¼¼°èÀÇ Ç×°ø¿ìÁÖ¿ë Ç×±Õ ÄÚÆÃ ½ÃÀå
Aerospace Antimicrobial Coatings
»óǰÄÚµå : 1766883
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 360 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,222,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,666,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Ç×°ø¿ìÁÖ¿ë Ç×±Õ ÄÚÆÃ ¼¼°è ½ÃÀåÀº 2030³â±îÁö 5,660¸¸ ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 3,880¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â Ç×°ø¿ìÁÖ¿ë Ç×±Õ ÄÚÆÃ ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 6.5%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 5,660¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®µÇ°í ÀÖ´Â ºÎ¹® Áß ÇϳªÀÎ Ç×°ø ºÐ¾ß´Â CAGR 6.8%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 4,390¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¿ìÁÖ ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 5.4%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 1,010¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 9.5%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ Ç×°ø¿ìÁÖ¿ë Ç×±Õ ÄÚÆÃ ½ÃÀåÀº 2024³â¿¡ 1,010¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ 2024³âºÎÅÍ 2030³â±îÁö CAGR 9.5%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 1,300¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 3.5%¿Í 5.8%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 3.8%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ Ç×°ø¿ìÁÖ¿ë Ç×±Õ ÄÚÆÃ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

Ç×°ø¿ìÁÖ ºÐ¾ß¿¡¼­ Ç×±Õ ÄÚÆÃÀÌ Áß¿äÇÑ ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

Ç×°ø¿ìÁÖ¿ë Ç×±Õ ÄÚÆÃÀº Çö´ë Ç×°ø »ê¾÷¿¡¼­ ½Â°´°ú ½Â¹«¿øÀÇ °Ç°­°ú ¾ÈÀüÀ» º¸ÀåÇϱâ À§ÇØ ÇʼöÀûÀÎ ¼Ö·ç¼ÇÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ´ë·úÀ» ³Ñ³ªµå´Â »ç¶÷µéÀÇ À̵¿ÀÌ °è¼Ó Áõ°¡ÇÔ¿¡ µû¶ó Á¼®, Æ®·¹ÀÌ Å×À̺í, È­Àå½Ç µîÀ» Æ÷ÇÔÇÑ Ç×°ø±â ³»ºÎ´Â ¹ÚÅ׸®¾Æ¿Í ¹ÙÀÌ·¯½º°¡ ¹ø½ÄÇÒ ¼ö ÀÖ´Â ÇÖ½ºÆÌÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. Ç×°ø¿ìÁÖ »ê¾÷Àº ÀÌ¹Ì ³ôÀº û°á ±âÁØÀ» À¯ÁöÇϰí ÀÖÁö¸¸, ƯÈ÷ COVID-19 ÆÒµ¥¹Í°ú °°Àº ¼¼°è °Ç°­ ¿ì·Á·Î ÀÎÇØ Ç×±Õ ±â¼ú¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÄÚÆÃÀº À¯ÇØÇÑ ¹Ì»ý¹°ÀÇ ¹ø½ÄÀ» ¾ïÁ¦Çϰí Áúº´ °¨¿°ÀÇ À§ÇèÀ» ÁÙÀ̱â À§ÇØ Ç×°ø±â °´½Ç Ç¥¸é¿¡ Àû¿ëµË´Ï´Ù. ÀϽÃÀûÀÌ°í ¹ø°Å·Î¿î ±âÁ¸ ¼¼Ã´ ¹æ¹ý°ú´Â ´Þ¸® Ç×±Õ ÄÚÆÃÀº Àå±âÀûÀÎ º¸È£ ±â´ÉÀ» Á¦°øÇϸç, ó¸®µÈ Ç¥¸é¿¡ Á¢ÃËÇÑ º´¿ø±ÕÀ» ¹«·ÂÈ­½Ã۱â À§ÇØ 365ÀÏ 24½Ã°£ ³»³» Àû±ØÀûÀ¸·Î ÀÛ¿ëÇÕ´Ï´Ù. ÀÌ Çõ½ÅÀº º¸´Ù ¾ÈÀüÇÑ ºñÇà ȯ°æÀ» Á¶¼ºÇÏ´Â µ¥ µµ¿òÀÌ µÉ »Ó¸¸ ¾Æ´Ï¶ó ºñÇà Áß À§»ý¿¡ ´ëÇÑ ½Â°´°ú Á÷¿øÀÇ ¿ì·Á¸¦ ´ú¾îÁÙ ¼ö ÀÖ½À´Ï´Ù. Ç×±Õ ÄÚÆÃÀº °Ç°­ ¾ÈÀü»Ó¸¸ ¾Æ´Ï¶ó Á¶Á¾½ÇÀ̳ª ÁÖ¹æ°ú °°ÀÌ ¿À¿°ÀÌ Àåºñ °íÀåÀ¸·Î À̾îÁú ¼ö ÀÖ´Â °÷¿¡¼­µµ »ç¿ëµÇ¾î ÃÖ°í ¼öÁØÀÇ ¿îÇ× ¹«°á¼ºÀ» º¸ÀåÇÕ´Ï´Ù. Ç×°ø ¿©ÇàÀÌ °è¼Ó Áõ°¡ÇÔ¿¡ µû¶ó °øÁß º¸°ÇÀ» º¸È£Çϱâ À§ÇÑ Ç×±Õ ÄÚÆÃÀÇ Á߿伺Àº ±× ¾î´À ¶§º¸´Ù ºÐ¸íÇØÁ³½À´Ï´Ù.

