¼¼°èÀÇ ³ª³ë¿©°ú¸· ½ÃÀå
Nanofiltration Membranes
»óǰÄÚµå : 1768749
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 276 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,222,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,666,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ³ª³ë¿©°ú¸· ½ÃÀåÀº 2030³â±îÁö 13¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 9¾ï 5,730¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ ³ª³ë¿©°ú¸· ½ÃÀåÀº ºÐ¼® ±â°£ÀÎ 2024-2030³â¿¡ CAGR 5.8%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 13¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ Æú¸®¸Ó´Â CAGR 5.8%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á±îÁö 10¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¹«±â ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 6.1%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 2¾ï 4,770¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 9.0%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ³ª³ë¿©°ú¸· ½ÃÀåÀº 2024³â¿¡ 2¾ï 4,770¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2024-2030³âÀÇ ºÐ¼® ±â°£¿¡ CAGR 9.0%·Î ÃßÀÌÇϸç, 2030³â¿¡´Â 3¾ï 1,370¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 3.2%¿Í 4.6%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 4.1%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°è ³ª³ë¿©°ú¸· ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ Á¤¸®

³ª³ë¿©°ú¸·À̶õ ¹«¾ùÀ̸ç, ¿Ö ¿©°ú °øÁ¤¿¡ ÇʼöÀûÀΰ¡?

³ª³ë¿©°ú(NF) ¸âºê·¹ÀÎÀº 1-10 ³ª³ë¹ÌÅÍÀÇ ±â°ø Å©±â¸¦ °¡Áø ³ª³ë¹ÌÅÍ ±Ô¸ðÀÇ ¾×ü¿¡¼­ ÀÔÀÚ, ¿ëÇØµÈ ¿ëÁú, ÀÌ¿ÂÀ» ¼±ÅÃÀûÀ¸·Î ºÐ¸®Çϵµ·Ï ¼³°èµÈ ÷´Ü ¿©°ú ½Ã½ºÅÛÀÔ´Ï´Ù. ÀÌ ¸·Àº Çѿܿ©°ú¿Í ¿ª»ïÅõ¸·ÀÇ Áß°£ Á¤µµÀÇ ¿©°ú ´É·ÂÀ» °¡Áö°í ÀÖÀ¸¸ç, 2°¡ ÀÌ»óÀÇ 1°¡ ÀÌ¿Â, À¯±â ºÐÀÚ, ÀÛÀº ºÎÀ¯ ÀÔÀÚÀÇ Á¦°Å¿¡ ÀûÇÕÇÕ´Ï´Ù. ³ª³ë¿©°ú¸·Àº ¿¬¼öÈ­, Å»»ö, Å»»ö, Á¦¿°, ºÎºÐ Å»¿°¿¡ ¸Å¿ì È¿°úÀûÀÔ´Ï´Ù. Á¤¹ÐÇÑ ºÐ¸®¿Í Á¤Á¦°¡ ¿ä±¸µÇ´Â ¼öó¸®, Æó¼öó¸®, ½Äǰ ¹× À½·á °¡°ø, È­ÇÐ Á¦Á¶, Á¦¾à, À¯Á¦Ç° »ê¾÷ µî¿¡¼­ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù.

