¼¼°èÀÇ Ç÷οì À̹Ì¡ Çö¹Ì°æ/µ¿Àû ¿µ»ó ºÐ¼® ½ÃÀå
Flow Imaging Microscopy/Dynamic Image Analysis
»óǰÄÚµå : 1768502
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 279 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,222,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,666,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ Ç÷οì À̹Ì¡ Çö¹Ì°æ/µ¿Àû ¿µ»ó ºÐ¼® ½ÃÀåÀº 2030³â±îÁö 7,080¸¸ ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 4,600¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ Ç÷οì À̹Ì¡ Çö¹Ì°æ/µ¿Àû ¿µ»ó ºÐ¼® ½ÃÀåÀº 2024-2030³â¿¡ CAGR 7.5%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 7,080¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ »ý¹°Á¦Á¦´Â CAGR 8.3%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 3,470¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀúºÐÀÚ ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ Áß CAGR 7.1%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 1,190¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â ÇÑÆí, Áß±¹Àº CAGR 10.9%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹Ãø

¹Ì±¹ÀÇ Ç÷οì À̹Ì¡ Çö¹Ì°æ/µ¿Àû ¿µ»ó ºÐ¼® ½ÃÀåÀº 2024³â¿¡ 1,190¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³â¿¡ CAGR 10.9%·Î ÃßÀÌÇϸç, 2030³â¿¡´Â 1,700¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 4.0%¿Í 6.9%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 4.7%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ Ç÷οì À̹Ì¡ Çö¹Ì°æ/µ¿Àû ¿µ»ó ºÐ¼® ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

ÀÔÀÚ Æ¯¼º Æò°¡¿¡¼­ Ç÷οì À̹Ì¡ Çö¹Ì°æÀÌ Áß¿äÇÑ ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

µ¿Àû À̹ÌÁö ºÐ¼®À¸·Îµµ ¾Ë·ÁÁø À¯µ¿ À̹Ì¡ Çö¹Ì°æÀº Á¦¾à, ½Äǰ ¹× À½·á, È­ÇÐ, »ý¸í°øÇÐ µî ´Ù¾çÇÑ »ê¾÷¿¡¼­ ÀÔÀÚÀÇ Æ¯¼º Æò°¡¿¡ »ç¿ëµÇ´Â °­·ÂÇÑ ±â¼úÀÔ´Ï´Ù. ÀÌ ±â¼úÀ» ÅëÇØ ¾×ü¿¡ ºÎÀ¯ÇÏ´Â ÀÔÀÚÀÇ °íÇØ»óµµ À̹ÌÁö¸¦ ½Ç½Ã°£À¸·Î ÃÔ¿µÇÏ¿© Å©±â, ¸ð¾ç, ÇüŸ¦ »ó¼¼ÇÏ°Ô ºÐ¼®ÇÒ ¼ö ÀÖ½À´Ï´Ù. Á¤Àû Çö¹Ì°æ¹ýÀ̳ª ·¹ÀÌÀú ȸÀý¹ý°ú °°Àº ±âÁ¸ ¹æ¹ý°ú ´Þ¸®, Ç÷οì À̹Ì¡ Çö¹Ì°æ¹ýÀº °³º° ÀÔÀÚ¸¦ ½Ã°¢ÀûÀ¸·Î ½Äº°ÇÏ°í ±× Æ¯Â¡À» ½Ç½Ã°£À¸·Î ºÐ¼®ÇÏ¿© º¸´Ù Á¾ÇÕÀûÀÎ µ¥ÀÌÅ͸¦ Á¦°øÇÕ´Ï´Ù. µû¶ó¼­ Á¦ÇüÈ­, ǰÁú°ü¸®, ¿À¿° ºÐ¼® µî ÀÔÀÚÀÇ °Åµ¿°ú ǰÁúÀ» ÀÌÇØÇÏ´Â °ÍÀÌ Áß¿äÇÑ ¿ëµµ¿¡ ƯÈ÷ À¯¿ëÇÕ´Ï´Ù.

