¼¼°èÀÇ ºÎÀ¯½Ä LNG¼± ½ÃÀå
Floating LNG Power Vessel
»óǰÄÚµå : 1768498
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 264 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,160,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,480,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ºÎÀ¯½Ä LNG¼± ½ÃÀåÀº 2030³â±îÁö 8¾ï 1,470¸¸ ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 6¾ï 2,950¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ ºÎÀ¯½Ä LNG¼± ½ÃÀåÀº 2024-2030³â¿¡ CAGR 4.4%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 8¾ï 1,470¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ Àü·Â¼±Àº CAGR 4.8%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 4¾ï 7,060¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÆÄ¿ö È­¹° ¿î¹Ý¼± ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 3.8%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 1¾ï 6,530¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 7.0%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ºÎÀ¯½Ä LNG¼± ½ÃÀåÀº 2024³â¿¡ 1¾ï 6,530¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2024-2030³âÀÇ ºÐ¼® ±â°£¿¡ CAGR 7.0%·Î ÃßÀÌÇϸç, 2030³â¿¡´Â 1¾ï 7,770¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 2.7%¿Í 3.4%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 3.2%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ºÎÀ¯½Ä LNG¼± ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

¿¡³ÊÁö ºÐ¾ß¿¡¼­ ºÎÀ¯½Ä LNG¼±ÀÇ Á߿伺ÀÌ Ä¿Áö´Â ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

ºÎÀ¯½Ä LNG(¾×ȭõ¿¬°¡½º) ¹ßÀü ¼±¹ÚÀº ƯÈ÷ ±âÁ¸ Àü·Â ÀÎÇÁ¶ó¿¡ ´ëÇÑ Á¢±Ù¼ºÀÌ Á¦ÇÑµÈ Áö¿ª¿¡¼­ Àü ¼¼°è ¿¡³ÊÁö ¼ö¿ä¸¦ ÃæÁ·½Ã۱â À§ÇÑ Áß¿äÇÑ ¼Ö·ç¼ÇÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ¿¡³ÊÁö ºÎÁ·¿¡ Á÷¸éÇÑ Áö¿ª¿¡ À¯¿¬Çϰí È¿À²ÀûÀÎ ¹ßÀü ¹æ½ÄÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ»êȭź¼Ò ¹èÃâ·® °¨¼Ò¿Í ûÁ¤ ¿¡³ÊÁö¿øÀ¸·ÎÀÇ Àüȯ¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö´Â °¡¿îµ¥, ¿¡³ÊÁö È¿À²ÀÌ ³ô°í ¿À¿°¹°Áú ¹èÃâÀÌ ÀûÀº LNG´Â ¼®Åº°ú ¼®À¯¸¦ ´ëüÇÒ ¼ö ÀÖ´Â ¸Å·ÂÀûÀÎ ´ë¾ÈÀ¸·Î ¶°¿À¸£°í ÀÖ½À´Ï´Ù. ºÎÀ¯½Ä LNG ¹ßÀü¼±Àº ¿¡³ÊÁö ¼ö¿ä°¡ ³ôÁö¸¸ ÀÎÇÁ¶ó°¡ ºÎÁ·ÇÑ Áö¿ª¿¡ ½Å¼ÓÇÏ°Ô ¹èÄ¡ÇÒ ¼ö ÀÖÀ¸¸ç, ´Ü±â°£¿¡ Àü·Â ¼ö¿ä¸¦ ÃæÁ·½Ãų ¼ö ÀÖ´Â ´Ù¿ëµµÇÑ ¼Ö·ç¼ÇÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ºÎÀ¯½Ä LNG ¼±¹ÚÀÇ À¯¿¬¼ºÀº ±âµ¿¼º°ú ´ë±Ô¸ð À°»ó ÀÎÇÁ¶ó¸¦ ÇÊ¿ä·Î ÇÏÁö ¾Ê´Â ¿î¿µ ´É·Â¿¡ ÀÖ½À´Ï´Ù. ÀÌ ¼±¹ÚÀº ¼¶, ÇØ¾È µµ½Ã, ÇØ»ó Ç÷§Æû µî ´Ù¾çÇÑ Àå¼Ò¿¡ ¹èÄ¡ÇÒ ¼ö ÀÖÀ¸¸ç, »ê¾÷ Ȱµ¿, µµ½Ã Áö¿ª ¶Ç´Â ºñ»ó »çÅ¿¡ ¾ÈÁ¤ÀûÀÎ Àü·ÂÀ» °ø±ÞÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ Àü ¼¼°è ¿¡³ÊÁö ¼ö¿ä, ƯÈ÷ °³¹ßµµ»ó±¹ÀÇ ¿¡³ÊÁö ¼ö¿ä°¡ Áö¼ÓÀûÀ¸·Î Áõ°¡ÇÔ¿¡ µû¶ó ºÎÀ¯½Ä LNG¼±Àº ´Ù¾çÇÑ Áö¿ªÀÇ Æ¯Á¤ ¿¡³ÊÁö ¼ö¿ä¿¡ ÀûÀÀÇÒ ¼ö ÀÖ´Â È®Àå °¡´ÉÇÑ ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. ±âÀúºÎÇÏ¿Í Ã·µÎºÎÇÏ ¸ðµÎ¿¡ Àü·ÂÀ» °ø±ÞÇÒ ¼ö ÀÖ´Â ´É·ÂÀ¸·Î ÀÎÇØ ºÎÀ¯½Ä LNG¼±Àº ¼¼°è ¿¡³ÊÁö ¹Í½º¿¡¼­ Á¡Á¡ ´õ Áß¿äÇÑ ¿ªÇÒÀ» ÇÏ°Ô µÉ °ÍÀÔ´Ï´Ù.

