅ͸¦ ó¸®ÇÒ ¼ö ÀÖÀ¸¸ç, ´ë±â ½Ã°£À» ´ÜÃàÇϰí ÀÀ´ä¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ °í°´ °æÇè Çâ»ó°ú ¾÷¹« È¿À²È­¿¡ ´ëÇÑ °¢ ¾÷°èÀÇ ¿ä±¸°¡ ³ô¾ÆÁö°í ÀÖ´Â °Íµµ ESP µµÀÔÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î ±ÝÀ¶ ¾÷°è¿¡¼­´Â ºÎÁ¤ÇàÀ§¸¦ ½Ç½Ã°£À¸·Î °¨ÁöÇϱâ À§ÇØ ESP°¡ ÇʼöÀûÀ̸ç, ¼Ò¸Å ¾÷°è¿¡¼­´Â ÇöÀç ¼îÇΰ´ÀÇ Çൿ¿¡ ±â¹ÝÇÑ µ¿Àû °¡°Ý Ã¥Á¤ ¹× °³ÀÎÈ­µÈ ÃßõÀ» Áö¿øÇÏ´Â µ¥¿¡ ESP°¡ ÇʼöÀûÀÔ´Ï´Ù. ¶ÇÇÑ »ê¾÷ ºÎ¹®¿¡¼­´Â ¼¾¼­ µ¥ÀÌÅ͸¦ ½Ç½Ã°£À¸·Î ºÐ¼®ÇÏ¿© ºñ¿ëÀÌ ¸¹ÀÌ µå´Â ÀåºñÀÇ °íÀåÀ» ¹æÁöÇϰíÀÚ ÇÏ´Â ¿¹Áöº¸Àü¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ ESP¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÃËÁø¿äÀεéÀº ½Ç½Ã°£ µ¥ÀÌÅͺ£À̽º ÀÇ»ç°áÁ¤À» °¡´ÉÇÏ°Ô ÇÏ´Â ESPÀÇ Á߿伺À» °­Á¶Çϸç, ÀÌ ±â¼úÀÇ º¸±Þ°ú ½ÃÀåÀÇ Áö¼ÓÀûÀÎ ¼ºÀåÀ» Áö¿øÇϰí ÀÖ½À´Ï´Ù.

ºÎ¹®

ÄÄÆ÷³ÍÆ®(¼Ö·ç¼Ç, ¼­ºñ½º); ¾÷Á¾º°(BFSI, ¼Ò¸Å & E-Commerce, IT & Åë½Å, Á¦Á¶, ¿¡³ÊÁö & À¯Æ¿¸®Æ¼, ¿î¼Û & ¹°·ù, ±âŸ ¾÷Á¾)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI Åø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°èº° SLM Äõ¸®¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ´ë·® ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÔ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Event Stream Processing Market to Reach US$9.1 Billion by 2030

The global market for Event Stream Processing estimated at US$3.3 Billion in the year 2024, is expected to reach US$9.1 Billion by 2030, growing at a CAGR of 18.1% over the analysis period 2024-2030. Solutions, one of the segments analyzed in the report, is expected to record a 18.9% CAGR and reach US$6.3 Billion by the end of the analysis period. Growth in the Services segment is estimated at 16.3% CAGR over the analysis period.

The U.S. Market is Estimated at US$962.8 Million While China is Forecast to Grow at 17.7% CAGR

The Event Stream Processing market in the U.S. is estimated at US$962.8 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$1.4 Billion by the year 2030 trailing a CAGR of 17.7% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 16.1% and 14.8% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 12.3% CAGR.

Global Event Stream Processing Market - Key Trends & Growth Drivers Summarized

How Is Event Stream Processing Transforming Real-Time Data Analysis?

Event Stream Processing (ESP) has revolutionized the field of data analytics by enabling organizations to process large volumes of real-time data as events occur, allowing for instant insights and immediate action. This technology, which analyzes data in motion, has applications across sectors that require fast, responsive analytics, including finance, retail, telecommunications, and healthcare. ESP allows organizations to track and analyze data continuously, whether from sensors, transactions, user interactions, or IoT devices, delivering results within milliseconds. In financial services, for example, ESP is used for fraud detection and real-time trading, where delays can lead to significant losses. In retail, it supports personalized promotions, inventory management, and customer experience enhancements by processing data as customers interact with online and physical stores. The ability to make real-time decisions based on continuous data streams provides organizations with a competitive edge, making ESP essential in an era where instant insights translate into strategic advantages.

ESP’s significance is further amplified by the rise of IoT and connected devices, which generate constant data streams from industrial machinery, smart home devices, and more. For instance, in smart cities, ESP enables real-time monitoring of traffic, energy usage, and public safety, supporting efficient resource allocation and incident response. The healthcare sector is also leveraging ESP for continuous patient monitoring, where real-time alerts are critical for proactive intervention in case of abnormal readings. The importance of ESP lies in its ability to process data in near-real time, unlocking operational efficiencies and enhancing the accuracy of predictive analytics across sectors. With industries relying more on data-driven decisions, ESP is becoming a foundational technology for modern, responsive data architectures.