Á¦¾à »ê¾÷¿¡¼­ Ç÷οì À̹Ì¡ Çö¹Ì°æÀº À¯È¿¼ººÐ(API) ¹× ºÎÇüÁ¦ ºÐ¼®¿¡ »ç¿ëµÇ¸ç, ÀÔÀÚ Å©±â¿Í ÇüŰ¡ ÀǾàǰÀÇ È¿´É°ú ¾ÈÀü¼º¿¡ ÇÊ¿äÇÑ »ç¾çÀ» ÃæÁ·ÇÏ´ÂÁö È®ÀÎÇÕ´Ï´Ù. ¶ÇÇÑ ÀÛÀº ÀÔÀÚ¶óµµ È¯ÀÚ¿¡°Ô ½É°¢ÇÑ À§ÇèÀ» ÃÊ·¡ÇÒ ¼ö ÀÖ´Â ÁÖ»çÁ¦ ¿À¿° ¹°Áú°ú ÀÀÁýü¸¦ °ËÃâÇÏ°í Æ¯¼ºÈ­ÇÏ´Â µ¥µµ ÇʼöÀûÀÔ´Ï´Ù. ½Äǰ »ê¾÷¿¡¼­´Â ½ÄǰÀÇ Áú°¨°ú ǰÁúÀ» Æò°¡ÇÏ´Â µ¥ »ç¿ëµÇ¸ç, »ý¸í°øÇÐ ºÐ¾ß¿¡¼­´Â ¹ßÈ¿ ¹× ¼¼Æ÷¹è¾ç °úÁ¤¿¡¼­ ¼¼Æ÷¿Í ¹Ì»ý¹°À» ¸ð´ÏÅ͸µÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. Á¤¹ÐÇÏ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â ÀÔÀÚ Æ¯¼º Æò°¡¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ Ç÷οì À̹Ì¡ Çö¹Ì°æÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

Ç÷οì À̹Ì¡ Çö¹Ì°æÀÇ ¹Ì·¡¸¦ Á¿ìÇÒ ±â¼ú ¹ßÀüÀº ¹«¾ùÀΰ¡?

±â¼úÀÇ ¹ßÀüÀº À¯µ¿ À̹Ì¡ Çö¹Ì°æÀÇ ´É·ÂÀ» Å©°Ô Çâ»ó½ÃÄÑ º¸´Ù Á¤È®Çϰí È¿À²ÀûÀÎ ÀÚµ¿ ÀÔÀÚ ºÐ¼®À» °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù. °¡Àå Áß¿äÇÑ ¹ßÀü Áß Çϳª´Â ÀΰøÁö´É(AI)°ú ¸Ó½Å·¯´×(ML) ¾Ë°í¸®ÁòÀ» À̹Ì¡ ½Ã½ºÅÛ¿¡ ÅëÇÕÇÏ´Â °ÍÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀº ¸ð¾ç, Å©±â, ÇüÅ¿¡ µû¶ó ÀÔÀÚ¸¦ ÀÚµ¿À¸·Î ºÐ·ùÇÏ°í ºÐ¼®ÇÒ ¼ö ÀÖÀ¸¸ç, ¼öÀÛ¾÷ ºÐ¼®¿¡ ÇÊ¿äÇÑ ½Ã°£°ú ³ë·ÂÀ» ÁÙ¿©ÁÖ¸ç, AI¸¦ Ȱ¿ëÇÑ Ç÷οì À̹Ì¡ Çö¹Ì°æÀº ÀÔÀÚ¸¦ ºü¸£°Ô ½Äº°ÇÏ°í ºÐ·ùÇÒ ¼ö ÀÖÀ¸¸ç, »ê¾÷ ºÐ¾ß¿¡¼­ º¸´Ù È¿À²ÀûÀΠǰÁú°ü¸® ÇÁ·Î¼¼½º¿Í ½Å¼ÓÇÑ ÀÇ»ç°áÁ¤À¸·Î À̾îÁý´Ï´Ù. »ê¾÷ ºÐ¾ß¿¡¼­ º¸´Ù È¿À²ÀûÀΠǰÁú°ü¸® ÇÁ·Î¼¼½º ¹× ½Å¼ÓÇÑ ÀÇ»ç°áÁ¤À¸·Î À̾îÁý´Ï´Ù.