³ª³ë¿©°ú¸·¿¡ ´ëÇÑ ¼ö¿ä´Â ±ú²ýÇÑ ¹°¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, ¼öó¸® ±ÔÁ¦ÀÇ °­È­, °¢ »ê¾÷ºÐ¾ßÀÇ ¿ëµµ È®´ë·Î ÀÎÇØ Å©°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ¼öó¸® ºÐ¾ß¿¡¼­ ³ª³ë¿©°ú¸·Àº ½Ä¼ö Á¦Á¶, °æµµ °¨¼Ò, ³ó¾à, Á¦ÃÊÁ¦, Áß±Ý¼Ó µîÀÇ ¿À¿°¹°Áú Á¦°Å¿¡ »ç¿ëµË´Ï´Ù. ½Äǰ ¹× À½·á ºÐ¾ß¿¡¼­´Â Å»¿°, À¯´ç Á¦°Å, ¼³ÅÁ ¹× ´Ü¹éÁú ³óÃà µîÀÇ °øÁ¤¿¡ »ç¿ëµÇ¾î ³ôÀº Á¦Ç° ¼øµµ¿Í ǰÁúÀ» º¸ÀåÇÕ´Ï´Ù. ¶ÇÇÑ È­ÇÐ ¹× Á¦¾à »ê¾÷¿¡¼­ NF ¸âºê·¹ÀÎÀº ¿ë¸Å ȸ¼ö, À¯±â È¥ÇÕ¹° ºÐ¸®, ¿ø·áÀǾàǰ(API) ³óÃà¿¡ »ç¿ëµË´Ï´Ù. ¿ª»ïÅõ¸·¿¡ ºñÇØ ³ôÀº Â÷´ÜÀ²°ú ³·Àº ¿¡³ÊÁö ¼Òºñ¸¦ ½ÇÇöÇϴ ó¸® ´É·ÂÀ¸·Î ÀÎÇØ ³ª³ë¿©°ú¸·Àº »ê¾÷¿ë ¼öó¸® ½Ã½ºÅÛ ¹× µµ½Ã ¼öó¸® ½Ã½ºÅÛ¿¡¼­ ÇʼöÀûÀÎ ±â¼ú·Î ÀÚ¸® Àâ¾Ò½À´Ï´Ù.

³ª³ë¿©°ú¸·Àº ¾î¶»°Ô ¿©°ú È¿À²°ú Á¦Ç° ǰÁúÀ» Çâ»ó½Ãų ¼ö Àִ°¡?

³ª³ë¿©°ú¸·Àº ¼±ÅÃÀû Åõ°ú¼ºÀ» ÅëÇØ ¿©°ú È¿À²À» Çâ»ó½Ã۰í, ÇÊ¿äÇÑ ¹Ì³×¶öÀ» À¯ÁöÇϸ鼭 ºÒÇÊ¿äÇÑ À̿°ú ÀÛÀº À¯±â ºÐÀÚ¸¦ È¿°úÀûÀ¸·Î Á¦°ÅÇÒ ¼ö ÀÖ½À´Ï´Ù. NF ¸âºê·¹ÀÎÀº Ä®½·, ¸¶±×³×½·°ú °°Àº °æµµ¸¦ À¯¹ßÇÏ´Â ÀÌ¿ÂÀ» Á¦°ÅÇÏ¿© È­ÇÐÀû ¿¬È­Á¦ÀÇ Çʿ伺À» ÁÙÀÌ°í ½Ä¼öÀÇ ¸À°ú ǰÁúÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. Áú»ê¿°, ³ó¾à, Á߱ݼӰú °°Àº ¿À¿°¹°ÁúÀ» Á¦°ÅÇÔÀ¸·Î½á ÀÌ ¸·Àº ½Ä¼ö ±âÁØÀ» ÁؼöÇÏ°í °øÁß º¸°ÇÀ» °³¼±ÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. Æó¼ö 󸮿¡¼­ ³ª³ë ¿©°ú´Â ÀÜ·ù À¯±â È­ÇÕ¹°, Âø»ö ¹× ƯÁ¤ Á߱ݼÓÀ» Á¦°ÅÇÏ´Â µ¥ »ç¿ëµÇ¾î ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÁÙÀ̸鼭 ¹° ÀçȰ¿ë ¹× Àç»ç¿ë ³ë·ÂÀ» Áö¿øÇÕ´Ï´Ù.