ºÎÀ¯½Ä LNG ¼±¹ÚÀÇ ´É·ÂÀ» Çâ»ó½ÃŰ´Â ±â¼ú ¹ßÀüÀº ¹«¾ùÀΰ¡?

ºÎÀ¯½Ä LNG¼± ¼³°è ¹× ¿î¿µÀÇ ±â¼úÀû Áøº¸·Î ÀÎÇØ LNG¼±ÀÇ ¼º´É, ¾ÈÀü¼º ¹× È¿À²¼ºÀÌ Å©°Ô Çâ»óµÇ°í ÀÖ½À´Ï´Ù. Áß¿äÇÑ Çõ½Å Áß Çϳª´Â ¹ßÀü¿ëÀ¸·Î »ç¿ëÇϱâ Àü¿¡ LNG¸¦ õ¿¬°¡½º·Î µÇµ¹¸± ¼ö Àִ ÷´Ü Àç±âÈ­ ½Ã½ºÅÛÀÇ ÅëÇÕÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ´õ¿í È¿À²ÀûÀÌ°í ½Å·ÚÇÒ ¼ö ÀÖÀ¸¸ç, ¼±¹ÚÀÌ ´õ ¸¹Àº ¾çÀÇ LNG¸¦ ´õ ªÀº ½Ã°£¿¡ ó¸®ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ ¸ðµâ½Ä ¹ßÀü¼Ò ±â¼úÀÇ ¹ßÀüÀ¸·Î ºÎÀ¯½Ä LNG¼±Àº ¹èÄ¡µÇ´Â Áö¿ªÀÇ Çʿ信 µû¶ó ¼ö ¸Þ°¡¿ÍÆ®¿¡¼­ ¼ö¹é ¸Þ°¡¿ÍÆ®±îÁö À¯¿¬ÇÑ ¹ßÀü Ãâ·ÂÀ» Á¦°øÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¶Ç ´Ù¸¥ Áß¿äÇÑ ¹ßÀüÀº LNG¼±¿¡ ÀÚµ¿È­ ¹× ¿ø°Ý ¸ð´ÏÅ͸µ ½Ã½ºÅÛÀ» µµÀÔÇÑ °ÍÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀ» ÅëÇØ ¿î¿µÀÚ´Â ¹ßÀü °øÁ¤À» º¸´Ù Á¤È®ÇÏ°Ô °ü¸®Çϰí Á¦¾îÇÒ ¼ö ÀÖÀ¸¸ç, È¿À²¼ºÀÌ Çâ»óµÇ°í ¿î¿µ ½ÇÆÐÀÇ À§ÇèÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¼±¹Ú ¼ÒÀç¿Í ¼³°èÀÇ Çõ½ÅÀº ºÎÀ¯½Ä LNG¼±ÀÇ ³»±¸¼º°ú ¾ÈÁ¤¼ºÀ» Çâ»ó½ÃÄÑ ¿­¾ÇÇÑ ÇØ¾ç ȯ°æ¿¡¼­µµ ³ôÀº ¾ÈÀü ±âÁØÀ» À¯ÁöÇϸ鼭 ¿îÇ×ÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ûÁ¤ ¿¬¼Ò Åͺó°ú ¹ßÀü±â, ź¼Ò Æ÷Áý ¹× ÀúÀå(CCS) ½Ã½ºÅÛÀÇ Ã¤ÅÃÀº ºÎÀ¯½Ä LNG¼±ÀÌ ¿Â½Ç°¡½º °¨ÃàÀ» À§ÇÑ ¼¼°è ³ë·Â¿¡ ºÎÇÕÇÏ´Â µ¥ µµ¿òÀÌ µÇ°í ÀÖ½À´Ï´Ù.

