¼¼°èÀÇ Å¥ºê»û(CubeSat) ½ÃÀå
CubeSat
»óǰÄÚµå : 1768426
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 208 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,225,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,675,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ Å¥ºê»û ½ÃÀåÀº 2030³â±îÁö 14¾ï ´Þ·¯¿¡ À̸¦ Àü¸Á

2024³â¿¡ 6¾ï 1,430¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â Å¥ºê»û ¼¼°è ½ÃÀåÀº ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGR 14.5%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 14¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ 0.25-1u´Â CAGR 15.0%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 4¾ï 1,120¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. 1-3u ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£Áß CAGR 15.6%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 1¾ï 7,080¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR13.4%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ Å¥ºê»û ½ÃÀåÀº 2024³â¿¡ 1¾ï 7,080¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGR13.4%·Î ¼ºÀåÀ» Áö¼ÓÇÏ¿©, 2030³â¿¡´Â ¿¹Ãø ½ÃÀå ±Ô¸ð 2¾ï 770¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î¼­´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 12.5%¿Í 12.1%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 9.9%¸¦ ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù.

¼¼°èÀÇ Å¥ºê»û ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

Å¥ºê»ûÀ̶õ ¹«¾ùÀ̸ç, ¿Ö ¿ìÁÖ Å½»ç¿¡¼­ Áß¿äÇѰ¡?

Å¥ºê»ûÀº º¸Åë 10x10x10cm(1U), ¹«°Ô 1-2kg Á¤µµÀÇ ¼ÒÇü À§¼ºÀÔ´Ï´Ù. Ãʱ⿡´Â Çмú ¿¬±¸¿ëÀ¸·Î ¼³°èµÇ¾úÀ¸³ª, ÇöÀç´Â »ó¾÷, °úÇÐ, ±¹¹æ °ü·Ã ¿ìÁÖ ÀÓ¹«¿¡ ¾ø¾î¼­´Â ¾È µÉ ÇʼöÀûÀÎ Á¸Àç°¡ µÇ¾ú½À´Ï´Ù. Å¥ºê»ûÀº Áö±¸°üÃø, Åë½Å, °úÇÐ ¿¬±¸, ±â¼ú ½ÇÁõ µî ´Ù¾çÇÑ ¿ëµµ·Î »ç¿ëÇÒ ¼ö ÀÖ´Â Àúºñ¿ëÀÇ ´Ù¿ëµµ Ç÷§ÆûÀ» Á¦°øÇÕ´Ï´Ù. ¸ðµâ½Ä ¼³°è·Î ¿©·¯ °³(3U, 6U, 12U ±¸¼º µî)¸¦ ½×¾Æ¼­ ´õ Å©°í °í¼º´ÉÀÇ À§¼ºÀ» ¸¸µé ¼ö ÀÖÀ¸¸ç, Å¥ºê»ûÀÇ ¼³°è¸¦ ƯÁ¤ ÀÓ¹« ¿ä°Ç¿¡ ¸Â°Ô Á¶Á¤ÇÒ ¼ö ÀÖ´Â À¯¿¬¼ºÀ» Á¦°øÇÕ´Ï´Ù.

