¼¼°èÀÇ Àüµµ¼º ½Ç¸®ÄÜ ½ÃÀå
Conductive Silicone
»óǰÄÚµå : 1766939
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 396 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,195,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,585,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Àüµµ¼º ½Ç¸®ÄÜ ¼¼°è ½ÃÀåÀº 2030³â±îÁö 87¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 60¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â Àüµµ¼º ½Ç¸®ÄÜ ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 6.5%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 87¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ¿¤¶ó½ºÅä¸Ó´Â CAGR 6.5%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 32¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¼öÁö ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 6.7%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 16¾ï ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 9.6%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ Àüµµ¼º ½Ç¸®ÄÜ ½ÃÀåÀº 2024³â¿¡ 16¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGR 9.6%¸¦ ±â·ÏÇϸç 2030³â±îÁö 20¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 3.6%¿Í 5.8%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 3.9%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ Àüµµ¼º ½Ç¸®ÄÜ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

Àüµµ¼º ½Ç¸®ÄÜÀ̶õ?

Àüµµ¼º ½Ç¸®ÄÜÀº ź¼Ò, Àº, ´ÏÄ̰ú °°Àº Àüµµ¼º ÇÊ·¯°¡ ³»ÀåµÈ °í¼º´É ¿¤¶ó½ºÅä¸Ó·Î, ½Ç¸®ÄÜÀÇ À¯¿¬¼º, ¿­ ¾ÈÁ¤¼º, ź¼ºÀ» À¯ÁöÇϸ鼭 Àü±â¸¦ ÅëÇÏ°Ô ÇÏ´Â µ¶Æ¯ÇÑ ±â´ÉÀ» °¡Áö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Àüµµ¼º°ú ±â°èÀû ³»±¸¼ºÀÇ Á¶ÇÕÀ¸·Î ÀÎÇØ Àüµµ¼º ½Ç¸®ÄÜÀº ´Ù¾çÇÑ ¿ëµµ¿¡ »ç¿ëÇÒ ¼ö ÀÖ´Â °ß°íÇÏ°í ´ÙÀç´Ù´ÉÇÑ ¼ÒÀ縦 ÇÊ¿ä·Î ÇÏ´Â »ê¾÷ ºÐ¾ß¿¡¼­ ÇʼöÀûÀÎ ¼ÒÀç°¡ µÇ¾ú½À´Ï´Ù. ƯÈ÷ ÀüÀÚ, ÀÚµ¿Â÷, Ç×°ø¿ìÁÖ, Åë½Å µîÀÇ ºÐ¾ß¿¡¼­ ³ôÀº Æò°¡¸¦ ¹Þ°í ÀÖÀ¸¸ç, EMI/RFI Â÷Æó, ¿­ °ü¸®, °³½ºÅ¶, Àü±â Á¢Á¡ µîÀÇ ¿ëµµ·Î »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀüÀÚºÎǰ ¹× ¾î¼Àºí¸®¿¡¼­ Àüµµ¼º ½Ç¸®ÄÜÀÇ ¿ªÇÒÀº ¿­¾ÇÇÑ È¯°æ¿¡¼­ ½Å·Ú¼º°ú ¼º´ÉÀ» º¸ÀåÇÏ´Â Àç·á¸¦ ¿ì¼±½ÃÇÏ´Â »ê¾÷ÀÌ ´Ã¾î³²¿¡ µû¶ó È®´ëµÇ°í ÀÖ½À´Ï´Ù. Àüµµ¼º ½Ç¸®ÄÜÀÇ Á߿伺Àº °¡È¤ÇÑ Á¶°Ç¿¡¼­ÀÇ ÀûÀÀ¼º¿¡ ±âÀÎÇÕ´Ï´Ù. Àüµµ¼º ½Ç¸®ÄÜÀº ±ØÇÑÀÇ ¿Âµµ¿¡ °ßµô ¼ö ÀÖ°í, Àڿܼ±°ú ½À±â¿¡ °­Çϸç, ´Ù¸¥ ¸¹Àº Àüµµ¼º ¼ÒÀ纸´Ù ¸¶¸ð¿Í ¼Õ»óÀÌ Àû½À´Ï´Ù. ÀüÀÚ ºÐ¾ß¿¡¼­´Â ÅÍÄ¡½ºÅ©¸°, Ç÷º¼­ºí ȸ·Î, ¼¾¼­¿¡ ÀûÇÕÇϸç, ÀÚµ¿Â÷ ¹× Ç×°ø¿ìÁÖ ºÐ¾ß¿¡¼­´Â Â÷Æó ¹× ¿­ Àý¿¬¿¡ ½Å·ÚÇÒ ¼ö ÀÖ´Â ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. ±× ´ÙÀç´Ù´ÉÇÔÀº Àüµµ¼º°ú »ýüÀûÇÕ¼ºÀ» ¸ðµÎ Á¦°øÇÏ´Â ÀÇ·á±â±â ¹× ¿þ¾î·¯ºí ±â¼ú¿¡µµ Àû¿ëµÇ°í ÀÖ½À´Ï´Ù. ±â¼úÀÌ ¹ßÀüÇÏ°í »ê¾÷°è°¡ À¯¿¬¼º°ú Àüµµ¼ºÀ» °âºñÇÑ ¼ÒÀ縦 ¿ä±¸ÇÔ¿¡ µû¶ó, Àüµµ¼º ½Ç¸®ÄÜÀº Çö´ë Á¦Á¶ »ê¾÷¿¡¼­ Áß¿äÇÑ ±¸¼º¿ä¼Ò·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