What Technological Innovations Are Advancing Event Stream Processing?

Technological advancements have significantly enhanced the capabilities of event stream processing platforms, enabling higher processing speeds, scalability, and more sophisticated data analysis. The integration of machine learning (ML) and artificial intelligence (AI) with ESP platforms has led to intelligent systems that can detect anomalies, predict trends, and make automated decisions based on real-time data. For instance, machine learning models trained on historical data are increasingly applied to live data streams, allowing ESP systems to flag unusual patterns instantly, which is crucial for fraud detection in financial services or quality control in manufacturing. Additionally, the development of edge computing, where data is processed closer to the data source rather than in a centralized cloud, has bolstered ESP’s efficiency and responsiveness, especially in IoT applications where low latency is critical.

Open-source frameworks and cloud-based ESP platforms have also made the technology more accessible, allowing businesses of all sizes to deploy scalable, cost-effective solutions. Cloud-native ESP solutions leverage distributed computing and microservices architecture, enabling real-time data processing at scale and across geographically dispersed locations. This flexibility is essential for industries with extensive data networks, such as telecommunications and logistics, where real-time insights are needed to coordinate complex operations. Innovations in in-memory computing, which stores data in RAM for ultra-fast access, have further accelerated ESP capabilities, making it possible to handle high-throughput data streams with minimal delay. Together, these technological advancements are driving the adoption of ESP, making it a versatile tool capable of handling a wide variety of real-time data processing demands.

Why Is Event Stream Processing Expanding Across New Applications?

The ability of ESP to process and analyze data as it is generated is opening new applications across diverse industries, from finance to environmental monitoring and supply chain logistics. In the financial sector, ESP is essential for high-frequency trading and fraud prevention, enabling banks and investment firms to detect irregular transactions and execute trades within milliseconds. Telecommunications providers use ESP for real-time network monitoring and troubleshooting, allowing them to proactively address issues before they impact service quality. Retailers are increasingly relying on ESP to enhance customer experiences by analyzing shopper behavior in real time, enabling personalized marketing and dynamic pricing based on immediate demand. This responsive approach allows organizations to adapt quickly, gaining customer trust and loyalty through personalized interactions.

The environmental and utilities sectors are also leveraging ESP to monitor critical infrastructures, such as water quality, air pollution, and energy consumption. By processing continuous streams of data from sensors, ESP allows municipalities to detect anomalies, predict maintenance needs, and optimize resource usage, which is especially valuable in smart city initiatives. Additionally, ESP is becoming integral to logistics and transportation management, where it supports real-time tracking of shipments, traffic patterns, and fleet conditions. With supply chain disruptions and transportation delays being critical business challenges, ESP offers companies the ability to respond in real time, optimizing delivery routes and adjusting to changes dynamically. The expansion of ESP into these diverse applications reflects its versatility and scalability, positioning it as a key technology for organizations looking to remain responsive and resilient in an increasingly data-driven world.

What’s Driving the Growth of the Global Event Stream Processing Market?

The growth in the event stream processing market is driven by several factors rooted in technological advancements, an increasing need for real-time insights, and expanding applications across sectors. One primary driver is the rise of connected devices and IoT, which generate constant data streams that require immediate analysis for effective decision-making. As industries such as manufacturing, retail, and healthcare become more dependent on IoT, ESP technology is essential for processing and managing these real-time data streams efficiently. Another critical driver is the integration of AI and ML within ESP platforms, which has enabled more sophisticated data analysis capabilities, from anomaly detection to predictive modeling, making ESP invaluable in high-stakes environments such as finance and public safety.

The shift towards cloud-based data solutions and the widespread adoption of edge computing have also contributed significantly to the market’s growth. Cloud-native ESP platforms allow organizations to scale their data processing capabilities flexibly, while edge computing enables data to be processed closer to its source, reducing latency and enhancing responsiveness. Additionally, rising demand for enhanced customer experience and operational efficiency across industries is driving ESP adoption. In the financial sector, for instance, ESP is vital for detecting fraud in real-time, while in retail, it supports dynamic pricing and personalized recommendations based on current shopper behavior. Furthermore, the growing focus on predictive maintenance in industrial sectors is increasing the demand for ESP, as companies aim to prevent costly equipment failures by analyzing sensor data in real time. Together, these drivers underscore the importance of ESP in enabling real-time, data-driven decision-making, supporting the technology’s widespread adoption and sustained market growth.

SCOPE OF STUDY:

The report analyzes the Event Stream Processing market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Component (Solutions, Services); Vertical (BFSI, Retail & eCommerce, IT & Telecom, Manufacturing, Energy & Utilities, Transportation & Logistics, Other Verticals)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 36 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â