¼¼°èÀÇ LiDAR ¼¾¼­ ½ÃÀå
LiDAR Sensors
»óǰÄÚµå : 1768725
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 285 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,222,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,666,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ LiDAR ¼¾¼­ ½ÃÀåÀº 2030³â±îÁö 54¾ï ´Þ·¯¿¡ µµ´Þ

2024³â¿¡ 29¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ LiDAR ¼¾¼­ ½ÃÀåÀº 2024-2030³â¿¡ CAGR 10.9%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 54¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ °øÁß ºÐ¾ß´Â CAGR 11.4%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 31¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Áö»óÇü ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 10.3%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 7¾ï 4,550¸¸ ´Þ·¯, Áß±¹Àº CAGR 14.7%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ LiDAR ¼¾¼­ ½ÃÀåÀº 2024³â¿¡ 7¾ï 4,550¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 13¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³âÀÇ CAGRÀº 14.7%ÀÔ´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 6.9%¿Í 8.8%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 8.1%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°è LiDAR ¼¾¼­ ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ Á¤¸®

LiDAR ¼¾¼­¶õ ¹«¾ùÀ̸ç, ¿Ö Çö´ëÀÇ ¼¾½Ì ¿ëµµ¿¡ ÇʼöÀûÀΰ¡?

LiDAR(Light Detection and Ranging) ¼¾¼­´Â ·¹ÀÌÀú ÆÞ½º¸¦ »ç¿ëÇÏ¿© ȯ°æÀÇ °íÇØ»óµµ 3D Áöµµ¸¦ »ý¼ºÇϴ ÷´Ü ±¤ÇÐ ¼¾¼­ÀÔ´Ï´Ù. LiDAR ¼¾¼­´Â ·¹ÀÌÀú ±¤¼±À» Á¶»çÇÏ°í ¹°Ã¼¿¡ ´êÀº ÈÄ µ¹¾Æ¿À´Â ½Ã°£À» ÃøÁ¤ÇÏ¿© °Å¸®¸¦ Á¤È®ÇÏ°Ô °è»êÇÕ´Ï´Ù. ÀÌ ¼¾¼­´Â »ó¼¼ÇÑ 3D ¸ðµ¨À» »ý¼ºÇÏ°í ¹°Ã¼, dz°æ ¹× ÁÖº¯ ȯ°æ¿¡ ´ëÇÑ Á¤È®ÇÑ ÃøÁ¤°ªÀ» Á¦°øÇÏ´Â µ¥ »ç¿ëµÇ¸ç, LiDAR ¼¾¼­´Â ÀÚÀ²ÁÖÇàÂ÷, ·Îº¿ °øÇÐ, Áöµµ Á¦ÀÛ, Ãø·®, °Ç¼³, ³ó¾÷, º¸¾È µî Á¤È®ÇÑ Àνİú ½Ç½Ã°£ µ¥ÀÌÅͰ¡ ÀÇ»ç°áÁ¤ ¹× ¿î¿µ¿¡ ÇʼöÀûÀÎ ´Ù¾çÇÑ ¿ëµµ¿¡¼­ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ÀÇ»ç°áÁ¤°ú ¿î¿µ¿¡ ÇʼöÀûÀÎ ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù.