¶ÇÇÑ À̹ÌÁö ÇØ»óµµ¿Í ±¤ÇÐ ½Ã½ºÅÛÀÇ Çâ»óÀ¸·Î ÀÔÀÚ¸¦ ´õ¿í ¼¼¹ÐÇÏ°Ô ½Ã°¢È­ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. °íÇØ»óµµ Ä«¸Þ¶ó¿Í ÷´Ü ±¤ÇÐ ½Ã½ºÅÛÀ» ÅëÇØ ¼­ºê¹ÌÅ©·Ð ÀÔÀÚ¸¦ Æ÷ÂøÇÒ ¼ö ÀÖ°Ô µÇ¾î ³ª³ëÅ×Å©³î·¯Áö ¹× Àç·á°úÇаú °°Àº ºÐ¾ß¿¡¼­ Ç÷οì À̹Ì¡ Çö¹Ì°æÀÇ Àû¿ë ¹üÀ§°¡ ³Ð¾îÁö°í ÀÖ½À´Ï´Ù. ¶Ç ´Ù¸¥ Áß¿äÇÑ ¹ßÀüÀº ´ÙÁß ½ºÆåÆ®·³ À̹Ì¡ ±â¼úÀÇ °³¹ß·Î, È­ÇÐ ¼ººÐ¿¡ µû¶ó ÀÔÀÚ¸¦ ±¸º°ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ´Â ½Ã·á³» ¼­·Î ´Ù¸¥ À¯ÇüÀÇ ÀÔÀÚ ¹× ¿À¿° ¹°ÁúÀ» ±¸º°ÇÏ´Â °ÍÀÌ ÇʼöÀûÀÎ Á¦¾à ¹× È­ÇÐ »ê¾÷¿¡¼­ ƯÈ÷ À¯¿ëÇÕ´Ï´Ù.

Á¦¾à ¹× »ý¸í°øÇÐ ºÐ¾ß¿¡¼­ Ç÷οì À̹Ì¡ Çö¹Ì°æÀÌ Á¡Á¡ ´õ Áß¿äÇØÁö´Â ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

Á¦¾à ¹× ¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö »ê¾÷¿¡¼­ À¯µ¿ À̹Ì¡ Çö¹Ì°æÀº ÀǾàǰ °³¹ß, Á¦Á¶ ¹× ǰÁú°ü¸®¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â ÀÔÀÚÀÇ »ó¼¼ÇÑ ½Ç½Ã°£ ºÐ¼®ÀÌ °¡´ÉÇϹǷΠ±× Á߿伺ÀÌ Ä¿Áö°í ÀÖ½À´Ï´Ù. ÀǾàǰ Á¦Á¦¿¡¼­ ¾à¹° ÀÔÀÚÀÇ Å©±â¿Í ¸ð¾çÀº ÃÖÁ¾ Á¦Ç°ÀÇ ¿ëÇØµµ, »ýü ÀÌ¿ë·ü, ¾ÈÁ¤¼º¿¡ ¿µÇâÀ» ¹ÌĨ´Ï´Ù. Ç÷οì À̹Ì¡ Çö¹Ì°æÀº ÀÌ·¯ÇÑ ÀÔÀÚ¸¦ Á¤È®ÇÏ°Ô Æ¯¼ºÈ­ÇÏ¿© ÀǾàǰÀÌ ¾ÈÀü¼º°ú À¯È¿¼º¿¡ ÇÊ¿äÇÑ »ç¾çÀ» ÃæÁ·ÇÏ´ÂÁö È®ÀÎÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¿À¿°ÀÌ ½É°¢ÇÑ °Ç°­ À§ÇèÀ» ÃÊ·¡ÇÒ ¼ö ÀÖ´Â ÁÖ»çÁ¦ ¹× ¹ÙÀÌ¿ÀÀǾàǰÀÇ ¿øÄ¡ ¾Ê´Â ÀÔÀÚ ¹× ÀÀÁýüÀÇ °ËÃâ ¹× Æ¯¼ºÈ­¿¡µµ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù.