±â¼úÀÇ ¹ßÀüÀº Àüµµ¼º ½Ç¸®ÄÜÀÇ ´É·ÂÀ» ¾î¶»°Ô Çâ»ó½Ã۰í Àִ°¡?

±â¼úÀÇ ¹ßÀüÀº Àüµµ¼º ½Ç¸®ÄÜÀÇ ´É·Â°ú ¿ëµµ¸¦ Å©°Ô È®´ëÇÏ¿© º¸´Ù È¿À²ÀûÀÌ°í ´Ù¾çÇÑ ºÐ¾ß¿¡ ´ëÇÑ ÀûÀÀ¼ºÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù. ±×·¡ÇÉÀ̳ª ź¼Ò³ª³ëÆ©ºê¿Í °°Àº ³ª³ë½ºÄÉÀÏ ÇÊ·¯´Â ½Ç¸®ÄÜÀÇ À¯¿¬¼ºÀ» ¼Õ»ó½ÃŰÁö ¾Ê°í Àüµµ¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù. ÀÌ·¯ÇÑ ³ª³ë½ºÄÉÀÏ ÇÊ·¯´Â ½Ç¸®ÄÜÀÇ ¿­ÀüµµÀ²µµ Çâ»ó½ÃÄÑ °íÃâ·Â ÀÀ¿ë ºÐ¾ß¿¡¼­ ¿­À» È¿°úÀûÀ¸·Î ¹æÃâÇÏ´Â Àç·á°¡ µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¹èÇÕ ±â¼úÀÇ ¹ßÀüÀ¸·Î Á¦Á¶¾÷ü´Â ´õ ³ôÀº ÀÎÀå °­µµ ¹× ƯÁ¤ È­ÇÐÁ¦Ç°¿¡ ´ëÇÑ ³»¼º°ú °°Àº Ư¼ºÀ» Á¶Á¤ÇÑ Àüµµ¼º ½Ç¸®ÄÜÀ» »ý»êÇÒ ¼ö ÀÖ°Ô µÇ¾î Ư¼ö ȯ°æ¿¡¼­ÀÇ Àû¿ë ¹üÀ§°¡ ³Ð¾îÁ³½À´Ï´Ù.