LiDAR ¼¾¼­ ¼ö¿ä´Â ´Ù¾çÇÑ Á¶°Ç°ú ȯ°æ¿¡¼­ Á¤È®ÇÑ °íÇØ»óµµ µ¥ÀÌÅ͸¦ Á¦°øÇÏ´Â ´É·ÂÀ¸·Î ÀÎÇØ Å©°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ÀÚÀ²ÁÖÇàÂ÷¿¡¼­ LiDAR´Â ½Ç½Ã°£ ¸ÅÇÎ, ¹°Ã¼ °¨Áö, Ãæµ¹ ȸÇÇ¿¡ »ç¿ëµÇ¾î Â÷·®ÀÌ º¹ÀâÇÑ È¯°æ¿¡¼­µµ ¾ÈÀüÇÏ°Ô Ç×ÇØÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. °Ç¼³ ¹× ÀÎÇÁ¶ó ºÐ¾ß¿¡¼­ LiDAR´Â »ó¼¼ÇÑ ÁöÇüµµ ÀÛ¼º, ±¸Á¶¾ÈÀü¸ð´ÏÅ͸µ, ´ë±Ô¸ð ÇÁ·ÎÁ§Æ® °ü¸®¿¡ µµ¿òÀÌ µË´Ï´Ù. ³ó¾÷ ºÐ¾ß¿¡¼­ LiDAR´Â »ó¼¼ÇÑ ÁöÇü ºÐ¼®, ÀÛ¹° ¸ð´ÏÅ͸µ, Åä¾ç Æò°¡¸¦ Á¦°øÇÔÀ¸·Î½á Á¤¹Ð³ó¾÷¿¡ µµ¿òÀ» ÁÖ°í ÀÖ½À´Ï´Ù. »ó¼¼ÇÑ ½Ç½Ã°£ 3D µ¥ÀÌÅ͸¦ ¾òÀ» ¼ö ÀÖ´Â LiDARÀÇ ´Ù¿ëµµ¼ºÀº »ó¾÷¿ë ¹× »ê¾÷ ¿ëµµ ¸ðµÎ¿¡¼­ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ¾ÒÀ¸¸ç, ´Ù¾çÇÑ ºÐ¾ßÀÇ Çõ½Å°ú È¿À²¼ºÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

LiDAR ¼¾¼­´Â ¾î¶»°Ô Àνİú ÀÛ¾÷ È¿À²À» Çâ»ó½Ãų ¼ö Àִ°¡?

LiDAR ¼¾¼­´Â °íÇØ»óµµ 3D ¸ÅÇÎ, Á¤È®ÇÑ ±íÀÌ Á¤º¸, Á¤È®ÇÑ ¹°Ã¼ °¨Áö¸¦ Á¦°øÇÏ¿© ±î´Ù·Î¿î ȯ°æ¿¡¼­µµ ÀνÄÀ» Çâ»ó½Ãŵ´Ï´Ù. ±âÁ¸ À̹ÌÁö ¼¾¼­¿Í ´Þ¸® LiDAR´Â Á¶¸íÀ̳ª ³¯¾¾¿¡ °ü°è¾øÀÌ ¹°Ã¼ÀÇ Å©±â, ¸ð¾ç, °Å¸®¸¦ Á¤È®ÇÏ°Ô °¨ÁöÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÚÀ²ÁÖÇà Â÷·®¿¡¼­ LiDAR ¼¾¼­´Â ÁÖº¯ 360µµ ºä¸¦ »ý¼ºÇÏ¿© Àå¾Ö¹°, µµ·Î °æ°è¼±, º¸ÇàÀÚ, ´Ù¸¥ Â÷·®À» ½Ç½Ã°£À¸·Î ½Äº°ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ µ¥ÀÌÅ͸¦ ÅëÇØ Â÷·®Àº ¼Óµµ, Á¦µ¿ ¹× Á¶Çâ¿¡ ´ëÇÑ Á¤º¸¿¡ ÀÔ°¢ÇÑ ÆÇ´ÜÀ» ³»¸± ¼ö ÀÖÀ¸¸ç, ¾ÈÀüÀ» º¸ÀåÇϰí Ãæµ¹ À§ÇèÀ» ÁÙÀÏ ¼ö ÀÖÀ¸¸ç, LiDARÀÇ ³ôÀº Á¤¹Ðµµ¿Í °í¼Ó ½ºÄ³´× ±â´ÉÀº ¾ÈÀü°ú Á¤È®¼ºÀÌ °¡Àå Áß¿äÇÑ ÀÚµ¿Â÷ÀÇ ·¹º§ 4 ¹× ·¹º§ 5 ÀÚµ¿È­¸¦ ´Þ¼ºÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. À§ÇØ ÇʼöÀûÀÔ´Ï´Ù.