»ý¸í°øÇп¡¼­ Ç÷οì À̹Ì¡ Çö¹Ì°æÀº ¼¼Æ÷¹è¾ç ¹× ¹ÙÀÌ¿ÀÇÁ·Î¼¼½º ¸ð´ÏÅ͸µ¿¡ ÇʼöÀûÀÔ´Ï´Ù. À̸¦ ÅëÇØ ¿¬±¸ÀÚµéÀº ¼¼Æ÷ÀÇ ¼ºÀå°ú ÇüŸ¦ ÃßÀûÇϰí, ¿À¿° ¹°ÁúÀ» ½Äº°Çϰí, ¼öÀ²À» ±Ø´ëÈ­Çϱâ À§ÇØ »ý¹° ¹ÝÀÀ±â Á¶°ÇÀÌ ÃÖÀûÈ­µÇ¾î ÀÖ´ÂÁö È®ÀÎÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÌ ±â¼úÀº »ý¹°Á¦Á¦¿¡¼­ ´Ü¹éÁú ÀÀÁýü¸¦ ºÐ¼®ÇÏ´Â µ¥¿¡µµ »ç¿ëµÇ¸ç, ÀÛÀº ÀÀÁýüµµ Ä¡·á¿ë ´Ü¹éÁúÀÇ ¾ÈÁ¤¼º°ú ¼º´É¿¡ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù. Á¦¾à ¹× »ý¸í°øÇÐ »ê¾÷ÀÌ °è¼Ó ¹ßÀüÇÔ¿¡ µû¶ó Á¦Ç°ÀÇ Ç°Áú, ¾ÈÀü¼º ¹× ±ÔÁ¦ Áؼö¸¦ º¸ÀåÇϱâ À§ÇØ Ç÷οì À̹Ì¡ Çö¹Ì°æ°ú °°Àº °íÁ¤¹Ð ÀÔÀÚ ºÐ¼® ÅøÀÇ Çʿ伺ÀÌ Á¡Á¡ ´õ Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù.

Ç÷οì À̹Ì¡ Çö¹Ì°æ ½ÃÀåÀÇ ¼ºÀå ÃËÁø¿äÀÎÀº ¹«¾ùÀΰ¡?

À¯µ¿ À̹Ì¡ Çö¹Ì°æ/µ¿Àû À̹ÌÁö ºÐ¼® ½ÃÀåÀÇ ¼ºÀåÀº Á¦¾à, »ý¸í°øÇÐ, ½Äǰ ¹× À½·á, È­ÇÐ µîÀÇ »ê¾÷¿¡¼­ Á¤¹ÐÇÑ ÀÔÀÚ Æ¯¼º Æò°¡¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡ µî ¿©·¯ °¡Áö ¿äÀο¡ ÀÇÇØ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. Á¦¾à »ê¾÷¿¡¼­´Â ƯÈ÷ ¹ÙÀÌ¿ÀÀǾàǰ ¹× ÁÖ»çÁ¦¿¡¼­ ¾àÁ¦ Á¦Á¦ÀÇ º¹À⼺ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ÀÔÀÚ¸¦ Á¤¹ÐÇÏ°Ô °ËÃâÇÏ°í Æ¯¼ºÈ­ÇÒ ¼ö Àִ ÷´Ü À̹Ì¡ ±â¼úÀÇ Çʿ伺ÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¹Ì±¹ ½ÄǰÀǾ౹(FDA)°ú °°Àº ±ÔÁ¦±â°üÀº ÁÖ»çÁ¦ ÀÔÀÚ ¿À¿°¿¡ ´ëÇÑ ¾ö°ÝÇÑ °¡À̵å¶óÀÎÀ» ¸¶·ÃÇÏ¿© ǰÁú°ü¸® ¹× ±ÔÁ¤ Áؼö¿¡ ´ëÇÑ È帧 À̹Ì¡ Çö¹Ì°æ ¼ö¿ä¸¦ ´õ¿í Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù.