¶ÇÇÑ, ¾ÐÃâ ¹× »çÃâ ¼ºÇü°ú °°Àº °¡°ø ±â¼úÀÇ ¹ßÀüÀ¸·Î Àüµµ¼º ½Ç¸®ÄÜ ºÎǰÀÇ »ý»ê¼ºÀÌ Çâ»óµÇ¾î ´õ ³ôÀº Á¤¹Ðµµ¿Í Àϰü¼ºÀ» ¾òÀ» ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ °³¼±À¸·Î Àüµµ¼º ½Ç¸®ÄÜÀ» º¹ÀâÇÑ ¼³°è, ƯÈ÷ ¿À´Ã³¯ ÀåºñÀÇ ¼ÒÇüÈ­µÈ ÀüÀÚºÎǰ¿¡ ½±°Ô ÅëÇÕÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. Ç×°ø¿ìÁÖ ¹× Åë½Å°ú °°ÀÌ ½Å·Ú¼º°ú Á¤È®¼ºÀÌ °¡Àå Áß¿äÇÑ »ê¾÷¿¡¼­ ÀÌ·¯ÇÑ ¹ßÀüÀº °íÁÖÆÄ ¹× °í¿Â Á¶°Ç¿¡¼­ ´õ ³ªÀº ¼º´ÉÀ» ¹ßÈÖÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ¶ÇÇÑ, Àüµµ¼º ½Ç¸®ÄÜ ºÎǰÀÇ 3D ÇÁ¸°ÆÃ °³¹ßÀº ¸ÂÃãÇü Á¦ÀÛ ¹× ½Å¼ÓÇÑ ÇÁ·ÎÅäŸÀÌÇÎÀÇ »õ·Î¿î °¡´É¼ºÀ» ¿­¾î ÀÇ·á±â±â ¹× °¡ÀüÁ¦Ç°°ú °°Àº »ê¾÷ÀÇ Çõ½ÅÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.

´Ù¾çÇÑ »ê¾÷¿¡¼­ Àüµµ¼º ½Ç¸®ÄÜÀÇ ÁÖ¿ä ¿ëµµ´Â ¹«¾ùÀΰ¡?

Àüµµ¼º ½Ç¸®ÄÜÀº Àü±â Àüµµ¼º, ¿­ Àüµµ¼º, ¹°¸®Àû ź¼ºÀ» °âºñÇϰí ÀÖ¾î ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼­ ³Î¸® ÀÀ¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀüÀÚ »ê¾÷¿¡¼­´Â EMI/RFI Â÷Æó ¹× Á¤Àü±â ¹æÀü(ESD) º¸È£¿¡ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. Àüµµ¼º ½Ç¸®ÄÜÀº ÄÄÇ»ÅÍ, ½º¸¶Æ®Æù, LED ½Ã½ºÅÛ°ú °°Àº ÀåºñÀÇ ¿­À» È¿À²ÀûÀ¸·Î ¹æÃâÇÏ´Â ¿­ ÀÎÅÍÆäÀ̽º Àç·á¿¡µµ »ç¿ëµË´Ï´Ù. ÀÚµ¿Â÷ ºÐ¾ß¿¡¼­´Â Á¡È­ ºÎǰ, ¼¾¼­ ÇÏ¿ì¡, Ä¿³ØÅÍ ¾Á µî¿¡ »ç¿ëµÇ¾î ±ØÇÑÀÇ ¿Âµµ¿Í Áøµ¿ÀÌ ¸¹Àº ȯ°æ¿¡¼­µµ ¾ÈÁ¤ÀûÀÎ ¼º´ÉÀ» ¹ßÈÖÇÕ´Ï´Ù.

