¼¼°èÀÇ Ãæµ¹ ȸÇÇ ¼¾¼­ ½ÃÀå
Collision Avoidance Sensors
»óǰÄÚµå : 1766933
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 294 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,222,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,666,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Ãæµ¹ ȸÇÇ ¼¾¼­ ¼¼°è ½ÃÀåÀº 2030³â±îÁö 144¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 75¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â Ãæµ¹ ȸÇÇ ¼¾¼­ ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 11.5%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 144¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ·¹ÀÌ´õ´Â CAGR 11.3%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 47¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Ä«¸Þ¶ó ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 11.6%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 19¾ï ´Þ·¯, Áß±¹Àº CAGR 15.0%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹Ãø

¹Ì±¹ÀÇ Ãæµ¹ ȸÇÇ ¼¾¼­ ½ÃÀåÀº 2024³â¿¡ 19¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 33¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 15.0%¸¦ ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 7.9%¿Í 9.5%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 8.9%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ Ãæµ¹ ȸÇÇ ¼¾¼­ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

Ãæµ¹ ȸÇÇ ¼¾¼­°¡ °¢ »ê¾÷ ºÐ¾ß¿¡¼­ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® ÀâÀº ÀÌÀ¯´Â ¹«¾ùÀϱî?

Ãæµ¹ ȸÇÇ ¼¾¼­´Â »ç°í¸¦ ¿¹¹æÇϰí, ÀÚ»êÀ» º¸È£Çϸç, ÀÛ¾÷ÀÇ ¾ÈÀü¼ºÀ» Çâ»ó½ÃŰ´Â ´É·ÂÀ¸·Î ÀÎÇØ ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ Áß¿äÇÑ ±â¼úÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼¾¼­´Â Àå¾Ö¹°À» °¨ÁöÇϰí Ãæµ¹À» ¹æÁöÇϱâ À§ÇØ ½Ç½Ã°£À¸·Î °æ°í¸¦ ¹ß·ÉÇϱ⠶§¹®¿¡ ÀÚµ¿Â÷, Ç×°ø¿ìÁÖ, ÇØ¿î, Á¦Á¶¾÷ µîÀÇ »ê¾÷¿¡¼­ ¸Å¿ì ±ÍÁßÇÑ Á¸Àç°¡ µÇ°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ÀÚµ¿Â÷ ºÐ¾ß¿¡¼­ Ãæµ¹ ȸÇÇ ¼¾¼­´Â ADAS(÷´Ü ¿îÀüÀÚ º¸Á¶ ½Ã½ºÅÛ)¿¡ ÇʼöÀûÀÎ ¿ä¼Ò·Î, ¿îÀüÀÚ¿¡°Ô ÀáÀçÀûÀÎ À§ÇèÀ» °æ°íÇÏ°í °æ¿ì¿¡ µû¶ó¼­´Â ÀÚµ¿ ½ÃÁ¤ Á¶Ä¡¸¦ ÃëÇÔÀ¸·Î½á ±³Åë»ç°í¸¦ ÃÖ¼ÒÈ­ÇÏ´Â µ¥ µµ¿òÀ» ÁÖ°í ÀÖ½À´Ï´Ù. »ê¾÷ ȯ°æ¿¡¼­ ÀÌ·¯ÇÑ ¼¾¼­´Â ÁßÀåºñ ¹× ÀÚµ¿ â°í ½Ã½ºÅÛ¿¡¼­ Áß¿äÇÑ ¿ªÇÒÀ» Çϸç, ÁÖº¯ ¹°Ã¼¸¦ °¨ÁöÇÏ¿© ±â°è¸¦ Á¤Áö½Ã۰í Ãæµ¹À» ¹æÁöÇÏ¿© ÀÛ¾÷ÀÚ¿Í Àåºñ¸¦ º¸È£ÇÕ´Ï´Ù. ¾ÈÀü°ú ±ÔÁ¤ Áؼö°¡ Á¡Á¡ ´õ Áß¿äÇØÁü¿¡ µû¶ó, Ãæµ¹ ȸÇÇ ¼¾¼­´Â ¿ªµ¿ÀûÀ̰í À§ÇèÇÑ È¯°æ¿¡¼­ ÀÛµ¿ÇÏ´Â »ê¾÷ Àü¹ÝÀÇ Ç¥ÁØ ±â¼úÀÌ µÇ¾î ±âÁ¸ ½Ã½ºÅÛ¿¡´Â ¾ø´Â º¸È£ ¹× È¿À²¼º °èÃþÀ» Á¦°øÇϰí ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ ¹× »ê¾÷ ÀÚµ¿È­ ºÐ¾ß¿¡¼­ ÀÚÀ² ¹× ¹ÝÀÚÀ² ½Ã½ºÅÛ¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ Ãæµ¹ ȸÇÇ ¼¾¼­¿¡ ´ëÇÑ ¼ö¿ä°¡ ´õ¿í Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ÀÚÀ²ÁÖÇà Â÷·®Àº LiDAR, ·¹ÀÌ´õ, ÃÊÀ½ÆÄ, Ä«¸Þ¶ó µîÀÇ Ãæµ¹ °¨Áö ¹× ȸÇÇ ±â¼úÀ» »ç¿ëÇÏ¿© ¾ÈÀüÇÏ°Ô ÁÖÇàÇÕ´Ï´Ù. ¸¶Âù°¡Áö·Î, AGV(Automated Guided Vehicle)¿Í â°í ³» ·Îº¿Àº ÀÌ·¯ÇÑ ¼¾¼­¸¦ »ç¿ëÇÏ¿© »ç¶÷ÀÇ °³ÀÔ ¾øÀÌ È¿À²ÀûÀ¸·Î À̵¿ÇÏ¿© »ê¾÷ÀÌ ¾÷¹«¸¦ ÃÖÀûÈ­ÇÏ°í »ç°í À§ÇèÀ» ÁÙÀÌ´Â µ¥ µµ¿òÀ» ÁÖ°í ÀÖ½À´Ï´Ù. »ê¾÷°è°¡ ÀÚµ¿È­¿Í È¿À²È­¸¦ ÃßÁøÇÏ´Â °¡¿îµ¥, Ãæµ¹ ȸÇÇ ¼¾¼­´Â À§ÇèÀ» ÃÖ¼ÒÈ­ÇÏ°í º¸´Ù ¾ÈÀüÇÏ°í ½º¸¶Æ®ÇÑ ½Ã½ºÅÛÀÇ ±â¹ÝÀ¸·Î¼­ ´õ¿í Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ °ÍÀ¸·Î ±â´ëµÇ°í ÀÖ½À´Ï´Ù.