»ý¸í°øÇÐ ºÐ¾ß¿¡¼­´Â ¼¼Æ÷ ±â¹Ý Ä¡·á¹ý°ú »ý¹°Á¦Á¦ÀÇ ±Þ°ÝÇÑ ¼ºÀåÀ¸·Î ÀÎÇØ ¼¼Æ÷¹è¾çÀ» ¸ð´ÏÅ͸µÇϰí Á¦Á¶ °úÁ¤¿¡¼­ ÀÀÁýü ¹× ¿À¿° ¹°ÁúÀ» °¨ÁöÇÒ ¼ö ÀÖ´Â ±â¼úÀÇ Çʿ伺ÀÌ ´ëµÎµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ³ª³ëÅ×Å©³î·¯Áö°ú Àç·á°úÇÐÀÇ ¹ßÀüÀ¸·Î ³ª³ëÀÔÀÚ ¹× ±âŸ ¹Ì¼¼ÀÔÀÚÀÇ Æ¯¼ºÀ» ÀÌÇØÇÏ·Á´Â ¿¬±¸°³¹ß¿¡¼­ À¯µ¿ À̹Ì¡ Çö¹Ì°æÀÇ È°¿ëÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù. À̹ÌÁö ÇØ»óµµ, ÀÚµ¿È­ ¹× AI ±â¹Ý ºÐ¼®ÀÇ ±â¼ú ¹ßÀüÀº À¯µ¿ À̹Ì¡ Çö¹Ì°æÀ» º¸´Ù È¿À²ÀûÀÌ°í »ç¿ëÀÚ Ä£È­ÀûÀ¸·Î ¸¸µé¾î º¹ÀâÇÑ ÀÔÀÚ ºÐ¼® ÀÛ¾÷À» ó¸®ÇÒ ¼ö ÀÖ°Ô ÇÔÀ¸·Î½á À¯µ¿ À̹Ì¡ Çö¹Ì°æÀÇ Ã¤ÅÃÀ» ´õ¿í °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. »ê¾÷°è°¡ Á¤È®ÇÏ°í »ó¼¼ÇÑ ÀÔÀÚ Æ¯¼º Æò°¡¿¡ ´ëÇÑ Á߿伺À» Á¡Á¡ ´õ °­Á¶ÇÔ¿¡ µû¶ó À¯µ¿ À̹Ì¡ Çö¹Ì°æ ½ÃÀåÀº ²ÙÁØÈ÷ ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ºÎ¹®

»ùÇà À¯Çü(»ý¹°Á¦Á¦, ÀúºÐÀÚÈ­ÇÕ¹°, ±âŸ »ùÇà À¯Çü); ÃÖÁ¾ »ç¿ë(¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö, Á¦¾à, ±âŸ ÃÖÁ¾ »ç¿ë)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹

AI ÅëÇÕ

´ç»ç´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI Åø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾ç ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÔ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Flow Imaging Microscopy/Dynamic Image Analysis Market to Reach US$70.8 Million by 2030

The global market for Flow Imaging Microscopy/Dynamic Image Analysis estimated at US$46.0 Million in the year 2024, is expected to reach US$70.8 Million by 2030, growing at a CAGR of 7.5% over the analysis period 2024-2030. Biologics, one of the segments analyzed in the report, is expected to record a 8.3% CAGR and reach US$34.7 Million by the end of the analysis period. Growth in the Small Molecules segment is estimated at 7.1% CAGR over the analysis period.

The U.S. Market is Estimated at US$11.9 Million While China is Forecast to Grow at 10.9% CAGR

The Flow Imaging Microscopy/Dynamic Image Analysis market in the U.S. is estimated at US$11.9 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$17.0 Million by the year 2030 trailing a CAGR of 10.9% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 4.0% and 6.9% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 4.7% CAGR.

Global Flow Imaging Microscopy/Dynamic Image Analysis Market - Key Trends & Drivers Summarized

Why Is Flow Imaging Microscopy Critical in Particle Characterization?

Flow imaging microscopy, also known as dynamic image analysis, is a powerful technique used for characterizing particles in a variety of industries, including pharmaceuticals, food & beverage, chemicals, and biotechnology. This technology allows for the real-time capture of high-resolution images of particles suspended in liquid, enabling detailed analysis of their size, shape, and morphology. Unlike traditional methods like static microscopy or laser diffraction, flow imaging microscopy provides more comprehensive data by visually identifying individual particles and analyzing their features in real-time. This makes it especially valuable in applications where understanding particle behavior and quality is critical, such as in drug formulation, quality control, and contamination analysis.