½Äǰ ¹× À½·á »ê¾÷¿¡¼­´Â ºÒ¼ø¹°°ú ¿øÄ¡ ¾Ê´Â ¿°ºÐÀ» °É·¯³»°í ¼³ÅÁ, ´Ü¹éÁú, Çâ·á¿Í °°Àº ±ÍÁßÇÑ ¼ººÐÀ» ³óÃàÇÏ¿© Á¦Ç°ÀÇ Ç°ÁúÀ» Çâ»ó½Ãŵ´Ï´Ù. ¿¹¸¦ µé¾î NF ¸âºê·¹ÀÎÀº À¯Á¦Ç° °¡°ø¿¡¼­ À¯Ã»¿¡¼­ À¯´çÀ» ºÐ¸®Çϰí, ´Ü¹éÁú ³óÃàÀ» °³¼±Çϰí, ¹«À¯´ç À¯Á¦Ç°À» Á¦Á¶ÇÏ´Â µ¥ »ç¿ëµË´Ï´Ù. È­ÇÐ ºÐ¾ß¿¡¼­ NF ¸âºê·¹ÀÎÀº ¿ë¸Å ȸ¼ö, À¯±â È­ÇÕ¹° Á¤Á¦, ±ÍÁßÇÑ Áß°£Ã¼ ºÐ¸®¸¦ °¡´ÉÇÏ°Ô ÇÏ¿© °øÁ¤À» º¸´Ù È¿À²ÀûÀÌ°í ºñ¿ë È¿À²ÀûÀ¸·Î ¸¸µì´Ï´Ù. Á¦¾à Á¦Á¶¿¡¼­ ³ª³ë ¿©°ú´Â Ȱ¼º ¼ººÐÀÇ ³óÃà ¹× Á¤Á¦¿¡ »ç¿ëµÇ¾î °í¼øµµ ¹× ¾ö°ÝÇÑ ±ÔÁ¦ Ç¥ÁØ Áؼö¸¦ º¸ÀåÇÕ´Ï´Ù. ¼±ÅÃÀû ºÐ¸®, ³ôÀº ȸ¼öÀ², ¿¡³ÊÁö È¿À²ÀûÀÎ ¿©°ú¸¦ Á¦°øÇÔÀ¸·Î½á ³ª³ë¿©°ú¸·Àº ´Ù¾çÇÑ »ê¾÷¿¡¼­ °øÁ¤ È¿À²¼º, ºñ¿ë Àý°¨ ¹× Á¦Ç° ǰÁú Çâ»ó¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.

±â¼úÀÇ ¹ßÀüÀº ³ª³ë¿©°ú¸·ÀÇ °³¹ßÀ» ¾î¶»°Ô Çü¼ºÇϰí Àִ°¡?

±â¼úÀÇ ¹ßÀüÀº ³ª³ë¿©°ú¸·ÀÇ ¼º´É, ³»±¸¼º, ¹ü¿ë¼ºÀ» ºñ¾àÀûÀ¸·Î Çâ»ó½ÃÄÑ ´Ù¾çÇÑ ¿ëµµ¿¡ È¿°ú¸¦ ¹ßÈÖÇϰí ÀÖ½À´Ï´Ù. ÁÖ¿ä ±â¼ú Çõ½Å Áß Çϳª´Â ¹Ú¸· º¹ÇÕÀç·á(TFC) ¹× ¼¼¶ó¹Í ³ª³ë¿©°ú¸·°ú °°ÀÌ ´õ ¿ì¼öÇÑ ³»È­Çмº, ´õ ³ôÀº Â÷´ÜÀ², ´õ ±ä ÀÛµ¿ ¼ö¸íÀ» Á¦°øÇϴ ÷´Ü ¸· Àç·áÀÇ °³¹ßÀÔ´Ï´Ù. ƯÈ÷ TFC ¸·Àº ¼±Åüº°ú Ç÷°½º°¡ Çâ»óµÇ¾î Á¤¼öºÎÅÍ À¯±âÈ­ÇÕ¹° ºÐ¸®±îÁö ´Ù¾çÇÑ ¿ëµµ¿¡ ÀûÇÕÇÕ´Ï´Ù. ±â°èÀû °­µµ°¡ ³ô°í °¡È¤ÇÑ È­ÇÐÀû ȯ°æ¿¡ Àß °ßµð´Â °ÍÀ¸·Î ¾Ë·ÁÁø ¼¼¶ó¹Í ³ª³ë¿©°ú¸·Àº °ß°íÇÑ ¼º´ÉÀÌ ¿ä±¸µÇ´Â È­ÇÐ ¹× Á¦¾à »ê¾÷¿¡¼­ Àα⸦ ²ø°í ÀÖ½À´Ï´Ù.