±â¼úÀÇ ¹ßÀüÀº Ãæµ¹ ȸÇÇ ¼¾¼­¸¦ ¾î¶»°Ô Çâ»ó½Ã۰í Àִ°¡?

¼¾¼­ÀÇ Á¤È®¼º, ¼ÒÇüÈ­, AI ÅëÇÕ µî ±â¼úÀÇ ¹ßÀüÀ¸·Î Ãæµ¹ ȸÇÇ ¼¾¼­ÀÇ ±â´ÉÀÌ Å©°Ô Çâ»óµÇ¾î º¸´Ù È¿°úÀûÀÌ°í ´Ù¾çÇÑ ¾ÖÇø®ÄÉÀ̼ǿ¡ Àû¿ëµÉ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ´Ù¾çÇÑ °Å¸®¿Í °¢µµ¿¡¼­ ¹°Ã¼¸¦ Á¤È®ÇÏ°Ô °¨ÁöÇÒ ¼ö ÀÖ°Ô µÇ¾úÀ¸¸ç, LiDARÀÇ ³ôÀº Á¤È®µµ´Â »ó¼¼ÇÑ È¯°æ ¸ÅÇÎÀÌ ÇÊ¿äÇÑ ÀÚÀ²ÁÖÇà Â÷·® ¹× ±âŸ ¿ëµµ¿¡ ÀûÇÕÇÑ ¼±ÅÃÀÌ µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ, ·¹ÀÌ´õ ±â¼úµµ Å©°Ô °³¼±µÇ¾î °íÁÖÆÄ ·¹ÀÌ´õ ½Ã½ºÅÛÀº ´Ù¾çÇÑ ±â»ó Á¶°Ç¿¡¼­µµ ¹°Ã¼¸¦ °¨ÁöÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.