Å¥ºê»ûÀÇ °¡Àå Áß¿äÇÑ ÀåÁ¡ Áß Çϳª´Â Àú·ÅÇÑ ºñ¿ë°ú ºü¸¥ °³¹ß ÁÖ±âÀÔ´Ï´Ù. Å©±â°¡ À۱⠶§¹®¿¡ ´ëÇü ¹ß»ç¿¡ "ÇDZâ¹é(piggyback)"ÇÒ ¼ö ÀÖ¾î ¹ß»ç ºñ¿ëÀ» Àý°¨ÇÏ°í ´ëÇÐ, ½ºÅ¸Æ®¾÷, ºñ»óÀå ±â¾÷À» Æ÷ÇÔÇÑ ¼Ò±Ô¸ð Á¶Á÷¿¡ ¿ìÁÖ¸¦ º¸´Ù Ä£¼÷ÇÏ°Ô ¸¸µé¾î ÁÝ´Ï´Ù. Å¥ºê»ûÀº ½Å¼ÓÇÑ °³¹ß ¹× ¹èÄ¡°¡ °¡´ÉÇϱ⠶§¹®¿¡ ´õ ºó¹øÇÑ ÀÓ¹«¿Í ´õ ºü¸¥ ±â¼ú Áøº¸¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Á¢±Ù¼ºÀ¸·Î ÀÎÇØ ¿ø°ÝŽ»ç, ȯ°æ ¸ð´ÏÅ͸µ, Àç³­ ´ëÀÀ, °úÇÐ ¿¬±¸ µî¿¡ ´ëÇÑ È°¿ëµµ°¡ Å©°Ô Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¿ìÁÖ Å½»ç°¡ ´õ¿í ¹ÎÁÖÈ­µÊ¿¡ µû¶ó Å¥ºê»ûÀº ¿ìÁÖ¿¡¼­ ±ÍÁßÇÑ µ¥ÀÌÅ͸¦ ¼öÁýÇϰí, ¿¬±¸¸¦ ¹ßÀü½Ã۰í, »õ·Î¿î ±â¼úÀ» Å×½ºÆ®ÇÏ´Â µ¥ ÇʼöÀûÀÎ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù.

±â¼úÀÇ ¹ßÀüÀº Å¥ºê»ûÀÇ ¿ª·®À» ¾î¶»°Ô Çü¼ºÇϰí Àִ°¡?

¼ÒÇüÈ­, Åë½Å, ÃßÁø·ÂÀÇ ±â¼ú ¹ßÀüÀ¸·Î Å¥ºê»ûÀÇ ´É·ÂÀÌ Å©°Ô Çâ»óµÇ¾î º¸´Ù º¹ÀâÇÏ°í °¡Ä¡ ÀÖ´Â ÀÓ¹«¸¦ ¼öÇàÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¼¾¼­, Ä«¸Þ¶ó, Àü·Â ½Ã½ºÅÛ µî ºÎǰÀÇ ¼ÒÇüÈ­·Î ÀÎÇØ Å¥ºê»û¿¡ ÷´Ü ÆäÀ̷ε带 žÀçÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. °íÇØ»óµµ Ä«¸Þ¶ó, ´ÙÁß ½ºÆåÆ®·³ ¼¾¼­, ÷´Ü ¹«¼± Á֯ļö ½Ã½ºÅÛÀ» ÅëÇØ Å¥ºê»ûÀº ÀÌÁ¦ Áö±¸ÀÇ »ó¼¼ÇÑ °üÃø, ±â»ó ÆÐÅÏ ÃßÀû, ¿ìÁÖ¿¡¼­ ȯ°æ º¯È­¸¦ ¸ð´ÏÅ͸µÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀ¸·Î Å¥ºê»ûÀº ´Ü¼øÇÑ ±³À°¿ë µµ±¸¿¡¼­ Á¤ºÎ ¹× »ó¾÷¿ëÀÇ °­·ÂÇÑ µ¥ÀÌÅÍ ¼öÁý ÀÚ»êÀ¸·Î Å»¹Ù²ÞÇß½À´Ï´Ù.

Åë½Å ½Ã½ºÅÛµµ Å©°Ô °³¼±µÇ¾î Å¥ºê»ûÀº ½Ç½Ã°£ ¶Ç´Â °ÅÀÇ ½Ç½Ã°£À¸·Î Áö±¸·Î µ¥ÀÌÅ͸¦ Àü¼ÛÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. Å¥ºê»û ÄÁ½ºÅÚ·¹À̼Ç(CubeSat Constellation)Àº ÇöÀç Àü ¼¼°è Åë½Å ¹üÀ§¸¦ Á¦°øÇÏ°í ´ë±Ô¸ð µ¥ÀÌÅÍ ¼öÁýÀ» ¼öÇàÇϱâ À§ÇØ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¼ÒÇü À§¼ºÀ» À§ÇØ ¼³°èµÈ Àü±â ÃßÁø±â ¹× È­ÇÐ ÃßÁø±â¿Í °°Àº ÃßÁø ½Ã½ºÅÛÀÇ ¹ßÀüÀ¸·Î Å¥ºê»ûÀº ±Ëµµ º¯°æ, À§Ä¡ À¯Áö ¹× Ç༺ °£ ÀÓ¹« ¼öÇàÀÌ °¡´ÉÇØÁ³½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀÇ ¹ßÀüÀ¸·Î Å¥ºê»ûÀÇ ÀáÀçÀû ¿ëµµ°¡ È®´ëµÇ¾î ¿ìÁÖ Å½»ç, À§¼º Åë½Å, ½É¿ìÁÖ Å½»ç µî »õ·Î¿î °¡´É¼ºÀ» ½ÇÇöÇϰí ÀÖ½À´Ï´Ù.