Ç×°ø¿ìÁÖ ¹× ¹æÀ§ ºÐ¾ß¿¡¼­ Àüµµ¼º ½Ç¸®ÄÜÀº °³½ºÅ¶, ¾Á, Á¢Âø ¼Ö·ç¼Ç¿¡ »ç¿ëµÇ¸ç, ³ôÀº °íµµ ¹× º¯µ¿ ¾Ð·Â°ú °°Àº °¡È¤ÇÑ Á¶°Ç¿¡¼­µµ Àüµµ¼º°ú À¯¿¬¼ºÀ» À¯ÁöÇØ¾ß ÇÕ´Ï´Ù. ÀÇ·á ºÐ¾ß¿¡¼­µµ Àüµµ¼º ½Ç¸®ÄÜÀº »ýüÀûÇÕ¼º°ú Àå±âÀûÀ¸·Î ¾ÈÁ¤ÀûÀÎ ¼º´ÉÀ» Á¦°øÇϱ⠶§¹®¿¡ ¿þ¾î·¯ºí ±â±â, Àΰø º¸Á¶±â, À̽ÄÇü ¼¾¼­ µîÀÇ ¿ëµµ¿¡ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, »ç¹°ÀÎÅͳÝ(IoT)ÀÇ ¼ºÀåÀ¸·Î ¿þ¾î·¯ºí ±â¼ú, ½º¸¶Æ®È¨ ±â±â, Ä¿³ØÆ¼µå ÀÚµ¿Â÷ ½Ã½ºÅÛ¿¡¼­ È¿À²ÀûÀÎ ½ÅÈ£ Àü¼Û°ú ³»±¸¼ºÀ» °¡´ÉÇÏ°Ô ÇÏ´Â Ç÷º¼­ºí ÀüÀÚÁ¦Ç°¿¡ ´ëÇÑ Àüµµ¼º ½Ç¸®ÄÜÀÇ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ´Ù¾çÇÑ ÀÀ¿ë ºÐ¾ß´Â Àüµµ¼º ½Ç¸®ÄÜÀÇ ÀûÀÀ¼ºÀ» °­Á¶Çϸç, ¼º´É, ½Å·Ú¼º, Çõ½Å¼ºÀ» ¿ì¼±½ÃÇÏ´Â ºÐ¾ß¿¡¼­ Àüµµ¼º ½Ç¸®ÄÜÀ» ±ÍÁßÇÑ Àç·á·Î ¸¸µé°í ÀÖ½À´Ï´Ù.

Àüµµ¼º ½Ç¸®ÄÜ ½ÃÀåÀÇ ¼ºÀåÀ» ÃËÁøÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

Àüµµ¼º ½Ç¸®ÄÜ ½ÃÀåÀÇ ¼ºÀåÀº ±â¼ú ¹ßÀü, ÀüÀÚ±â±â ¼ö¿ä Áõ°¡, »õ·Î¿î »ê¾÷ ºÐ¾ß·ÎÀÇ ÀÀ¿ë Áõ°¡ µî ¿©·¯ °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ÀüÀÚÁ¦Ç°ÀÌ ¼ÒÇüÈ­ ¹× Àü·Â È¿À²À» ³ôÀ̱â À§ÇØ °è¼Ó ÁøÈ­Çϰí ÀÖ´Â °¡¿îµ¥, Àüµµ¼º ½Ç¸®ÄÜÀÇ Àüµµ¼º°ú ¿­ °ü¸® ´É·ÂÀº ƯÈ÷ ¼ÒÇü ÀåÄ¡ÀÇ ºÎǰ Â÷Æó ¹× º¸È£¿¡ ÇʼöÀûÀ̸ç, 5G ±â¼úÀÇ ºÎ»ó°ú Åë½Å ÀÎÇÁ¶óÀÇ È®ÀåÀº ³×Æ®¿öÅ© Àåºñ, ±âÁö±¹, ½º¸¶Æ®Æù¿¡ EMI/RFI Â÷Æó¸¦ Á¦°øÇÏ´Â Àüµµ¼º ½Ç¸®ÄÜÀÇ ¼ö¿ä¸¦ Áõ°¡½ÃÄ×½À´Ï´Ù. RFI Â÷Æó¸¦ Á¦°øÇÏ´Â Àüµµ¼º ½Ç¸®ÄÜÀÇ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ÀÇ ¹ßÀü, ƯÈ÷ Àü±âÀÚµ¿Â÷(EV)¿Í ÀÚÀ²ÁÖÇ൵ Áß¿äÇÑ ÃËÁø¿äÀÎÀÔ´Ï´Ù. Àüµµ¼º ½Ç¸®ÄÜÀº ¿­ °ü¸®¿Í Àüµµ¼ºÀÌ ÇʼöÀûÀÎ EV ¹èÅ͸®ÀÇ Àý¿¬, ÀüÀÚ Á¦¾î ¹× ¼¾¼­ ½Ã½ºÅÛ¿¡¼­ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¿þ¾î·¯ºí ±â¼ú ¹× ÀÇ·á¿ë ÀüÀÚ±â±â¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ ÇǺΠÁ¢ÃË ¹× »ýüÀûÇÕ¼º¿¡ ÀûÇÕÇÑ Àüµµ¼º ½Ç¸®ÄÜ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ½º¸¶Æ®È¨, IoT ±â±â, Ç÷º¼­ºí ÀüÀÚÁ¦Ç°ÀÇ »õ·Î¿î Æ®·»µåµµ Àüµµ¼º ½Ç¸®ÄÜÀÇ ¼ö¿ä¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÀÀ¿ë ºÐ¾ß¿¡¼­´Â Áö¼ÓÀûÀÎ »ç¿ë°ú º¯È­ÇÏ´Â Á¶°Ç¿¡¼­ ¼º´ÉÀ» ¹ßÈÖÇÒ ¼ö ÀÖ´Â ½Å·ÚÇÒ ¼ö ÀÖ´Â ¼ÒÀç°¡ ÇÊ¿äÇϱ⠶§¹®ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀÌ º¹ÇÕÀûÀ¸·Î ÀÛ¿ëÇÏ¿© Àüµµ¼º ½Ç¸®ÄÜÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí, Â÷¼¼´ë ÀüÀÚÁ¦Ç° ¹× Ä¿³ØÆ¼ºñƼ ¼Ö·ç¼ÇÀÇ ¹ßÀü¿¡ ÀÖ¾î ¸Å¿ì Áß¿äÇÑ Àç·á·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