±â¼úÀÇ ¹ßÀüÀº Ç×±Õ ÄÚÆÃÀÇ °³¹ßÀ» ¾î¶»°Ô ÃËÁø½ÃÄ״°¡?

±â¼úÀÇ ¹ßÀüÀº Ç×°ø¿ìÁÖ¿ë Ç×±Õ ÄÚÆÃÀÇ È¿°ú¿Í ³»±¸¼ºÀ» Å©°Ô Çâ»ó½ÃÄ×½À´Ï´Ù. Ãʱâ Ç×±Õ ¼Ö·ç¼ÇÀº ÁÖ·Î Àº À̿°ú °°Àº ±âº» È­ÇÐ È­ÇÕ¹°À» ±â¹ÝÀ¸·Î Çß½À´Ï´Ù. ±×·¯³ª ÀÌ·¯ÇÑ ÄÚÆÃÀº ¼ö¸íÀ̳ª Ç×±ÕÇÒ ¼ö ÀÖ´Â ¹Ì»ý¹°ÀÇ Á¾·ù¿¡ ÇѰ谡 ÀÖ¾ú½À´Ï´Ù. ÇöÀç Àº, ±¸¸® µîÀÇ ³ª³ëÀÔÀÚ¸¦ ÅëÇÕÇÏ¿© ±¤¹üÀ§ÇÑ Ç×±Õ È¿°ú¸¦ ¹ßÈÖÇÏ°í ´Ù¾çÇÑ ¹ÚÅ׸®¾Æ, °õÆÎÀÌ, ¹ÙÀÌ·¯½º¸¦ Á×ÀÌ´Â º¸´Ù Áøº¸µÈ ÄÚÆÃÀÌ °³¹ßµÇ¾ú½À´Ï´Ù. ³ª³ë±â¼úÀÇ »ç¿ëÀº ÀÌ·¯ÇÑ ÄÚÆÃÀÇ È¿À²¼ºÀ» Çâ»ó½ÃÄ×À» »Ó¸¸ ¾Æ´Ï¶ó ³»±¸¼ºµµ Çâ»ó½ÃÄ×½À´Ï´Ù. ¶ÇÇÑ, Á¢Ã˸¸À¸·Î ¹Ì»ý¹°À» ºñȰ¼ºÈ­ÇÒ ¼ö ÀÖ´Â ÀÚ°¡ »ì±Õ ÄÚÆÃÀº ȹ±âÀûÀÎ ±â¼ú·Î µîÀåÇß½À´Ï´Ù. ÀÌ·¯ÇÑ ÄÚÆÃÀº ¼öµ¿ÀûÀÌ°í ´Éµ¿ÀûÀ¸·Î ¼³°èµÇ¾î Ç×±Õ Æ¯¼ºÀ» Ȱ¼ºÈ­Çϱâ À§ÇØ Àڿܼ±À̳ª ¼¼Á¤Á¦¿Í °°Àº ¿ÜºÎ ¿äÀο¡ ÀÇÁ¸ÇÏÁö ¾Ê½À´Ï´Ù. ¶ÇÇÑ, °íºÐÀÚ °úÇÐÀÇ ¹ßÀüÀ¸·Î °¡º±°í À¯¿¬Çϸç ÇÃ¶ó½ºÆ½, ±Ý¼Ó, Á÷¹° µî Ç×°ø±â¿¡ ÀϹÝÀûÀ¸·Î »ç¿ëµÇ´Â ´Ù¾çÇÑ Ç¥¸é ¼ÒÀç¿Í Á¢ÂøÇÒ ¼ö ÀÖ´Â ÄÚÆÃÁ¦°¡ °³¹ßµÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú °³¼±À» ÅëÇØ Ç×±Õ ÄÚÆÃÀº ¿Âµµ º¯È­, ¾Ð·Â º¯È­, ¼¼Á¤Á¦¿¡ Áö¼ÓÀûÀ¸·Î ³ëÃâµÇ´Â µî ºñÇà Áß °¡È¤ÇÑ Á¶°ÇÀ» °ßµô ¼ö ÀÖ½À´Ï´Ù. ±× °á°ú, ÀÌ·¯ÇÑ ÄÚÆÃÀº ´õ¿í È¿°úÀûÀÏ »Ó¸¸ ¾Æ´Ï¶ó Ç×°ø¿ìÁÖ ÀÀ¿ë ºÐ¾ßÀÇ ¿­¾ÇÇÑ È¯°æ¿¡µµ ÀûÀÀÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.