¿Ö ºÎÀ¯½Ä LNG¼±ÀÌ ¼¼°è ¿¡³ÊÁö ºÎÁ·À» ÇØ°áÇÒ ¼ö ÀÖ´Â ¼Ö·ç¼ÇÀ¸·Î ÁÖ¸ñ¹Þ´Â°¡?

ºÎÀ¯½Ä LNG¼±Àº ƯÈ÷ ±âÁ¸ÀÇ Àü·Â ÀÎÇÁ¶ó °Ç¼³ÀÌ ¾î·Æ°í ½Ã°£ÀÌ ¿À·¡ °É¸®´Â Áö¿ª¿¡¼­ ¼¼°è ¿¡³ÊÁö °ÝÂ÷¿¡ ´ëÇÑ ½ÇÇà °¡´ÉÇÑ ¼Ö·ç¼ÇÀ¸·Î Àνĵǰí ÀÖ½À´Ï´Ù. ƯÈ÷ µ¿³²¾Æ½Ã¾Æ, ¾ÆÇÁ¸®Ä«, ¼¶³ª¶ó µî ÀÎÇÁ¶ó°¡ ºÎÁ·Çϰí õ¿¬ÀÚ¿ø¿¡ ´ëÇÑ Á¢±ÙÀÌ Á¦ÇÑÀûÀ̰ųª Áö¿ªÀûÀ¸·Î °í¸³µÇ¾î ¿¡³ÊÁö ºÎÁ·¿¡ Á÷¸éÇÑ ±¹°¡µéÀÌ ¸¹Àºµ¥, LNG ºÎÀ¯½Ä ¹ßÀü¼±Àº ´ë±Ô¸ð À°»ó ¹ßÀü¼Ò³ª ¼ÛÀü¼± ¾øÀ̵µ À̵é Áö¿ª¿¡ ¾ÈÁ¤ÀûÀÎ Àü·ÂÀ» °ø±ÞÇÒ ¼ö ÀÖ½À´Ï´Ù. ³ôÀº Àü·ÂÀ» °ø±ÞÇÔÀ¸·Î½á Áï°¢ÀûÀÎ ÇØ°áÃ¥À» Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù. µû¶ó¼­ ºñ¿ë°ú °Ç¼³ ±â°£À» ÁÙÀ̸鼭 ¿¡³ÊÁö ¼ö¿ä Áõ°¡¿¡ ´ëÀÀÇØ¾ß ÇÏ´Â ½ÅÈï °æÁ¦ ±¹°¡µé¿¡°Ô LNG ÇØ»ó ¹ßÀü¼±Àº ƯÈ÷ À¯¿ëÇÏ°Ô È°¿ëµÉ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ºÎÀ¯½Ä LNG ¹ßÀü¼±Àº ÀÚ¿¬ÀçÇØ³ª ÀεµÁÖÀÇÀû À§±â·Î ÀÎÇØ ¿¡³ÊÁö ÀÎÇÁ¶ó°¡ ¼Õ»óµÇ¾ú°Å³ª ¾Æ¿¹ Á¸ÀçÇÏÁö ¾Ê´Â Áö¿ª¿¡ ÀûÇÕÇÕ´Ï´Ù. À̵¿¼ºÀÌ ¶Ù¾î³ª ±ä±Þ »óȲ¿¡ ½Å¼ÓÇÏ°Ô ´ëÀÀÇÏ°í º¹±¸ ÀÛ¾÷, ÀÇ·á½Ã¼³, Àӽà ÁÖÅÿ¡ Áß¿äÇÑ Àü·ÂÀ» °ø±ÞÇÒ ¼ö ÀÖ½À´Ï´Ù. ¼¼°è ¿¡³ÊÁö ½ÃÀåÀÌ Á¡Á¡ ´õ ûÁ¤ ¿¬·á·Î ÀüȯµÇ°í ÀÖ´Â °¡¿îµ¥, LNG´Â °¢±¹ÀÌ ¼®Åº°ú ¼®À¯¿¡¼­ ¹þ¾î³ª±â À§ÇÑ °úµµ±âÀû ¿¬·á·Î ÁÖ¸ñ¹Þ°í ÀÖÀ¸¸ç, Àç»ý¿¡³ÊÁö ÀÎÇÁ¶ó¸¦ °³¹ßÇÏ´Â ÇÑÆí, °¢±¹ÀÌ ¼®Åº°ú ¼®À¯¿¡¼­ ¹þ¾î³ª±â À§ÇÑ °úµµ±âÀû ¿¬·á·Î ÁÖ¸ñ¹Þ°í ÀÖ½À´Ï´Ù. ºÎÀ¯½Ä LNG¼±Àº ¿¡³ÊÁö¿øÀ» ´Ù¾çÈ­Çϰí ź¼Ò ¹èÃâ·®À» ÁÙÀÌ·Á´Â ±¹°¡µé¿¡°Ô ÀûÀÀ¼º°ú È®À强ÀÌ ¶Ù¾î³­ ¼Ö·ç¼ÇÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù.