ÀΰøÁö´É(AI)ÀÇ ÅëÇÕÀº Ãæµ¹¹æÁö ±â¼ú¿¡ º¯È­¸¦ °¡Á®¿ÔÀ¸¸ç, ¼¾¼­°¡ ½Ç½Ã°£À¸·Î µ¥ÀÌÅ͸¦ ºÐ¼®Çϰí ÇØ¼®ÇÏ¿© ¿¹ÃøÀû ÆÇ´ÜÀ» ³»¸®°í ÀÚµ¿ ¹ÝÀÀÀ» ÀÏÀ¸Å³ ¼ö ÀÖ°Ô Çß½À´Ï´Ù. ±â°è ÇнÀ ¾Ë°í¸®ÁòÀ» ÅëÇØ ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ÆÐÅÏÀ» ÀνÄÇϰí, ³ëÀÌÁ ÇÊÅ͸µÇϰí, »õ·Î¿î ȯ°æ°ú »óȲ¿¡ ÀûÀÀÇϸ鼭 ½Ã°£ÀÌ Áö³²¿¡ µû¶ó Áö¼ÓÀûÀ¸·Î Á¤È®µµ¸¦ Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¼ÒÇüÈ­¸¦ ÅëÇØ ¼º´É ÀúÇÏ ¾øÀÌ µå·ÐÀ̳ª °³ÀÎ¿ë ·Îº¿°ú °°Àº ¼ÒÇü ±â±â¿¡ Ãæµ¹ ȸÇÇ ¼¾¼­¸¦ ³»ÀåÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ, °í±Þ ¼ÒÇÁÆ®¿þ¾î¿Í ¿¬°á ¿É¼ÇÀ» ÅëÇØ ÀÌ·¯ÇÑ ¼¾¼­°¡ ¼­·Î Çù·ÂÇÏ¿© ½Ã½ºÅÛ °£¿¡ À§Çù Á¤º¸¸¦ Àü´ÞÇϰí Á¾ÇÕÀûÀÎ ¾ÈÀü ³×Æ®¿öÅ©¸¦ È®º¸ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀ¸·Î Ãæµ¹ ȸÇÇ ¼¾¼­´Â ´õ¿í ¾ÈÁ¤ÀûÀÌ°í ´ÙÀç´Ù´ÉÇϸç, Á¤È®¼º°ú ÀûÀÀ¼ºÀ» ¸ðµÎ ÇÊ¿ä·Î ÇÏ´Â °í±Þ ¾ÖÇø®ÄÉÀ̼ǿ¡ ÀûÇÕÇÕ´Ï´Ù.

ÀÚµ¿Â÷ »ê¾÷ ¿Ü¿¡ Ãæµ¹ ȸÇÇ ¼¾¼­ÀÇ ¼ö¿ä¸¦ ÁÖµµÇϰí ÀÖ´Â »ê¾÷Àº?