In the pharmaceutical industry, flow imaging microscopy is used to analyze active pharmaceutical ingredients (APIs) and excipients, ensuring that particle size and morphology meet the necessary specifications for drug efficacy and safety. It is also vital for detecting and characterizing contaminants or aggregates in injectable drugs, where even small particles can pose significant risks to patients. In the food industry, flow imaging microscopy is used to evaluate the texture and quality of ingredients, while in biotechnology, it plays a key role in monitoring cells and microorganisms in fermentation and cell culture processes. The growing need for precise and reliable particle characterization across multiple sectors is driving the adoption of flow imaging microscopy.

What Technological Advancements Are Shaping the Future of Flow Imaging Microscopy?

Technological advancements are significantly enhancing the capabilities of flow imaging microscopy, allowing for more accurate, efficient, and automated particle analysis. One of the most significant developments is the integration of artificial intelligence (AI) and machine learning (ML) algorithms into imaging systems. These technologies enable automated classification and analysis of particles based on shape, size, and morphology, reducing the time and effort required for manual analysis. AI-driven flow imaging microscopy can quickly identify and categorize particles, leading to more efficient quality control processes and faster decision-making in industrial applications.

Moreover, improvements in imaging resolution and optics are providing even more detailed visualization of particles. High-resolution cameras and advanced optical systems are allowing for the capture of sub-micron particles, expanding the range of applications for flow imaging microscopy in fields such as nanotechnology and materials science. Another important advancement is the development of multi-spectral imaging techniques, which enable the differentiation of particles based on their chemical composition. This is particularly useful in industries like pharmaceuticals and chemicals, where it is essential to distinguish between different types of particles or contaminants within a sample.

Why Is Flow Imaging Microscopy Gaining Importance in Pharmaceuticals and Biotechnology?

Flow imaging microscopy is gaining increasing importance in the pharmaceutical and biotechnology industries due to its ability to provide detailed, real-time analysis of particles that can impact drug development, manufacturing, and quality control. In pharmaceutical formulation, the size and shape of drug particles can influence the solubility, bioavailability, and stability of the final product. Flow imaging microscopy allows for precise characterization of these particles, ensuring that drugs meet the necessary specifications for safety and efficacy. It is also widely used to detect and characterize unwanted particles or aggregates in injectable drugs and biopharmaceuticals, where contamination can lead to serious health risks.

In biotechnology, flow imaging microscopy is critical for monitoring cell cultures and bioprocesses. It allows researchers to track the growth and morphology of cells, identify contaminants, and ensure that bioreactor conditions are optimized for maximum yield. In addition, the technology is used to analyze protein aggregates in biologics, where even small aggregates can affect the stability and performance of therapeutic proteins. As the pharmaceutical and biotechnology industries continue to advance, the need for high-precision particle analysis tools like flow imaging microscopy is becoming increasingly critical in ensuring product quality, safety, and regulatory compliance.

What Are the Key Drivers of Growth in the Flow Imaging Microscopy Market?

The growth in the flow imaging microscopy/dynamic image analysis market is driven by several factors, including the increasing demand for precise particle characterization in industries such as pharmaceuticals, biotechnology, food & beverage, and chemicals. In the pharmaceutical industry, the rising complexity of drug formulations, particularly in biopharmaceuticals and injectable therapies, is driving the need for advanced imaging technologies that can detect and characterize particles with high accuracy. Regulatory agencies like the U.S. Food and Drug Administration (FDA) have stringent guidelines regarding particle contamination in injectable drugs, further boosting demand for flow imaging microscopy in quality control and compliance.

In the biotechnology sector, the rapid growth of cell-based therapies and biologics is fueling the need for technologies that can monitor cell cultures and detect aggregates or contaminants during production. Additionally, advancements in nanotechnology and materials science are expanding the use of flow imaging microscopy in research and development, as scientists seek to understand the properties of nanoparticles and other small particles. Technological advancements in imaging resolution, automation, and AI-driven analysis are further accelerating the adoption of flow imaging microscopy by making it more efficient, user-friendly, and capable of handling complex particle analysis tasks. As industries increasingly rely on accurate and detailed particle characterization, the market for flow imaging microscopy is expected to grow steadily.

SCOPE OF STUDY:

The report analyzes the Flow Imaging Microscopy/Dynamic Image Analysis market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Sample Type (Biologics, Small Molecules, Other Sample Types); End-Use (Biotechnology, Pharmaceutical, Other End-Uses)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 42 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â