ºÎÀ¯½Ä LNG¼± ½ÃÀåÀÇ ¼ºÀå ÃËÁø¿äÀÎÀº?

ºÎÀ¯½Ä LNG¼± ½ÃÀåÀÇ ¼ºÀåÀº ¼¼°è ¿¡³ÊÁö ¼ö¿ä Áõ°¡, ûÁ¤ ¿¡³ÊÁö¿øÀÇ ÃßÁø, À¯¿¬ÇÑ ¹ßÀü ¼Ö·ç¼ÇÀÇ Çʿ伺 µî ¸î °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ½ÅÈï °æÁ¦±¹À» Áß½ÉÀ¸·Î ¿¡³ÊÁö ¼Òºñ°¡ Áö¼ÓÀûÀ¸·Î Áõ°¡ÇÔ¿¡ µû¶ó ±âÁ¸ Àü·Â ÀÎÇÁ¶ó°¡ ºÎÁ·ÇÑ Áö¿ª¿¡ ¾ÈÁ¤ÀûÀÎ Àü·Â °ø±ÞÀÇ Çʿ伺ÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ºÎÀ¯½Ä LNG¼±Àº ÀÌ·¯ÇÑ ¼ö¿ä¸¦ ÃæÁ·½ÃŰ±â¿¡ ÀûÇÕÇϸç, ¿¡³ÊÁö°¡ ºÎÁ·ÇÑ ¿ÀÁö¿Í ¼¶³ª¶ó, ¿¡³ÊÁö ºÎÁ· Áö¿ª¿¡ Àü·ÂÀ» °ø±ÞÇÏ´Â ½Å¼ÓÇÏ°í ºñ¿ë È¿À²ÀûÀÎ ¹æ¹ýÀ» Á¦°øÇÕ´Ï´Ù. ¶Ç ´Ù¸¥ Áß¿äÇÑ ¿øµ¿·ÂÀº ÀÌ»êȭź¼Ò ¹èÃâ·® °¨¼Ò¿Í ûÁ¤ ¿¡³ÊÁö¿øÀ¸·ÎÀÇ Àüȯ¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. LNG´Â ¼®ÅºÀ̳ª ¼®À¯º¸´Ù ´õ ±ú²ýÇÑ ´ëü ¿¡³ÊÁö·Î ¿©°ÜÁö°í ÀÖÀ¸¸ç, ºÎÀ¯½Ä LNG ¹ßÀü ¼±¹ÚÀº °¢±¹¿¡ ¿¡³ÊÁö ¼ö¿ä¸¦ ÃæÁ·½ÃŰ¸é¼­ È­¼® ¿¬·á¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙÀÏ ¼ö ÀÖ´Â ¹æ¹ýÀ» °¢±¹¿¡ Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ ÀÌ·¯ÇÑ ¼±¹ÚÀÇ À¯¿¬¼º°ú È®À强Àº ºü¸£°Ô ¹èÄ¡ÇÒ ¼ö ÀÖ°í º¯È­ÇÏ´Â ¿¡³ÊÁö ¿ä±¸»çÇ׿¡ ÀûÀÀÇÒ ¼ö ÀÖ´Â ¸ðµâ½Ä Àü·Â ¼Ö·ç¼ÇÀ» ¿øÇÏ´Â Á¤ºÎ ¹× ¹Î°£ »ç¾÷ÀÚ¿¡°Ô ¸Å·ÂÀûÀÔ´Ï´Ù. ¼¼°è ¿¡³ÊÁö ½ÃÀåÀÌ °è¼Ó ÁøÈ­Çϰí ÀÖ´Â °¡¿îµ¥, ºÎÀ¯½Ä LNG ¹ßÀü ¼±¹ÚÀº ±âÁ¸ ¹ßÀü°ú Àç»ý¿¡³ÊÁö µµÀÔÀÇ °ÝÂ÷¸¦ ÇØ¼ÒÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ °ÍÀ¸·Î ±â´ëµË´Ï´Ù.

ºÎ¹®

¼±¹Ú À¯Çü(ÆÄ¿ö½Ê, ÆÄ¿ö È­¹° ¿î¹Ý¼±), ÄÄÆ÷³ÍÆ®(¹ßÀü ½Ã½ºÅÛ, ¹èÀü ½Ã½ºÅÛ)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI Åø¿¡ ÀÇÇØ ½ÃÀå°ú °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾ç ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÔ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Floating LNG Power Vessel Market to Reach US$814.7 Million by 2030

The global market for Floating LNG Power Vessel estimated at US$629.5 Million in the year 2024, is expected to reach US$814.7 Million by 2030, growing at a CAGR of 4.4% over the analysis period 2024-2030. Power Ship, one of the segments analyzed in the report, is expected to record a 4.8% CAGR and reach US$470.6 Million by the end of the analysis period. Growth in the Power Barge segment is estimated at 3.8% CAGR over the analysis period.