°Ç¼³ ºÐ¾ß¿¡¼­ LiDAR ¼¾¼­´Â »ó¼¼ÇÑ ÇöÀå ºÐ¼®À» Á¦°øÇÏ¿© ÀÛ¾÷ È¿À²¼ºÀ» ³ôÀÌ°í °Ç¼³ ÇÁ·ÎÁ§Æ®ÀÇ ½Å¼ÓÇÑ Ãø·®, °èȹ ¹× ¸ð´ÏÅ͸µÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÁöÇü, ±¸Á¶¹° ¹× ÀÎÇÁ¶óÀÇ Á¤È®ÇÑ 3D ¸ðµ¨À» »ý¼ºÇÏ¿© ´õ ³ªÀº ÇÁ·ÎÁ§Æ® °èȹ, ¼³°è ÃÖÀûÈ­ ¹× ½Ç½Ã°£ ÁøÇà »óȲÀ» ÃßÀûÇÒ ¼ö ÀÖ½À´Ï´Ù. ³ó¾÷ ºÐ¾ß¿¡¼­ LiDAR ¼¾¼­´Â ¹ç ¸ÅÇÎ, ÀÛ¹° °Ç°­ »óÅ ºÐ¼®, ÃÖÀûÀÇ ½É±â ÆÐÅÏ °áÁ¤À» ÅëÇØ Á¤¹Ð³ó¾÷À» Áö¿øÇÏ¿© ¼öÈ®·®°ú ÀÚ¿ø °ü¸®¸¦ °³¼±ÇÕ´Ï´Ù. ¶ÇÇÑ È¯°æ ¸ð´ÏÅ͸µ¿¡¼­ LiDAR´Â »ê¸² ¸ÅÇÎ, È«¼ö À§Çè Æò°¡, ÇØ¾È ħ½Ä ¸ð´ÏÅ͸µ¿¡ »ç¿ëµÇ¾î È¿°úÀûÀÎ °ü¸® ¹× º¸Àü Ȱµ¿À» À§ÇÑ Áß¿äÇÑ µ¥ÀÌÅ͸¦ Á¦°øÇÕ´Ï´Ù. LiDAR ¼¾¼­´Â °íÇØ»óµµ µ¥ÀÌÅÍ, ºü¸¥ ½ºÄµ ¼Óµµ, ´Ù¾çÇÑ Á¶°Ç¿¡¼­ÀÇ ÀÛµ¿ ´É·ÂÀ» Á¦°øÇÔÀ¸·Î½á ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼­ »óȲ ÀνÄ, ÀÇ»ç°áÁ¤ ¹× Àü¹ÝÀûÀÎ ¿î¿µ È¿À²¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù.

±â¼ú ¹ßÀüÀº LiDAR ¼¾¼­ÀÇ ¹ßÀüÀ» ¾î¶»°Ô Çü¼ºÇϰí Àִ°¡?

±â¼úÀÇ ¹ßÀüÀº LiDAR ¼¾¼­ÀÇ ¼º´É, ºñ¿ë È¿À²¼º, ¹ü¿ë¼ºÀ» Å©°Ô Çâ»ó½ÃŰ°í ´Ù¾çÇÑ ¿ëµµ¿¡ ´ëÇÑ ÀûÀÀ¼ºÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù. °¡Àå ¿µÇâ·Â ÀÖ´Â ±â¼ú Çõ½Å Áß Çϳª´Â ±âÁ¸ÀÇ ±â°è ºÎǰÀ» ¼Ö¸®µå ½ºÅ×ÀÌÆ® ±â¼ú·Î ´ëüÇÑ ¼Ö¸®µå ½ºÅ×ÀÌÆ® LiDARÀÇ °³¹ßÀÔ´Ï´Ù. ¼Ö¸®µå ½ºÅ×ÀÌÆ® LiDAR ¼¾¼­´Â ¼ÒÇüÈ­, ³»±¸¼º Çâ»ó, Á¦Á¶ ºñ¿ë Àý°¨À» ½ÇÇöÇÏ¿© °¡ÀüÁ¦Ç°, µå·Ð, ÀÚÀ²ÁÖÇà Â÷·®¿¡ žÀçÇϱ⿡ ÀûÇÕÇÕ´Ï´Ù. ¶ÇÇÑ ÄÄÆÑÆ®ÇÑ ¼³°è·Î Â÷·® ¿Ü°ü¿¡ ½±°Ô ÀåÂøÇÒ ¼ö ÀÖÀ¸¸ç, ÇÕ¸®ÀûÀÎ ¼³°è¿Í ¼¾¼­ Ä¿¹ö¸®Áö Çâ»óÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.