ºÎ¹®

À¯Çü(¿¤¶ó½ºÅä¸Ó, ¼öÁö, °Ö, ±âŸ À¯Çü), ¿ëµµ(¿­ ÀÎÅÍÆäÀ̽º Àç·á, Á¢ÂøÁ¦ ¹× ½Ç¶õÆ®, ºÀÁöÀ硤Æ÷ÆÃ ÄÄÆÄ¿îµå, ±âŸ ¿ëµµ), ÃÖÁ¾ ¿ëµµ(IT¡¤Åë½Å, ÀÚµ¿Â÷, ¹ßÀü¡¤¹èÀü, ¿£ÅÍÅ×ÀÎ¸ÕÆ®, °ÇÃࡤ°Ç¼³, ±âŸ ÃÖÁ¾ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

¿ì¸®´Â °ËÁõµÈ Àü¹®°¡¿ë ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM ¹× ¾÷°èº° SLM Äõ¸®¸¦ µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Conductive Silicone Market to Reach US$8.7 Billion by 2030

The global market for Conductive Silicone estimated at US$6.0 Billion in the year 2024, is expected to reach US$8.7 Billion by 2030, growing at a CAGR of 6.5% over the analysis period 2024-2030. Elastomers, one of the segments analyzed in the report, is expected to record a 6.5% CAGR and reach US$3.2 Billion by the end of the analysis period. Growth in the Resins segment is estimated at 6.7% CAGR over the analysis period.

The U.S. Market is Estimated at US$1.6 Billion While China is Forecast to Grow at 9.6% CAGR

The Conductive Silicone market in the U.S. is estimated at US$1.6 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$2.0 Billion by the year 2030 trailing a CAGR of 9.6% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 3.6% and 5.8% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 3.9% CAGR.

Global Conductive Silicone Market - Key Trends & Drivers Summarized

What Is Conductive Silicone, and Why Is It Essential Across Industries?

Conductive silicone is a high-performance elastomer embedded with conductive fillers like carbon, silver, or nickel, giving it the unique capability to conduct electricity while maintaining silicone’s flexibility, thermal stability, and resilience. This combination of electrical conductivity and mechanical durability makes conductive silicone indispensable in industries that require robust, versatile materials for a range of applications. It is particularly valued in the electronics, automotive, aerospace, and telecommunications sectors, where it is used in applications such as EMI/RFI shielding, thermal management, gaskets, and electrical contacts. Conductive silicone’s role in electronic components and assemblies is expanding as industries increasingly prioritize materials that ensure reliability and performance in challenging environments. Conductive silicone’s significance is largely due to its adaptability in harsh conditions. It can withstand extreme temperatures, resist UV radiation and moisture, and is less prone to wear and tear than many other conductive materials. In electronics, it is ideal for touchscreens, flexible circuits, and sensors, while in automotive and aerospace applications, it provides a reliable solution for shielding and thermal insulation. Its versatility extends to medical devices and wearable technology, where it offers both conductivity and biocompatibility. As technology advances and industries demand materials that combine flexibility with conductivity, conductive silicone continues to solidify its place as a critical component in modern manufacturing.