¶Ç ´Ù¸¥ Å« ¹ßÀüÀº NF ¸âºê·¹Àο¡ ¹æ¿À ¹× Ç×±Õ ÄÚÆÃÀ» Àû¿ëÇÏ´Â °ÍÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ÄÚÆÃÀº ¸· Ç¥¸é¿¡ À¯±â¹°, ¹ÚÅ׸®¾Æ ¹× ±âŸ ¿À¿° ¹°ÁúÀÌ ÃàÀûµÇ´Â °ÍÀ» ¹æÁöÇÏ¿© ³ôÀº Åõ°ú À¯¼ÓÀ» À¯ÁöÇϰí ÀæÀº ¼¼Ã´ÀÇ Çʿ伺À» ÁÙÀÌ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ±×·¡ÇÁÆ® ÁßÇÕ ¹× Ãþº° Á¶¸³°ú °°Àº »õ·Î¿î Ç¥¸é °³Áú ±â¼úÀ» »ç¿ëÇÏ¿© ¸·ÀÇ ¼±ÅüºÀÌ ´õ¿í Çâ»óµÇ°í ¿À¿°ÀÌ °¨¼ÒÇÏ¿© ³ª³ë ¿©°ú°¡ ´õ¿í È¿À²ÀûÀÌ°í ½Å·ÚÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ ³ª¼±Çü ±Ç¼± ¹× Áß°ø»ç ±¸¼º°ú °°Àº ¸âºê·¹ÀÎ ¸ðµâ ¼³°èÀÇ Çõ½ÅÀ¸·Î È®À强, À¯¿¬¼ºÀÌ Çâ»óµÇ¾î ±âÁ¸ ó¸® ½Ã½ºÅÛ¿¡ ½±°Ô ÅëÇÕÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÚµ¿È­ ¹× µðÁöÅÐ ¸ð´ÏÅ͸µµµ ³ª³ë ¿©°ú ½Ã½ºÅÛ¿¡ ÅëÇÕµÇ¾î ¾Ð·Â, À¯·®, ¸· ¼º´ÉÀ» ½Ç½Ã°£À¸·Î Á¦¾îÇÒ ¼ö ÀÖÀ¸¸ç, ¿©°ú È¿À²À» ÃÖÀûÈ­ÇÏ°í ¿î¿µ ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀû Áøº¸·Î ÀÎÇØ ³ª³ë¿©°ú¸·ÀÇ Àû¿ë ¹üÀ§°¡ »ê¾÷ Àü¹Ý¿¡ °ÉÃÄ È®´ëµÇ°í ÀûÀÀ¼º, È¿À²¼º ¹× ºñ¿ë È¿À²¼ºÀÌ Çâ»óµÇ¾ú½À´Ï´Ù.

³ª³ë¿©°ú¸· ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

³ª³ë¿©°ú¸· ½ÃÀåÀÇ ¼ºÀåÀº ±ú²ýÇÑ ¹°¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, ȯ°æ ±ÔÁ¦ °­È­, ½Äǰ ¹× À½·á °¡°ø¿¡ ´ëÇÑ Àû¿ë È®´ë, ¿©°ú ±â¼ú ¹ßÀü µî ¿©·¯ ¿äÀο¡ ÀÇÇØ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. ¹° ºÎÁ·°ú ¿À¿°¿¡ ´ëÇÑ Àü ¼¼°èÀÇ ¿ì·Á°¡ °è¼Ó Áõ°¡ÇÔ¿¡ µû¶ó ³ª³ë ¿©°ú¿Í °°Àº È¿À²ÀûÀÎ ¼öó¸® ¼Ö·ç¼ÇÀÇ Ã¤ÅÃÀÌ ÁöÀÚü¿Í »ê¾÷ ºÎ¹®ÀÇ ¿ì¼± ¼øÀ§°¡ µÇ°í ÀÖ½À´Ï´Ù. ³ª³ë¿©°ú¸·Àº ¿À¿°¹°ÁúÀ» Á¦°ÅÇϰí, ¹°ÀÇ °æµµ¸¦ ³·Ã߸ç, ¹°ÀÇ Àç»ç¿ëÀ» °¡´ÉÇÏ°Ô ÇÏ´Â È¿°úÀûÀÎ ¼Ö·ç¼ÇÀ» Á¦°øÇÔÀ¸·Î½á ¹° Àý¾à ¸ñÇ¥¸¦ ´Þ¼ºÇÏ°í ±ÔÁ¦ ±âÁØÀ» ÁؼöÇÏ´Â µ¥ ÇʼöÀûÀÎ ¿ªÇÒÀ» ÇÕ´Ï´Ù. Áö¼Ó°¡´ÉÇÑ ¹° °ü¸®¿Í ¿¬¼ö °øÁ¤¿¡¼­ È­Çй°Áú »ç¿ë·® °¨¼Ò¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ ³ª³ë¿©°ú¸·¿¡ ´ëÇÑ ¼ö¿ä°¡ ´õ¿í Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