¶Ç ´Ù¸¥ Å« ¹ßÀüÀº Á֯ļö º¯Á¶ ¿¬¼ÓÆÄ(FMCW) LiDARÀÇ µµÀÔÀ¸·Î, ´õ ±ä °¨Áö ¹üÀ§, ´õ ³ôÀº ÇØ»óµµ, ¹°Ã¼ÀÇ °Å¸®¿Í ¼Óµµ¸¦ ¸ðµÎ ÃøÁ¤ÇÒ ¼ö ÀÖ´Â ´É·ÂÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ ±â¼úÀº LiDAR°¡ °í¼ÓÀ¸·Î ¿òÁ÷ÀÌ´Â ¹°Ã¼¸¦ ´õ ³ôÀº Á¤È®µµ·Î °¨ÁöÇÒ ¼ö ÀÖ´Â ´É·ÂÀ» Çâ»ó½ÃÄÑ ÀÚÀ²ÁÖÇàÂ÷, ·Îº¿ °øÇÐ, º¸¾È ¿ëµµ¿¡ ¸Å¿ì À¯¿ëÇÏ°Ô »ç¿ëµÉ ¼ö ÀÖ½À´Ï´Ù. ½Ç¸®ÄÜ Æ÷Åä´Ð½º ¹× ÷´Ü ·¹ÀÌÀú ´ÙÀÌ¿Àµå »ç¿ë°ú °°Àº ¹ÝµµÃ¼ Àç·áÀÇ Çõ½ÅÀº LiDAR ¼¾¼­ÀÇ Àü·Â È¿À², °Å¸® ¹× Á¤È®µµ¸¦ Çâ»ó½ÃÄÑ ±¤¾÷, ¼®À¯ ¹× °¡½º Ž»ç, ´ë±Ô¸ð ÀÎÇÁ¶ó ÇÁ·ÎÁ§Æ®¿Í °°ÀÌ ¼ö¿ä°¡ ¸¹Àº ȯ°æ¿¡ ¹èÄ¡ÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù.

ÀΰøÁö´É(AI)°ú ¸Ó½Å·¯´× ¾Ë°í¸®ÁòÀ» LiDAR ½Ã½ºÅÛ¿¡ ÅëÇÕÇÏ¿© ½Ç½Ã°£ µ¥ÀÌÅÍ Ã³¸®, ¹°Ã¼ ºÐ·ù ¹× ¿¹Ãø ºÐ¼®À» ´õ¿í Çâ»ó½ÃÄ×À¸¸ç, AI·Î °­È­µÈ LiDAR ¼¾¼­´Â º¹ÀâÇÑ µ¥ÀÌÅͼ¼Æ®¸¦ ºÐ¼®Çϰí, ÆÐÅÏÀ» °¨ÁöÇϰí, ÀÇ»ç°áÁ¤À» ÃÖÀûÈ­ÇÒ ¼ö ÀÖÀ¸¸ç, µµ½Ã ¸ÅÇÎ, ±³Åë °ü¸®, ½º¸¶Æ® ½ÃƼ¿Í °°Àº ¿ëµµ¿¡ È¿°úÀûÀÔ´Ï´Ù. µµ½Ã ¸ÅÇÎ, ±³Åë °ü¸®, ½º¸¶Æ® ½ÃƼ ÀÎÇÁ¶ó¿Í °°Àº ¿ëµµ¿¡ È¿°úÀûÀÔ´Ï´Ù. ¶ÇÇÑ Á¡±º ¾ÐÃà°ú µ¥ÀÌÅÍ ºÐ¼®ÀÇ ¹ßÀüÀ¸·Î LiDAR µ¥ÀÌÅÍÀÇ °í¼Ó 󸮰¡ °¡´ÉÇØÁ® ½Ç½Ã°£ ¿ëµµÀÇ ´ë±â ½Ã°£ÀÌ ´ÜÃàµÇ°í ÀÀ´ä¼ºÀÌ Çâ»óµÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú °³¹ßÀº LiDAR ¼¾¼­ÀÇ È¿À²¼º°ú Á¤È®µµ¸¦ Çâ»ó½ÃÄ×À» »Ó¸¸ ¾Æ´Ï¶ó ·Îº¿ °øÇÐ, ³ó¾÷ ÀÚµ¿È­, Áõ°­Çö½Ç°ú °°Àº ½ÅÈï ºÐ¾ß¿¡¼­ÀÇ »ç¿ëµµ È®´ëµÇ¾î LiDAR´Â ´õ¿í ´Ù¿ëµµÇÏ°í ¸ðµç »ê¾÷¿¡¼­ ½±°Ô »ç¿ëÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.