Ãæµ¹ ȸÇÇ ¼¾¼­ÀÇ ¼ö¿ä¸¦ ÁÖµµÇÏ´Â °ÍÀº ÀÚµ¿Â÷ »ê¾÷ÀÌÁö¸¸, Ç×°ø¿ìÁÖ, ÇØ¾ç, °Ç¼³, ÇコÄÉ¾î µî ´Ù¸¥ »ê¾÷¿¡¼­µµ ¾ÈÀü°ú ¾÷¹« È¿À²¼ºÀ» È®º¸Çϱâ À§ÇØ Ãæµ¹ ȸÇÇ ¼¾¼­¸¦ äÅÃÇϰí ÀÖ½À´Ï´Ù. Ç×°ø¿ìÁÖ ºÐ¾ß¿¡¼­´Â Ãæµ¹ ȸÇÇ ¼¾¼­°¡ ¹Î°£ Ç×°ø±â¿Í ±º¿ë Ç×°ø±â ¸ðµÎ¿¡ »ç¿ëµÇ¸ç, ƯÈ÷ È¥ÀâÇÑ °ø¿ª¿¡¼­ÀÇ °øÁß Ãæµ¹À» ¹æÁöÇÏ¿© Ç×ÇàÀÇ ¾ÈÀü¼ºÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù. ÇØ¿î ¾÷°è¿¡¼­´Â ¼±¹ÚÀÇ Ç×ÇØ¿¡ Ãæµ¹ ¼¾¼­¸¦ »ç¿ëÇÏ¿© ¼±¹ÚÀÌ Àå¾Ö¹°À̳ª ´Ù¸¥ ¼±¹ÚÀ» °¨ÁöÇÏ¿© È¥ÀâÇÑ ÇØ¿ªÀ̳ª ½Ã¾ß°¡ ÁÁÁö ¾ÊÀº »óȲ¿¡¼­ »ç°íÀÇ À§ÇèÀ» ÁÙÀÔ´Ï´Ù. °Ç¼³ ¹× ±¤¾÷ ºÐ¾ß¿¡¼­´Â À§Çèµµ°¡ ³ôÀº ȯ°æ¿¡¼­ ÀÛµ¿ÇÏ´Â ÁßÀåºñ¿Í Â÷·®ÀÇ »ç°í¸¦ ¹æÁöÇϰí ÀÛ¾÷ÀÚ¿Í Àåºñ ¸ðµÎ¸¦ º¸È£Çϱâ À§ÇØ Ãæµ¹ ȸÇÇ ¼¾¼­°¡ ÇʼöÀûÀÔ´Ï´Ù. ÇコÄÉ¾î ºÐ¾ß¿¡¼­´Â ÀÌ·¯ÇÑ ¼¾¼­°¡ º¸Á¶ ·Îº¿°ú ÀÇ·á±â±â¿¡ ³»ÀåµÇ¾î ȯÀÚ¿Í ÀÇ·áÁø¿¡°Ô Ãß°¡ÀûÀÎ ¾ÈÀü¼ºÀ» Á¦°øÇϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ¼ö¼ú ·Îº¿ÀÇ Ãæµ¹ ȸÇÇ ±â¼úÀº ºñÇ¥Àû ¿µ¿ª°úÀÇ ¿ì¹ßÀûÀÎ Á¢ÃËÀ» ¹æÁöÇÏ¿© Á¤È®µµ¿Í ȯÀÚ ¾ÈÀüÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ¹°·ù ¹× â°í »ê¾÷ ¶ÇÇÑ ÀÚµ¿ ¿î¹Ý Â÷·®(AGV) ¹× ·Îº¿ ½Ã½ºÅÛ¿ë ¼¾¼­¿¡ ÀÇÁ¸ÇÏ¿© Àΰ£°ú ±â°è°¡ ±ÙÁ¢ÇÏ¿© ÀÛ¾÷ÇÏ´Â °ø°£¿¡¼­ ¿øÈ°ÇÏ°í ¾ÈÀüÇÑ ÀÛµ¿À» º¸ÀåÇÕ´Ï´Ù. ½Ç½Ã°£ Àå¾Ö¹° °¨Áö°¡ ¾ÈÀü°ú »ý»ê¼º¿¡ ÇʼöÀûÀΠȯ°æ¿¡¼­ º¸´Ù ¾ÈÀüÇϰí È¿À²ÀûÀÎ ¿î¿µÀ» °¡´ÉÇÏ°Ô Çϱ⠶§¹®ÀÔ´Ï´Ù.

Ãæµ¹ ȸÇÇ ¼¾¼­ ½ÃÀåÀÇ ¼ºÀå ¿øµ¿·ÂÀº?