°íǰÁú ¿©°ú ¹× ºÐ¸® °øÁ¤¿¡ ´ëÇÑ ½Äǰ ¹× À½·á »ê¾÷ÀÇ ¿ä±¸µµ ½ÃÀå ¼ºÀå¿¡ ±â¿©Çϰí ÀÖÀ¸¸ç, NF ¸âºê·¹ÀÎÀº Å»¿°, ¿µ¾ç¼Ò ³óÃà, ºÒ¼ø¹° Á¦°Å¿¡ ³Î¸® »ç¿ëµÇ¾î °í¼øµµ ½Äǰ ¹× À½·á Á¦Á¶¸¦ Áö¿øÇϰí ÀÖ½À´Ï´Ù. À¯Á¦Ç° »ê¾÷¿¡¼­´Â ¹«À¯´ç Á¦Ç° ¹× ´Ü¹éÁú ³óÃà¾×¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó È¿À²ÀûÀÌ°í ºñ¿ë È¿À²ÀûÀÎ ºÐ¸® ¼Ö·ç¼ÇÀ» Á¦°øÇÏ´Â ³ª³ë ¿©°ú ½Ã½ºÅÛÀÇ Ã¤ÅÃÀÌ ÃËÁøµÇ°í ÀÖ½À´Ï´Ù. È­ÇÐ ¹× Á¦¾à ºÐ¾ß¿¡¼­´Â ¿ë¸Å ȸ¼ö, Ȱ¼º ¼ººÐÀÇ Á¤Á¦, º¹ÀâÇÑ È¥ÇÕ¹° ºÐ¸®ÀÇ Çʿ伺À¸·Î ÀÎÇØ ½Å·ÚÇÒ ¼ö ÀÖ´Â ºÐ¸®¿Í ³ôÀº ¼±ÅüºÀ» Á¦°øÇÏ´Â NF ¸âºê·¹ÀÎÀÇ »ç¿ëÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù.

³»±¸¼ºÀÌ ¶Ù¾î³­ °í¼º´É ¸âºê·¹ÀÎ ¼ÒÀç¿Í ÀÚµ¿ ¿©°ú ½Ã½ºÅÛÀÇ °³¹ß µî ±â¼ú ¹ßÀüÀ¸·Î ³ª³ë¿©°úÀÇ È¿À²¼º, ½Å·Ú¼º, ºñ¿ë È¿À²¼ºÀÌ Çâ»óµÇ¾î »ê¾÷ Àü¹Ý¿¡ °ÉÃÄ Æø³Ð°Ô µµÀԵǰí ÀÖ½À´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾ç°ú ¶óƾ¾Æ¸Þ¸®Ä«¸¦ Áß½ÉÀ¸·Î ÇÑ ½ÅÈï ½ÃÀåÀº ¼öó¸® ÀÎÇÁ¶ó, ½Äǰ °¡°ø ¹× »ê¾÷ »ý»ê¿¡¼­ ±Þ¼ÓÇÑ ¼ºÀåÀ» ´Þ¼ºÇϰí ÀÖÀ¸¸ç, ³ª³ë¿©°ú¸· Á¦Á¶¾÷ü¿¡ »õ·Î¿î ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù. ¸· ±â¼úÀÇ Çõ½Å, ȯ°æ ±ÔÁ¦ °­È­, ¹° ÀçÀÌ¿ë ¹× °íǰÁú ºÐ¸® °øÁ¤¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ÀÎÇØ ³ª³ë¿©°ú¸· ½ÃÀåÀº ´Ù¾çÇÑ ¿ëµµ, ÁøÈ­ÇÏ´Â »ê¾÷Àû ¿ä±¸, ¼¼°è Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ³ë·Â¿¡ ÈûÀÔ¾î Áö¼ÓÀûÀÎ ¼ºÀåÀÌ ¿¹»óµË´Ï´Ù.