»ó¾÷, Çмú, Á¤ºÎ ±â°ü¿¡¼­ Å¥ºê»ûÀÌ Àα⸦ ²ô´Â ÀÌÀ¯´Â ¹«¾ùÀϱî?

Å¥ºê»ûÀº Àú·ÅÇÑ °¡°Ý, ´Ù¿ëµµ¼º, Á¢±Ù ¿ëÀ̼ºÀ¸·Î ÀÎÇØ »ó¾÷, Çмú, Á¤ºÎ ±â°üµé »çÀÌ¿¡¼­ Àα⸦ ²ø°í ÀÖ½À´Ï´Ù. ¿µ¸® ±â¾÷, ƯÈ÷ ¿ø°Ý °¨Áö, Åë½Å, IoT °ü·Ã ±â¾÷µéÀº ±â»ó ¸ð´ÏÅ͸µ, ÇØ»ó ÃßÀû, ³ó¾÷ ¸ð´ÏÅ͸µ µîÀÇ ¿ëµµ·Î Àü Áö±¸¸¦ Ä¿¹öÇÏ´Â À§¼º º°ÀÚ¸®¸¦ ±¸ÃàÇϱâ À§ÇØ Å¥ºê»ûÀ» Ȱ¿ëÇϰí ÀÖÀ¸¸ç, Planet°ú Spire¿Í °°Àº ±â¾÷µéÀº ´ë±Ô¸ðÀÇ Å¥ºê»û ÄÁ½ºÅÚ·¹À̼ÇÀ» ±¸ÃàÇÏ¿© Àü ¼¼°è °í°´¿¡°Ô Áö¼ÓÀûÀÎ Áö±¸°üÃø µ¥ÀÌÅ͸¦ Á¦°øÇÕ´Ï´Ù. »ó¾÷ ´Üü¿¡°Ô Å¥ºê»ûÀº ±âÁ¸ À§¼º°ú °ü·ÃµÈ ºñ¿ëÀ» µéÀÌÁö ¾Ê°íµµ ¿ìÁÖ¿¡¼­ ÀÔÁö¸¦ ±¸ÃàÇϰųª °­È­ÇÒ ¼ö ÀÖ´Â ºñ¿ë È¿À²ÀûÀÎ ¹æ¹ýÀ» Á¦°øÇÕ´Ï´Ù.