LiDAR ¼¾¼­ ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

LiDAR ¼¾¼­ ½ÃÀåÀÇ ¼ºÀåÀº ÀÚÀ²ÁÖÇàÂ÷·® Áõ°¡, °í±Þ ¸ÅÇÎ ¹× Ãø·® ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, ·Îº¿ °øÇÐÀÇ ¹ßÀü, ½º¸¶Æ® ÀÎÇÁ¶ó ¹× ȯ°æ ¸ð´ÏÅ͸µ ºÐ¾ß¿¡¼­ÀÇ ¿ëµµ È®´ë µî ¿©·¯ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ ºÐ¾ß¿¡¼­ LiDAR´Â Á¤È®ÇÑ 3D ¸ÅÇÎ, Àå¾Ö¹° °¨Áö ¹× Ãæµ¹ ¹æÁö ±â´ÉÀ» Á¦°øÇÔÀ¸·Î½á º¸´Ù ³ôÀº ¼öÁØÀÇ ÀÚµ¿È­¸¦ ½ÇÇöÇÏ´Â µ¥ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ¾Ò½À´Ï´Ù. ÁÖ¿ä ÀÚµ¿Â÷ Á¦Á¶¾÷ü¿Í ±â¼ú ±â¾÷Àº LiDAR°¡ žÀçµÈ ÀÚÀ²ÁÖÇàÂ÷¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖÀ¸¸ç, ÀÌ´Â °í¼º´ÉÀÇ ºñ¿ë È¿À²ÀûÀÎ LiDAR ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä¸¦ Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù. Àü±âÀÚµ¿Â÷(EV)ÀÇ ±Þ¼ÓÇÑ ¹ßÀü°ú ¿ÏÀüÇÑ Â÷·® ÀÚÀ²È­¸¦ ÇâÇÑ °æÀïÀº Á¦Á¶¾÷üµéÀÌ ½Ç½Ã°£ ³»ºñ°ÔÀ̼ǰú ¾ÈÀüÀ» À§ÇÑ °ß°íÇÑ ¼¾¼­¸¦ ¿ä±¸Çϸ鼭 LiDARÀÇ Ã¤ÅÃÀ» ´õ¿í °¡¼ÓÈ­½Ã۰í ÀÖ½À´Ï´Ù.