Ãæµ¹ ȸÇÇ ¼¾¼­ ½ÃÀåÀÇ ¼ºÀåÀº ÀÚÀ²ÁÖÇà ±â¼úÀÇ ¹ßÀü, ¾ÈÀü ±ÔÁ¦ °­È­, »ê¾÷ Àü¹ÝÀÇ ÀÚµ¿È­ ¼ö¿ä Áõ°¡ µî ¿©·¯ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ƯÈ÷ ÀÚµ¿Â÷ ¹× »ê¾÷¿ë ¾ÖÇø®ÄÉÀ̼ǿ¡¼­ ÀÚÀ² ¹× ¹ÝÀÚÀ² ½Ã½ºÅÛÀÇ ±Þ¼ÓÇÑ ¹ßÀüÀº Ãæµ¹ ȸÇÇ ¼¾¼­¿¡ ´ëÇÑ ¼ö¿ä¸¦ Å©°Ô ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÚµ¿Â÷, Ç×°ø¿ìÁÖ, Á¦Á¶ µî ´Ù¾çÇÑ ºÐ¾ßÀÇ ¾ö°ÝÇÑ ¾ÈÀü ±ÔÁ¦´Â ¾ÈÀüÀ» ¿ì¼±½ÃÇÏ°í »ç°í¿¡ ´ëÇÑ Ã¥ÀÓÀ» °æ°¨ÇÏ´Â ±âÁØÀ» ÁؼöÇÏ·Á´Â ±â¾÷ÀÇ ¿òÁ÷ÀÓÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ƯÈ÷ À§Çèµµ°¡ ³ôÀº »ê¾÷¿¡¼­ Àü ¼¼°è ±ÔÁ¦ ±â°üÀº Ãæµ¹ ¹æÁö ±â¼ú »ç¿ëÀ» Àǹ«È­Çϰí ÀÖÀ¸¸ç, ÀÌ´Â ½ÃÀå È®´ë¸¦ ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÚµ¿È­ ¹× ½º¸¶Æ® ±â¼ú ÅëÇÕ¿¡ ÃÊÁ¡À» ¸ÂÃá Àδõ½ºÆ®¸® 4.0ÀÇ Áõ°¡·Î ÀÎÇØ °øÀ¯ ȯ°æ¿¡¼­ ·Îº¿, µå·Ð, ÀÚÀ²ÁÖÇàÂ÷ÀÇ ¾ÈÀüÇÑ ¿î¿µÀ» Áö¿øÇÏ´Â ¼¾¼­¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¼ÒºñÀÚ Çൿµµ ÃËÁø¿äÀÎ Áß Çϳª·Î, °³ÀÎ ¼ÒÀ¯ÀÇ ÀÚµ¿Â÷³ª µå·Ð, Ȩ ¿ÀÅä¸ÞÀÌ¼Ç ½Ã½ºÅÛ µî ÁÖ°Å¿ë ·Îº¿ÀÇ ¾ÈÀü ±â´É¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ¹°·ù, °Ç¼³ µî ÀÚµ¿È­ ½Ã½ºÅÛÀÌ Áß´Ü ¾øÀÌ ÀÛµ¿ÇØ¾ß ÇÏ´Â ºÐ¾ß¿¡¼­´Â ¾÷¹«ÀÇ È¿À²È­°¡ ÃßÁøµÇ°í ÀÖÀ¸¸ç, ½Å·ÚÇÒ ¼ö ÀÖ´Â Ãæµ¹ ȸÇÇ ¼¾¼­ÀÇ Çʿ伺µµ °­Á¶µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀÌ °áÇյǾî Ãæµ¹ ȸÇÇ ¼¾¼­ ½ÃÀåÀÇ °­·ÂÇÑ ¼ºÀå ±Ëµµ¸¦ °­Á¶Çϰí ÀÖ½À´Ï´Ù. ±â¼ú ¹ßÀü, ±ÔÁ¦ ´ç±¹ÀÇ Áö¿ø, ¾ÈÀü°ú ÀÚµ¿È­¿¡ ´ëÇÑ ¿ä±¸°¡ ¼ö·ÅÇÏ¿© ÀÌ·¯ÇÑ ¼¾¼­°¡ Çö´ë ¾ÈÀü ÀÎÇÁ¶óÀÇ ÇʼöÀûÀÎ ºÎºÐÀ¸·Î ÀÚ¸® Àâ¾Ò±â ¶§¹®ÀÔ´Ï´Ù.