Çмú ±â°ü¿¡ ÀÖ¾î Å¥ºê»ûÀº Çлý°ú ¿¬±¸Àڵ鿡°Ô À§¼ºÀÇ ¼³°è, Á¦ÀÛ, ¿î¿ëÀ» °æÇèÇÒ ¼ö ÀÖ´Â ±âȸ¸¦ Á¦°øÇÑ´Ù´Â Á¡¿¡¼­ À¯ÀÍÇÕ´Ï´Ù. ´ëÇÐÀÇ Å¥ºê»û ÇÁ·Î±×·¥Àº Çлýµé¿¡°Ô ±ÍÁßÇÑ °æÇèÀ» Á¦°øÇϰí, ¿ìÁÖ ÀÓ¹«¿¡ ±â¿©Çϸç, Á¤ºÎ ¹× »ê¾÷°è ÆÄÆ®³Ê¿Í Çù·ÂÇÒ ¼ö ÀÖ´Â ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ, Å¥ºê»ûÀº »õ·Î¿î ±¸¼º ¿ä¼Ò¿Í ¼­ºê½Ã½ºÅÛÀÇ ±â¼ú ½ÇÁõ Ç÷§ÆûÀ¸·Î¼­ ¿ªÇÒÀ» ¼öÇàÇÏ¿© ´ë±Ô¸ð ÀÓ¹«¿¡ º»°ÝÀûÀ¸·Î µµÀÔÇϱâ Àü¿¡ À§ÇèÀ» ¿ÏÈ­ÇÏ´Â µ¥ µµ¿òÀ» ÁÖ¸ç, NASA¿Í ¹Ì ±¹¹æºÎ¸¦ ºñ·ÔÇÑ Á¤ºÎ ±â°ü ¹× ¹æÀ§ ±â°ü¿¡¼­µµ Áö±¸°üÃø, °¨½Ã, ±â¼ú Å×½ºÆ®¿¡ Å¥ºê»ûÀ» Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. ¸¦ À§ÇØ Å¥ºê»ûÀ» Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. Å¥ºê»ûÀº ÀÌµé ±â°ü¿¡ ±Ëµµ¿¡¼­ ½Å±â¼úÀ» ½Å¼ÓÇÏ°Ô ¹èÄ¡Çϰí Å×½ºÆ®ÇÒ ¼ö ÀÖ´Â ¹ÎøÇϰí Àúºñ¿ëÀÇ ¼Ö·ç¼ÇÀ» Á¦°øÇÏ¿© ±¹°¡ ¾Èº¸ ¹× °úÇÐ ¿¬±¸ÀÇ ´Ù¾çÇÑ ÀÓ¹«¸¦ Áö¿øÇϰí ÀÖ½À´Ï´Ù.

Å¥ºê»û ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

Å¥ºê»û ½ÃÀåÀÇ ¼ºÀåÀº ºñ¿ë È¿À²ÀûÀÎ ¿ìÁÖ ÀÓ¹«¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, ¼ÒÇü À§¼º ±â¼úÀÇ ¹ßÀü, Á¤ºÎ ¹× ¹Î°£ ±â¾÷ÀÇ ÅõÀÚ Áõ°¡, À§¼º º°ÀÚ¸®ÀÇ ±Þ°ÝÇÑ Áõ°¡·Î ÀÎÇÑ °ÍÀÔ´Ï´Ù. ¿ìÁÖ ÀÓ¹«ÀÇ °æÁ¦¼ºÀÌ ³ô¾ÆÁü¿¡ µû¶ó Å¥ºê»ûÀº º¸´Ù ºó¹øÇÑ ¹ß»ç¿Í Àü¹ÝÀûÀÎ ºñ¿ë Àý°¨À» °¡´ÉÇÏ°Ô ÇÏ´Â È®Àå °¡´ÉÇÑ ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. ¼ÒÇüÈ­¿Í ÃßÁø ±â¼úÀÇ ¹ßÀüÀ¸·Î Å¥ºê»ûÀº µ¥ÀÌÅÍ ¼öÁý¿¡¼­ Ç༺ °£ Ž»ç±îÁö Á¡Á¡ ´õ º¹ÀâÇÑ ÀÛ¾÷À» ¼öÇàÇÒ ¼ö ÀÖµµ·Ï ±â´ÉÀ» È®ÀåÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °³¼±À¸·Î Å¥ºê»ûÀº Åë½Å, ±¹¹æ, ³ó¾÷, ȯ°æ ¸ð´ÏÅ͸µ µî ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼­ ½ÇÇà °¡´ÉÇÑ ´ë¾ÈÀÌ µÇ°í ÀÖ½À´Ï´Ù.