¸ÅÇÎ ¹× Ãø·®¿¡¼­ LiDAR´Â »ó¼¼ÇÑ ÁöÇüµµ ÀÛ¼º, µµ½Ã °æ°ü ºÐ¼®, Ç×°ø Ãø·® µî¿¡ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀÎÇÁ¶ó °³¹ß, ½º¸¶Æ® ½ÃƼ ÇÁ·ÎÁ§Æ®, °Ç¼³ °ü¸®¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ Á¤È®ÇÑ 3D ¸ðµ¨°ú °Ç¼³ ÇöÀåÀÇ ½Ç½Ã°£ ¸ð´ÏÅ͸µÀ» Á¦°øÇÏ´Â LiDAR¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ³ó¾÷ ºÐ¾ß¿¡¼­´Â ÀÚ¿ø °ü¸® ÃÖÀûÈ­, ÀÛ¹° ¼öÈ®·® Çâ»ó, Áö¼Ó°¡´ÉÇÑ ³ó¾÷À» Áö¿øÇÏ´Â µ¥ µµ¿òÀÌ µÇ¹Ç·Î Á¤¹Ð³ó¾÷À» À§ÇÑ LiDARÀÇ È°¿ëÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÓ¾÷ ¹× ȯ°æ ¸ð´ÏÅ͸µ¿¡¼­ LiDAR´Â »ê¸² ¸ÅÇÎ, È«¼ö À§Çè Æò°¡, ÇØ¾È ħ½Ä Á¶»ç¿¡ »ç¿ëµÇ¾î È¿°úÀûÀÎ ÀÚ¿ø °ü¸® ¹× º¸Àü Ȱµ¿¿¡ Áß¿äÇÑ µ¥ÀÌÅ͸¦ Á¦°øÇÕ´Ï´Ù.

¼Ö¸®µå ½ºÅ×ÀÌÆ® LiDAR ¹× FMCW LiDARÀÇ °³¹ß°ú °°Àº ±â¼ú ¹ßÀüÀ¸·Î ¼¾¼­°¡ ´õ ÀÛ°í ³»±¸¼ºÀÌ ¶Ù¾î³ª¸ç ºñ¿ë È¿À²¼ºÀÌ ³ô¾ÆÁö¸é¼­ µå·Ð, ·Îº¿ °øÇÐ, °¡ÀüÁ¦Ç°¿¡ ´ëÇÑ È°¿ëÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù. ½º¸¶Æ® ½ÃƼ¿Í IoT ÀÎÇÁ¶óÀÇ ºÎ»óÀº ±³Åë °ü¸®, °ø°ø¾ÈÀü, ÀÎÇÁ¶ó ¸ð´ÏÅ͸µÀ» Áö¿øÇÏ´Â LiDAR ¼¾¼­¿¡ »õ·Î¿î ±âȸ¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù. ƯÈ÷ ¾Æ½Ã¾ÆÅÂÆò¾ç°ú ¶óƾ¾Æ¸Þ¸®Ä« µî ½ÅÈï ½ÃÀå¿¡¼­´Â ÀÎÇÁ¶ó °³¹ß, ÀÚÀ²ÁÖÇà ÇÁ·ÎÁ§Æ®, »ê¾÷ ÀÚµ¿È­ µîÀÌ ºü¸£°Ô ¼ºÀåÇϰí ÀÖÀ¸¸ç, LiDAR ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. Áö¼ÓÀûÀÎ ±â¼ú Çõ½Å, ¿ëµµ È®´ë, ÀÚµ¿È­ ¹× ½º¸¶Æ® ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡·Î ÀÎÇØ LiDAR ¼¾¼­ ½ÃÀåÀº ÁøÈ­ÇÏ´Â ±â¼ú, ´Ù¾çÇÑ »ê¾÷Àû ¿ä±¸, µðÁöÅÐ Çõ½Å ¹× ÀÚµ¿È­¸¦ ÇâÇÑ Àü ¼¼°èÀûÀÎ ³ë·ÂÀ¸·Î ÀÎÇØ Áö¼ÓÀûÀÎ ¼ºÀåÀ» ÀÌ·ê Áغñ°¡ µÇ¾î ÀÖ½À´Ï´Ù.