How Are Technological Advancements Enhancing Conductive Silicone Capabilities?

Technological advancements are significantly expanding the capabilities and applications of conductive silicone, making it more efficient and adaptable across different sectors. One key development is the improvement in filler materials, with nanoscale fillers such as graphene and carbon nanotubes enhancing conductivity without compromising silicone’s flexibility. These nanoscale fillers also improve the thermal conductivity of silicone, making it an effective material for heat dissipation in high-power applications. Additionally, advances in formulation techniques have enabled manufacturers to create conductive silicones with tailored properties, such as higher tensile strength or resistance to specific chemicals, broadening their applicability in specialized environments.

Processing advancements, including extrusion and injection molding, have also improved the production of conductive silicone components, allowing for greater precision and consistency. These improvements make it easier to integrate conductive silicone into complex designs, especially in the miniaturized electronic components of today’s devices. In industries like aerospace and telecommunications, where reliability and precision are paramount, these advancements allow for better performance under high-frequency and high-temperature conditions. Furthermore, the development of 3D printing for conductive silicone parts is opening new possibilities for custom and rapid prototyping, which supports innovation in industries such as medical devices and consumer electronics.

Where Are the Key Applications of Conductive Silicone Across Different Industries?

Conductive silicone is widely applied across several industries due to its combination of electrical and thermal conductivity with physical resilience. In the electronics industry, it plays a critical role in EMI/RFI shielding and electrostatic discharge (ESD) protection, which are essential for safeguarding sensitive electronic components. Conductive silicone is also used in thermal interface materials, allowing heat to dissipate efficiently in devices like computers, smartphones, and LED systems. In the automotive sector, it is used for ignition components, sensor housings, and connector seals, where it provides reliable performance in extreme temperatures and high-vibration environments.

In aerospace and defense, conductive silicone is used in gaskets, seals, and bonding solutions that must maintain conductivity and flexibility under severe conditions, including high altitudes and variable pressures. The medical field is also embracing conductive silicone for applications in wearable devices, prosthetics, and implantable sensors, as it offers biocompatibility and stable performance over time. Additionally, the growth of the Internet of Things (IoT) has increased demand for conductive silicone in flexible electronics, where it enables efficient signal transmission and durability in wearable technology, smart home devices, and connected automotive systems. This diversity in application highlights the adaptability of conductive silicone, making it an invaluable material in sectors that prioritize performance, reliability, and innovation.

What Factors Are Driving Growth in the Conductive Silicone Market?

The growth in the conductive silicone market is driven by several factors, including advancements in technology, rising demand for electronic devices, and increasing application in new industries. As electronics continue to evolve toward miniaturization and higher power efficiency, conductive silicone’s ability to combine conductivity with thermal management is critical, especially for shielding and protecting components in compact devices. The rise of 5G technology and the expansion of telecommunications infrastructure are also fueling demand for conductive silicone, as it provides EMI/RFI shielding in network equipment, base stations, and smartphones. Automotive advancements, particularly in electric vehicles (EVs) and autonomous driving, are significant growth drivers as well. Conductive silicone plays a crucial role in EV battery insulation, electronic controls, and sensor systems, where thermal management and electrical conductivity are essential. In addition, increased consumer interest in wearable technology and medical electronics has boosted demand for conductive silicone, given its suitability for skin contact and biocompatibility. Emerging trends in smart homes, IoT devices, and flexible electronics also contribute to the demand for conductive silicone, as these applications require reliable materials that perform under continuous use and variable conditions. Together, these factors drive the adoption of conductive silicone, positioning it as a pivotal material in advancing next-generation electronics and connectivity solutions across industries.

SCOPE OF STUDY:

The report analyzes the Conductive Silicone market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Type (Elastomers, Resins, Gels, Other Types); Application (Thermal Interface Materials, Adhesives & Sealants, Encapsulants & Potting Compounds, Other Applications); End-Use (IT & Telecom, Automotive, Power Generation & Distribution, Entertainment, Building & Construction, Other End-Uses)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 48 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â