Á¤ºÎ ±â°ü°ú ¹Î°£ ±â¾÷ÀÇ ÅõÀÚµµ Å¥ºê»û ½ÃÀåÀ» °¡¼ÓÈ­Çϰí ÀÖÀ¸¸ç, ¼ÒÇü À§¼º ÀÓ¹« °³¹ßÀ» Áö¿øÇÏ´Â ¼ö¸¹Àº ÀÚ±Ý Áö¿ø ÀÌ´Ï¼ÅÆ¼ºê°¡ ÀÖ½À´Ï´Ù. ¹Î°ü ÆÄÆ®³Ê½Ê°ú ¿ìÁÖ ÀÌ´Ï¼ÅÆ¼ºê¿¡ ´ëÇÑ ÀÚ±Ý Áö¿ø Áõ°¡´Â Å¥ºê»û¿¡ ´ëÇÑ °ü½É Áõ°¡¿¡ ´õ¿í ±â¿©Çϰí ÀÖ½À´Ï´Ù. Áö¼ÓÀûÀÎ ¼¼°è Ä¿¹ö¸®Áö¿Í ÀúÁö¿¬ Åë½ÅÀ» Á¦°øÇÒ ¼ö Àִ ťºê»û ÄÁ½ºÅÚ·¹À̼ǿ¡ ´ëÇÑ Ãß¼¼µµ ƯÈ÷ Åë½Å ¹× Áö±¸°üÃø ºÐ¾ßÀÇ ÁÖ¿ä ÃËÁø¿äÀÎÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀÌ º¹ÇÕÀûÀ¸·Î ÀÛ¿ëÇÏ¿© Å¥ºê»û ½ÃÀåÀº Çõ½ÅÀûÀ̰í Àúºñ¿ëÀÇ ´Ù¿ëµµ À§¼º ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä¿¡ ÈûÀÔ¾î ÁøÈ­ÇÏ´Â ¿ìÁÖ °æÁ¦¿¡¼­ ÇʼöÀûÀÎ ºÎ¹®À¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

ºÎ¹®

»çÀÌÁî(0.25-1u, 1-3u, 3-6u, 6-12u, 12u ÀÌ»ó), ¿ëµµ(Áö±¸°üÃø ¹× ±³Åë ¸ð´ÏÅ͸µ, °úÇбâ¼ú ¹× ±³À°, ¿ìÁÖ°üÃø, Åë½Å, ±â»ó), ÃÖÁ¾ ¿ëµµ(»ó¾÷, Á¤ºÎ ¹× ±º, ºñ¿µ¸® ´Üü)

Á¶»ç ´ë»ó ±â¾÷ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°èº° SLM Äõ¸®¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ´ë·® ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global CubeSat Market to Reach US$1.4 Billion by 2030

The global market for CubeSat estimated at US$614.3 Million in the year 2024, is expected to reach US$1.4 Billion by 2030, growing at a CAGR of 14.5% over the analysis period 2024-2030. 0.25-1u, one of the segments analyzed in the report, is expected to record a 15.0% CAGR and reach US$411.2 Million by the end of the analysis period. Growth in the 1-3u segment is estimated at 15.6% CAGR over the analysis period.

The U.S. Market is Estimated at US$170.8 Million While China is Forecast to Grow at 13.4% CAGR

The CubeSat market in the U.S. is estimated at US$170.8 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$207.7 Million by the year 2030 trailing a CAGR of 13.4% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 12.5% and 12.1% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 9.9% CAGR.

Global CubeSat Market - Key Trends & Drivers Summarized

What Are CubeSats and Why Are They Important in Space Exploration?

CubeSats are miniaturized satellites typically measuring 10x10x10 cm (1U) and weighing around 1-2 kg per unit. They were initially designed for academic and research purposes but have become a critical part of commercial, scientific, and defense-related space missions. CubeSats offer a low-cost, versatile platform for a wide range of applications, including Earth observation, communication, scientific research, and technology demonstration. Their modular design allows them to be stacked in multiples (such as 3U, 6U, and even 12U configurations) to create larger, more capable satellites, providing flexibility to adapt CubeSat designs to specific mission requirements.

One of the most significant advantages of CubeSats is their low cost and rapid development cycle. Their small size enables them to “piggyback” on larger launches, reducing launch costs and making space more accessible to smaller organizations, including universities, startups, and private companies. CubeSats can be developed and deployed quickly, facilitating more frequent missions and faster technological advancements. This accessibility has led to a significant increase in their use for remote sensing, environmental monitoring, disaster response, and scientific research. As space exploration becomes more democratized, CubeSats are playing an essential role in gathering valuable data, advancing research, and testing new technologies in space.