ºÎ¹®

À¯Çü(Æú¸®¸Ó, ¹«±â, ÇÏÀ̺긮µå); ¾ÖÇø®ÄÉÀ̼Ç(¼ö󸮡¤Æó¼ö ó¸®, È­ÇС¤¼®À¯È­ÇÐ, ½Äǰ ¹× À½·á, Á¦¾à¡¤¹ÙÀÌ¿À¸ÞµðÄÃ, ±âŸ ¾ÖÇø®ÄÉÀ̼Ç)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI Åø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾ç ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÔ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Nanofiltration Membranes Market to Reach US$1.3 Billion by 2030

The global market for Nanofiltration Membranes estimated at US$957.3 Million in the year 2024, is expected to reach US$1.3 Billion by 2030, growing at a CAGR of 5.8% over the analysis period 2024-2030. Polymeric, one of the segments analyzed in the report, is expected to record a 5.8% CAGR and reach US$1.0 Billion by the end of the analysis period. Growth in the Inorganic segment is estimated at 6.1% CAGR over the analysis period.

The U.S. Market is Estimated at US$247.7 Million While China is Forecast to Grow at 9.0% CAGR

The Nanofiltration Membranes market in the U.S. is estimated at US$247.7 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$313.7 Million by the year 2030 trailing a CAGR of 9.0% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 3.2% and 4.6% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 4.1% CAGR.

Global Nanofiltration Membranes Market - Key Trends & Drivers Summarized

What Are Nanofiltration Membranes & Why Are They Essential for Filtration Processes?

Nanofiltration (NF) membranes are advanced filtration systems designed to selectively separate particles, dissolved solutes, and ions from liquids at the nanometer scale, with pore sizes ranging between 1 to 10 nanometers. These membranes offer a filtration capability that falls between ultrafiltration and reverse osmosis, making them suitable for removing divalent and larger monovalent ions, organic molecules, and small suspended particles. Nanofiltration membranes are highly effective for water softening, color removal, decontamination, and partial desalination. They are widely used in water and wastewater treatment, food and beverage processing, chemical manufacturing, pharmaceuticals, and the dairy industry, where precise separation and purification are required.

The demand for nanofiltration membranes has grown significantly due to the increasing need for clean water, stringent water treatment regulations, and expanding applications across industries. In water treatment, nanofiltration membranes are used for producing drinking water, reducing hardness, and removing contaminants like pesticides, herbicides, and heavy metals. In the food and beverage sector, these membranes help in processes like demineralization, lactose removal, and concentration of sugars and proteins, ensuring high product purity and quality. Additionally, in the chemical and pharmaceutical industries, NF membranes are used for solvent recovery, separation of organic mixtures, and concentration of active pharmaceutical ingredients (APIs). With their ability to provide high rejection rates and lower energy consumption compared to reverse osmosis, nanofiltration membranes have become an essential technology in both industrial and municipal water treatment systems.

How Do Nanofiltration Membranes Improve Filtration Efficiency & Product Quality?

Nanofiltration membranes improve filtration efficiency by offering selective permeability, which allows for the effective removal of unwanted ions and small organic molecules while retaining essential minerals. In municipal water treatment, NF membranes remove hardness-causing ions like calcium and magnesium, reducing the need for chemical softeners and enhancing the taste and quality of drinking water. By removing contaminants such as nitrates, pesticides, and heavy metals, these membranes help ensure compliance with drinking water standards and improve public health. In wastewater treatment, nanofiltration is used to remove residual organic compounds, color, and certain heavy metals, supporting water recycling and reuse efforts while reducing environmental impact.