ºÎ¹®

±â¼ú(·¹ÀÌ´õ, Ä«¸Þ¶ó, ÃÊÀ½ÆÄ, LiDAR, ±âŸ ±â¼ú), ¿ëµµ(¾î´ðƼºê Å©·çÁî ÄÁÆ®·Ñ(ACC), ÀÚµ¿±ä±ÞÁ¦µ¿, »ç°¢Áö´ë°¨Áö(BSD), ÁÖÂ÷ º¸Á¶, Àü¹æ Ãæµ¹ °æ°í ½Ã½ºÅÛ(FCWS), ±âŸ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM ¹× ¾÷°è °íÀ¯ÀÇ SLMÀ» Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Collision Avoidance Sensors Market to Reach US$14.4 Billion by 2030

The global market for Collision Avoidance Sensors estimated at US$7.5 Billion in the year 2024, is expected to reach US$14.4 Billion by 2030, growing at a CAGR of 11.5% over the analysis period 2024-2030. Radar, one of the segments analyzed in the report, is expected to record a 11.3% CAGR and reach US$4.7 Billion by the end of the analysis period. Growth in the Camera segment is estimated at 11.6% CAGR over the analysis period.

The U.S. Market is Estimated at US$1.9 Billion While China is Forecast to Grow at 15.0% CAGR

The Collision Avoidance Sensors market in the U.S. is estimated at US$1.9 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$3.3 Billion by the year 2030 trailing a CAGR of 15.0% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 7.9% and 9.5% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 8.9% CAGR.

Global Collision Avoidance Sensors Market - Key Trends & Drivers Summarized

Why Are Collision Avoidance Sensors Becoming Essential Across Industries?

Collision avoidance sensors are becoming a critical technology in various sectors due to their ability to prevent accidents, protect assets, and enhance operational safety. These sensors detect obstacles and provide real-time alerts to prevent collisions, making them invaluable in industries like automotive, aerospace, maritime, and manufacturing. In the automotive sector, for example, collision avoidance sensors are integral to advanced driver assistance systems (ADAS), helping to minimize road accidents by alerting drivers to potential hazards and, in some cases, taking automatic corrective action. In industrial environments, these sensors play a crucial role in heavy machinery and automated warehouse systems, where they protect workers and equipment by detecting nearby objects and stopping machinery to prevent crashes. With growing emphasis on safety and regulatory compliance, collision avoidance sensors have become a standard technology across industries that operate in dynamic or hazardous environments, providing a layer of protection and efficiency that traditional systems cannot match. The increased focus on autonomous and semi-autonomous systems in vehicles and industrial automation has further driven the demand for collision avoidance sensors. Autonomous vehicles, for instance, rely on an array of collision detection and avoidance technologies, such as LiDAR, radar, ultrasound, and cameras, to navigate safely. Similarly, automated guided vehicles (AGVs) and robots in warehouses use these sensors to move efficiently without human intervention, helping industries optimize operations and reduce the risk of accidents. As industries continue to push for automation and efficiency, collision avoidance sensors are expected to play an even more vital role, serving as the foundation of safer, smarter systems that operate with minimal risk.

How Are Technological Advancements Enhancing Collision Avoidance Sensors?

Technological advancements, particularly in sensor accuracy, miniaturization, and AI integration, are greatly enhancing the functionality of collision avoidance sensors, making them more effective and adaptable to a wider range of applications. The development of LiDAR (Light Detection and Ranging) technology has enabled sensors to create highly accurate 3D maps of their surroundings, offering precise object detection at varying distances and angles. LiDAR’s high accuracy has made it a preferred choice for autonomous vehicles and other applications that require detailed environmental mapping. Additionally, radar technology has improved significantly, with high-frequency radar systems now capable of detecting objects in various weather conditions, a crucial feature for sectors like automotive and maritime.