How Are Technological Advancements Shaping CubeSat Capabilities?

Technological advancements in miniaturization, communication, and propulsion are significantly enhancing CubeSat capabilities, enabling them to perform more complex and high-value missions. Miniaturization of components, such as sensors, cameras, and power systems, has made it possible to incorporate sophisticated payloads into CubeSats. High-resolution cameras, multi-spectral sensors, and advanced radio frequency systems now enable CubeSats to conduct detailed Earth observation, track weather patterns, and monitor environmental changes from space. These advancements have transformed CubeSats from simple educational tools into powerful data-gathering assets for government and commercial applications.

Communication systems have also seen significant improvements, allowing CubeSats to transmit data back to Earth in real time or near-real time. CubeSat constellations-groups of CubeSats working in coordination-are now used to provide global communication coverage and conduct large-scale data collection. Furthermore, advancements in propulsion systems, such as electric and chemical thrusters designed for small satellites, allow CubeSats to change orbits, maintain positioning, and even perform interplanetary missions. These technological advancements are expanding the potential applications for CubeSats, enabling new possibilities in space exploration, satellite communications, and deep-space research.

Why Are CubeSats Popular Among Commercial, Academic, and Government Organizations?

CubeSats are popular among commercial, academic, and government organizations due to their affordability, versatility, and accessibility. Commercial companies, particularly those involved in remote sensing, telecommunications, and IoT, are using CubeSats to create satellite constellations that provide global coverage for applications like weather monitoring, maritime tracking, and agricultural monitoring. Companies such as Planet and Spire have deployed large CubeSat constellations to deliver continuous Earth observation data to customers worldwide. For commercial entities, CubeSats offer a cost-effective way to establish or enhance their space presence without the expenses associated with traditional satellites.

Academic institutions benefit from CubeSats as they offer hands-on opportunities for students and researchers to design, build, and operate satellites. University CubeSat programs provide invaluable experience to students, allowing them to contribute to space missions and enabling collaborations with government and industry partners. CubeSats also serve as technology demonstration platforms for new components and subsystems, helping to reduce risk before full-scale implementation on larger missions. Government and defense organizations, including NASA and the U.S. Department of Defense, also utilize CubeSats for Earth observation, surveillance, and technology testing. CubeSats offer these agencies an agile and low-cost solution to rapidly deploy and test new technologies in orbit, supporting a range of national security and scientific research missions.

What Factors Are Driving Growth in the CubeSat Market?

The growth in the CubeSat market is driven by the rising demand for cost-effective space missions, advancements in small satellite technology, increasing government and private sector investment, and the proliferation of satellite constellations. As space missions become more economically accessible, CubeSats offer a scalable solution that enables more frequent launches and lower overall costs. Advancements in miniaturization and propulsion technologies are broadening the functionality of CubeSats, allowing them to perform increasingly complex tasks, from data gathering to interplanetary exploration. These improvements make CubeSats a viable option for a wide range of industries, including telecommunications, defense, agriculture, and environmental monitoring.

Investment from both government agencies and private companies is also accelerating the CubeSat market, with numerous funding initiatives supporting the development of small satellite missions. Public-private partnerships and increased funding for space initiatives further contribute to the growing interest in CubeSats. The trend toward CubeSat constellations, which can provide continuous global coverage and low-latency communication, is another key growth driver, particularly in the telecommunications and Earth observation sectors. Together, these factors are propelling the CubeSat market forward, positioning it as an essential segment in the evolving space economy, driven by demand for innovative, low-cost, and versatile satellite solutions.

SCOPE OF STUDY:

The report analyzes the CubeSat market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Size (0.25-1u, 1-3u, 3-6u, 6-12u, 12u & Above); Application (Earth Observation & Traffic Monitoring, Science & Technology and Education, Space Observation, Communication, Meteorology); End-Use (Commercial, Government & Military, Non-Profit Organizations)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 13 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â