In the food and beverage industry, nanofiltration membranes enhance product quality by concentrating valuable components like sugars, proteins, and flavors while filtering out impurities and undesired salts. For example, NF membranes are used in dairy processing to separate lactose from whey, improve protein concentration, and produce lactose-free milk products. In the chemical sector, NF membranes enable solvent recovery, purification of organic compounds, and separation of valuable intermediates, making processes more efficient and cost-effective. In pharmaceutical production, nanofiltration is used for the concentration and purification of active ingredients, ensuring high purity and compliance with stringent regulatory standards. By providing selective separation, higher recovery rates, and energy-efficient filtration, nanofiltration membranes contribute to improved process efficiency, cost savings, and product quality across various industries.

How Are Technological Advancements Shaping the Development of Nanofiltration Membranes?

Technological advancements have significantly enhanced the performance, durability, and versatility of nanofiltration membranes, making them more effective for a wide range of applications. One of the key innovations is the development of advanced membrane materials, such as thin-film composites (TFCs) and ceramic nanofiltration membranes, which offer better chemical resistance, higher rejection rates, and longer operational lifespans. TFC membranes, in particular, have improved selectivity and flux, making them suitable for diverse applications, from water purification to the separation of organic compounds. Ceramic nanofiltration membranes, known for their high mechanical strength and ability to withstand harsh chemical environments, are gaining popularity in the chemical and pharmaceutical industries, where robust performance is required.

Another major advancement is the integration of fouling-resistant and anti-microbial coatings on NF membranes, which reduce membrane fouling and extend operational cycles. These coatings help prevent the buildup of organic matter, bacteria, and other contaminants on the membrane surface, maintaining higher permeate flux and reducing the need for frequent cleaning. The use of novel surface modification techniques, such as grafting and layer-by-layer assembly, has further improved membrane selectivity and reduced fouling, making nanofiltration more efficient and reliable. Additionally, innovations in membrane module design, such as spiral-wound and hollow-fiber configurations, have increased scalability, flexibility, and ease of integration into existing treatment systems. Automation and digital monitoring have also been incorporated into nanofiltration systems, enabling real-time control of pressure, flow, and membrane performance, optimizing filtration efficiency and reducing operational costs. These technological advancements have expanded the applicability of nanofiltration membranes across industries, making them more adaptable, efficient, and cost-effective.

What Factors Are Driving Growth in the Nanofiltration Membranes Market?

The growth in the nanofiltration membranes market is driven by several factors, including increasing demand for clean water, rising environmental regulations, expanding applications in food and beverage processing, and advancements in filtration technology. As global concerns over water scarcity and pollution continue to rise, the adoption of efficient water treatment solutions, such as nanofiltration, has become a priority for municipal and industrial sectors. NF membranes offer an effective solution for removing contaminants, reducing water hardness, and enabling water reuse, making them essential for achieving water conservation goals and compliance with regulatory standards. The growing focus on sustainable water management and reducing chemical usage in water softening processes has further fueled demand for nanofiltration membranes.

The food and beverage industry’s need for high-quality filtration and separation processes has also contributed to market growth. NF membranes are widely used for demineralization, concentration of nutrients, and removal of impurities, supporting the production of high-purity food and beverage products. In the dairy industry, the rising demand for lactose-free products and protein concentrates has driven the adoption of nanofiltration systems, which offer efficient and cost-effective separation solutions. In the chemical and pharmaceutical sectors, the need for solvent recovery, purification of active ingredients, and separation of complex mixtures has expanded the use of NF membranes, as they provide reliable separation and high selectivity.

Technological advancements, such as the development of durable, high-performance membrane materials and automated filtration systems, have increased the efficiency, reliability, and cost-effectiveness of nanofiltration, encouraging broader adoption across industries. Emerging markets, particularly in Asia-Pacific and Latin America, are experiencing rapid growth in water treatment infrastructure, food processing, and industrial production, creating new opportunities for NF membrane manufacturers. With ongoing innovations in membrane technology, stricter environmental regulations, and growing demand for water reuse and high-quality separation processes, the nanofiltration membranes market is poised for sustained growth, driven by diverse applications, evolving industry needs, and global sustainability efforts.

SCOPE OF STUDY:

The report analyzes the Nanofiltration Membranes market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Type (Polymeric, Inorganic, Hybrid); Application (Water & Wastewater Treatment, Chemical & Petrochemical, Food & Beverage, Pharmaceutical & Biomedical, Other Applications)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 33 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â