Artificial Intelligence (AI) integration has also transformed collision avoidance technology, enabling sensors to analyze and interpret data in real time, making predictive decisions and triggering automated responses. Machine learning algorithms allow these systems to recognize patterns, filter out noise, and continuously improve their accuracy over time, adapting to new environments and conditions. Moreover, miniaturization has made it possible to embed collision avoidance sensors in smaller devices, such as drones and personal robotics, without compromising performance. Advanced software and connectivity options have further enabled these sensors to work collaboratively, allowing for the communication of threat information across systems, ensuring a comprehensive safety network. These advancements are making collision avoidance sensors more reliable, versatile, and suitable for high-stakes applications that require both precision and adaptability.

Which Industries Are Leading the Demand for Collision Avoidance Sensors Beyond Automotive?

While the automotive sector has been a major driver of demand for collision avoidance sensors, other industries like aerospace, maritime, construction, and healthcare are increasingly adopting this technology to ensure safety and operational efficiency. In aerospace, collision avoidance sensors are used in both commercial and military aircraft to prevent mid-air collisions and enhance navigational safety, especially in crowded airspace. The maritime industry relies on collision sensors for ship navigation, enabling vessels to detect obstacles and other ships, thereby reducing the risk of accidents in congested waters or during low-visibility conditions. In construction and mining, collision avoidance sensors are crucial for preventing accidents with heavy machinery and vehicles operating in high-risk environments, protecting both workers and equipment. In healthcare, these sensors are being integrated into assistive robotics and medical devices to provide additional safety for patients and healthcare providers. For instance, collision avoidance technology in surgical robots can prevent accidental contact with non-target areas, enhancing precision and patient safety. The logistics and warehousing industry also depends on these sensors for automated guided vehicles (AGVs) and robotic systems, ensuring smooth and safe operation in spaces where humans and machines work in close proximity. This broad adoption across sectors underscores the versatility and critical importance of collision avoidance sensors, as they enable safer, more efficient operations in environments where real-time obstacle detection is essential for safety and productivity.

What’s Driving Growth in the Collision Avoidance Sensors Market?

The growth in the collision avoidance sensors market is driven by several factors, including advancements in autonomous technology, rising safety regulations, and the increasing demand for automation across industries. The rapid development of autonomous and semi-autonomous systems, particularly in automotive and industrial applications, has significantly fueled demand for collision avoidance sensors, as these systems require accurate obstacle detection to function safely. Stringent safety regulations across sectors such as automotive, aerospace, and manufacturing are also driving adoption, as companies seek to comply with standards that prioritize safety and reduce accident liability. Regulatory agencies worldwide are mandating the use of collision avoidance technologies, especially in high-risk industries, further supporting market expansion. In addition, the rising trend of Industry 4.0, which focuses on automation and smart technology integration, has increased demand for sensors that support the safe operation of robots, drones, and automated vehicles in shared environments. Consumer behavior is another driver, with growing interest in safety features for personal vehicles and residential robotics, such as drones and home automation systems. The push for operational efficiency in sectors like logistics and construction, where automated systems must operate without interruptions, has also underscored the need for reliable collision avoidance sensors. Together, these factors highlight a strong growth trajectory for the collision avoidance sensors market as technological advancements, regulatory support, and demand for safety and automation converge to make these sensors an integral part of modern safety infrastructure.

SCOPE OF STUDY:

The report analyzes the Collision Avoidance Sensors market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Technology (Radar, Camera, Ultrasound, LiDAR, Other Technologies); Application (Adaptive Cruise Control (ACC), Autonomous Emergency Braking, Blind Spot Detection (BSD), Parking Assistance, Forward Collision Warning System (FCWS), Other Applications)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 42 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â