The U.S. Market is Estimated at US$165.3 Million While China is Forecast to Grow at 7.0% CAGR

The Floating LNG Power Vessel market in the U.S. is estimated at US$165.3 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$177.7 Million by the year 2030 trailing a CAGR of 7.0% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 2.7% and 3.4% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 3.2% CAGR.

Global Floating LNG Power Vessel Market - Key Trends & Drivers Summarized

Why Are Floating LNG Power Vessels Gaining Importance in the Energy Sector?

Floating LNG (liquefied natural gas) power vessels have emerged as a critical solution for addressing global energy needs, particularly in regions with limited access to traditional power infrastructure. These vessels, equipped with power plants fueled by LNG, provide a flexible and efficient way to generate electricity in coastal areas, remote locations, and regions facing energy shortages. The increasing focus on reducing carbon emissions and transitioning toward cleaner energy sources has made LNG an attractive alternative to coal and oil, as it emits fewer pollutants while offering high energy efficiency. Floating LNG power vessels can be quickly deployed to regions where energy demand is high but infrastructure is underdeveloped, making them a versatile solution for meeting electricity needs in a short timeframe. The flexibility of floating LNG power vessels lies in their mobility and ability to operate without the need for extensive onshore infrastructure. These vessels can be deployed in various locations, including islands, coastal cities, and offshore platforms, providing a reliable power source for industrial operations, urban areas, or emergency situations. Additionally, as global energy demand continues to rise, particularly in developing regions, floating LNG power vessels offer a scalable solution that can be adapted to the specific energy needs of different regions. This ability to provide both baseload and peak-load power has made floating LNG vessels an increasingly important part of the global energy mix.