ºÎ¹®

À¯Çü(°øÁßÇü, Áö»óÇü); ¾ÖÇø®ÄÉÀ̼Ç(Àü·Â¡¤¿¡³ÊÁö, ÀÚµ¿Â÷, IT¡¤Åë½Å, ¹Ìµð¾î¡¤¿£ÅÍÅ×ÀÎ¸ÕÆ®, Ç×°ø¿ìÁÖ¡¤¹æÀ§, ³ó¾÷¡¤ÀÓ¾÷, ±¤¾÷, ±âŸ ¾ÖÇø®ÄÉÀ̼Ç)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI Åø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾ç ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÔ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global LiDAR Sensors Market to Reach US$5.4 Billion by 2030

The global market for LiDAR Sensors estimated at US$2.9 Billion in the year 2024, is expected to reach US$5.4 Billion by 2030, growing at a CAGR of 10.9% over the analysis period 2024-2030. Airborne, one of the segments analyzed in the report, is expected to record a 11.4% CAGR and reach US$3.1 Billion by the end of the analysis period. Growth in the Terrestrial segment is estimated at 10.3% CAGR over the analysis period.

The U.S. Market is Estimated at US$745.5 Million While China is Forecast to Grow at 14.7% CAGR

The LiDAR Sensors market in the U.S. is estimated at US$745.5 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$1.3 Billion by the year 2030 trailing a CAGR of 14.7% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 6.9% and 8.8% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 8.1% CAGR.

Global LiDAR Sensors Market - Key Trends & Drivers Summarized

What Are LiDAR Sensors & Why Are They Essential in Modern Sensing Applications?

LiDAR (Light Detection and Ranging) sensors are advanced optical sensors that use laser pulses to create high-resolution 3D maps of the environment. By emitting laser beams and measuring the time it takes for the beams to return after hitting an object, LiDAR sensors calculate distances with high precision. These sensors are used to generate detailed 3D models and provide accurate measurements of objects, landscapes, and surroundings. LiDAR sensors are crucial in a wide range of applications, including autonomous vehicles, robotics, mapping, surveying, construction, agriculture, and security, where accurate perception and real-time data are vital for decision-making and operations.

The demand for LiDAR sensors has grown significantly due to their ability to deliver accurate, high-resolution data in diverse conditions and environments. In autonomous vehicles, LiDAR is used for real-time mapping, object detection, and collision avoidance, enabling vehicles to safely navigate through complex surroundings. In the construction and infrastructure sector, LiDAR helps in creating detailed topographic maps, monitoring structural health, and managing large-scale projects. In agriculture, LiDAR aids in precision farming by providing detailed terrain analysis, crop monitoring, and soil assessment. LiDAR’s versatility in capturing detailed, real-time 3D data has made it essential in both commercial and industrial applications, driving innovation and efficiency across sectors.

How Do LiDAR Sensors Improve Perception & Operational Efficiency?

LiDAR sensors improve perception by providing high-resolution 3D mapping, accurate depth information, and precise object detection, even in challenging environments. Unlike traditional imaging sensors, LiDAR can accurately detect the size, shape, and distance of objects, regardless of lighting or weather conditions. In autonomous vehicles, LiDAR sensors create a 360-degree view of the surroundings, allowing for real-time identification of obstacles, road boundaries, pedestrians, and other vehicles. This data enables vehicles to make informed decisions about speed, braking, and steering, ensuring safety and reducing the risk of collisions. LiDAR’s high precision and rapid scanning capabilities make it indispensable for achieving Level 4 and Level 5 automation in vehicles, where safety and accuracy are paramount.

In construction, LiDAR sensors enhance operational efficiency by providing detailed site analysis, enabling faster surveying, planning, and monitoring of construction projects. They create accurate 3D models of terrains, structures, and infrastructure, allowing for better project planning, design optimization, and real-time progress tracking. In agriculture, LiDAR sensors support precision farming by mapping fields, analyzing crop health, and determining optimal planting patterns, improving yield and resource management. Additionally, in environmental monitoring, LiDAR is used for forest mapping, flood risk assessment, and monitoring of coastal erosion, providing critical data for effective management and conservation efforts. By delivering high-resolution data, faster scanning rates, and the ability to operate in diverse conditions, LiDAR sensors improve situational awareness, decision-making, and overall operational efficiency across various industries.

How Are Technological Advancements Shaping the Development of LiDAR Sensors?