What Technological Advancements Are Enhancing the Capabilities of Floating LNG Power Vessels?

Technological advancements in the design and operation of floating LNG power vessels are significantly enhancing their performance, safety, and efficiency. One of the key innovations is the integration of advanced regasification systems, which convert LNG back into natural gas before it is used to generate electricity. These systems have become more efficient and reliable, enabling vessels to process larger volumes of LNG in a shorter amount of time. In addition, advancements in modular power plant technologies allow floating LNG vessels to offer flexible power output, ranging from a few megawatts to several hundred megawatts, depending on the needs of the region where they are deployed. Another important development is the use of automation and remote monitoring systems on these vessels. These systems enable operators to manage and control power generation processes with greater precision, enhancing efficiency and reducing the risk of operational failures. Moreover, innovations in shipbuilding materials and design have improved the durability and stability of floating LNG vessels, allowing them to operate in harsh marine environments while maintaining high safety standards. The incorporation of cleaner-burning turbines and generators, as well as systems for carbon capture and storage (CCS), is also helping floating LNG vessels align with global efforts to reduce greenhouse gas emissions.

Why Are Floating LNG Power Vessels Seen as a Solution to Global Energy Gaps?

Floating LNG power vessels are increasingly being recognized as a viable solution to global energy gaps, particularly in regions where building traditional power infrastructure is challenging or time-consuming. Many countries, especially in Southeast Asia, Africa, and island nations, face energy shortages due to inadequate infrastructure, limited access to natural resources, or geographic isolation. Floating LNG power vessels can provide an immediate solution by delivering reliable electricity to these regions without the need for extensive land-based power plants or transmission lines. This makes them particularly valuable for developing economies that need to meet rising energy demands while keeping costs and construction times low. Additionally, floating LNG power vessels are well-suited to regions affected by natural disasters or humanitarian crises, where energy infrastructure may be damaged or entirely absent. Their mobility allows them to be deployed rapidly in response to emergencies, providing critical power for recovery efforts, medical facilities, and temporary housing. As global energy markets increasingly shift toward cleaner fuels, LNG is seen as a transitional fuel that can help countries move away from coal and oil while developing renewable energy infrastructure. Floating LNG power vessels offer an adaptable and scalable solution for countries looking to diversify their energy sources and reduce their carbon footprint.

What Are the Key Drivers of Growth in the Floating LNG Power Vessel Market?

The growth in the floating LNG power vessel market is driven by several factors, including rising global energy demand, the push for cleaner energy sources, and the need for flexible power generation solutions. As energy consumption continues to increase, particularly in developing economies, there is growing pressure to provide reliable electricity to regions that lack traditional power infrastructure. Floating LNG power vessels are well-suited to meet this demand, offering a rapid and cost-effective way to deliver power to remote areas, island nations, and regions experiencing energy shortages. Another key driver is the increasing focus on reducing carbon emissions and transitioning toward cleaner energy sources. LNG is considered a cleaner alternative to coal and oil, and floating LNG power vessels offer a way for countries to reduce their reliance on fossil fuels while still meeting energy needs. Additionally, the flexibility and scalability of these vessels make them attractive for governments and private operators looking for modular power solutions that can be deployed quickly and adapted to changing energy requirements. As the global energy market continues to evolve, floating LNG power vessels are expected to play a crucial role in bridging the gap between traditional power generation and renewable energy adoption.

SCOPE OF STUDY:

The report analyzes the Floating LNG Power Vessel market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Vessel Type (Power Ship, Power Barge); Component (Power Generation System, Power Distribution System)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 33 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â