Technological advancements have significantly enhanced the performance, cost-effectiveness, and versatility of LiDAR sensors, making them more adaptable for diverse applications. One of the most impactful innovations is the development of solid-state LiDAR, which replaces traditional mechanical components with solid-state technologies. Solid-state LiDAR sensors offer smaller size, greater durability, and lower production costs, making them more suitable for integration into consumer electronics, drones, and autonomous vehicles. Their compact design also allows for easier integration into vehicle exteriors, enabling streamlined designs and better sensor coverage.

Another significant advancement is the introduction of frequency-modulated continuous-wave (FMCW) LiDAR, which provides longer detection ranges, higher resolution, and the ability to measure both distance and velocity of objects. This technology enhances the capability of LiDAR to detect fast-moving objects with greater accuracy, making it highly effective for autonomous vehicles, robotics, and security applications. Innovations in semiconductor materials, such as the use of silicon photonics and advanced laser diodes, have improved the power efficiency, range, and accuracy of LiDAR sensors, enabling their deployment in high-demand environments like mining, oil and gas exploration, and large-scale infrastructure projects.

The integration of artificial intelligence (AI) and machine learning algorithms into LiDAR systems has further improved real-time data processing, object classification, and predictive analytics. AI-enhanced LiDAR sensors can analyze complex data sets, detect patterns, and optimize decision-making, making them more effective for applications like urban mapping, traffic management, and smart city infrastructure. Advancements in point cloud compression and data analytics have also facilitated faster processing of LiDAR data, reducing latency and improving responsiveness in real-time applications. These technological developments have not only increased the efficiency and accuracy of LiDAR sensors but have also expanded their use in emerging fields like robotics, agriculture automation, and augmented reality, making LiDAR more versatile and accessible across industries.

What Factors Are Driving Growth in the LiDAR Sensors Market?

The growth in the LiDAR sensors market is driven by several factors, including the rising adoption of autonomous vehicles, increasing demand for advanced mapping and surveying technologies, advancements in robotics, and expanding applications in smart infrastructure and environmental monitoring. In the automotive sector, LiDAR is a critical component for achieving higher levels of automation, as it provides precise 3D mapping, obstacle detection, and collision avoidance capabilities. Major automotive manufacturers and technology companies are investing heavily in LiDAR-equipped autonomous vehicles, pushing demand for high-performance, cost-effective LiDAR solutions. The rapid development of electric vehicles (EVs) and the race toward full vehicle autonomy have further accelerated LiDAR adoption, as manufacturers seek robust sensors for real-time navigation and safety.

In mapping and surveying, LiDAR sensors are widely used for creating detailed topographic maps, analyzing urban landscapes, and conducting aerial surveys. The growing focus on infrastructure development, smart city projects, and construction management has driven demand for LiDAR, which offers accurate 3D models and real-time monitoring of construction sites. The agriculture sector has also seen increased use of LiDAR for precision farming, as it helps optimize resource management, enhance crop yield, and support sustainable agriculture practices. In forestry and environmental monitoring, LiDAR is used for forest mapping, flood risk assessment, and coastal erosion studies, providing crucial data for effective resource management and conservation efforts.

Technological advancements, such as the development of solid-state and FMCW LiDAR, have made sensors more compact, durable, and cost-efficient, expanding their use in drones, robotics, and consumer electronics. The rise of smart cities and IoT infrastructure has created new opportunities for LiDAR sensors, which support traffic management, public safety, and infrastructure monitoring. Emerging markets, particularly in Asia-Pacific and Latin America, are witnessing rapid growth in infrastructure development, autonomous mobility projects, and industrial automation, creating strong demand for LiDAR technology. With continuous innovations, expanding applications, and increasing investment in automation and smart infrastructure, the LiDAR sensors market is poised for sustained growth, driven by evolving technology, diverse industry needs, and global efforts toward digital transformation and automation.

SCOPE OF STUDY:

The report analyzes the LiDAR Sensors market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Type (Airborne, Terrestrial); Application (Power & Energy, Automotive, IT & Communication, Media & Entertainment, Aerospace & Defense, Agriculture & Forestry, Mining, Other Applications)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 36 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â