Ç×°ø¿ìÁÖ¿ë Ç×±Õ ÄÚÆÃÀÇ ÁÖ¿ä ¿ëµµ ¹× ÃÖÁ¾ ¿ëµµ´Â?

Ç×°ø¿ìÁÖ¿ë Ç×±Õ ÄÚÆÃÀÇ ¿ëµµ´Â ±¤¹üÀ§Çϸç, ±â³» ¹× Ç×°ø±â ¿îÇ× ±¸¿ª Àüü¿¡¼­ Áß¿äÇÑ ¿ëµµ°¡ ÀÖ½À´Ï´Ù. ±â³»¿¡¼­´Â Á¼® ÆÈ°ÉÀÌ, Æ®·¹ÀÌ Å×À̺í, ¸Ó¸® À§ ¾²·¹±âÅë, È­Àå½Ç µî ½Â°´ÀÌ ÀÚÁÖ Á¢ÃËÇϴ ǥ¸é¿¡ Ç×±Õ ÄÚÆÃÀÌ Àû¿ëµÇ¾î ¹ÚÅ׸®¾Æ¿Í ¹ÙÀÌ·¯½º¸¦ º¸À¯ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÄÚÆÃÀº Àå½Ã°£ ³ëÃâ·Î ÀÎÇØ Ç¥¸é ¿À¿°ÀÇ À§ÇèÀÌ ³ôÀº Àå°Å¸® ³ë¼±¿¡¼­ ƯÈ÷ Áß¿äÇÕ´Ï´Ù. Ç×±Õ ÄÚÆÃÀº ½Â°´ ±¸¿ª»Ó¸¸ ¾Æ´Ï¶ó Á¶Á¾¼® Ç¥¸é°ú Á¶Á¾¼® Á¦¾îÆÇ¿¡µµ Àû¿ëµÇ¾î Á¶Á¾»ç¿Í ½Â¹«¿øÀÌ ±ú²ýÇÏ°í ¾ÈÀüÇÑ È¯°æ¿¡¼­ ±Ù¹«ÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. ¶ÇÇÑ, ±â³»½ÄÀ» Á¶¸® ¹× Á¦°øÇÏ´Â °¶¸® ±¸¿ª¿¡µµ Ç×±Õ Ã³¸®¸¦ ÇÏ¿© 2Â÷ ¿À¿° ¹× ½ÄÁßµ¶ÀÇ À§ÇèÀ» ÁÙÀ̰í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÄÚÆÃÀº ¹Î°£ Ç×°ø»Ó¸¸ ¾Æ´Ï¶ó ±º¿ë±â³ª ±¹¹æ¿ë Ç×°ø±â¿¡µµ Áß¿äÇÑ ¿ëµµ·Î »ç¿ëµÇ¸ç, Àå±â ¹èÄ¡ ¹× °¡È¤ÇÑ È¯°æ¿¡¼­ ¹«±Õ ȯ°æÀ» À¯ÁöÇÏ´Â °ÍÀÌ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. Ç×±Õ ÄÚÆÃÀº ¶ÇÇÑ Ç×°ø±â Á¤ºñ ±¸¿ª¿¡¼­ Á¡Á¡ ´õ ¸¹ÀÌ »ç¿ëµÇ°í ÀÖÀ¸¸ç, °ø±¸¿Í Àåºñ¸¦ ¹Ì»ý¹°·ÎºÎÅÍ º¸È£Çϰí Ç×°ø¿ìÁÖ »ê¾÷¿¡¼­ ÇʼöÀûÀÎ ºÎǰÀÇ ¼ö¸íÀ» ¿¬ÀåÇÏ´Â µ¥ µµ¿òÀ» ÁÖ°í ÀÖ½À´Ï´Ù. Ç×°ø¿ìÁÖ »ê¾÷ÀÌ °è¼Ó ¹ßÀüÇÔ¿¡ µû¶ó ÀÌ·¯ÇÑ ÄÚÆÃÀº ¿©°´±â¿¡¼­ ¹«ÀÎÇ×°ø±â(UAV)¿¡ À̸£±â±îÁö ´õ ³ÐÀº ¹üÀ§ÀÇ ÀÀ¿ë ºÐ¾ß¿¡¼­ Ç¥ÁØÀÌ µÇ¾î À§»ý°ú ¾ÈÀüÀ» ¿Ïº®ÇÏ°Ô º¸ÀåÇϰí ÀÖ½À´Ï´Ù.

Ç×°ø¿ìÁÖ¿ë Ç×±Õ ÄÚÆÃ ½ÃÀåÀÇ ¼ºÀå ¿øµ¿·ÂÀº ¹«¾ùÀΰ¡?

Ç×°ø¿ìÁÖ¿ë Ç×±Õ ÄÚÆÃ ½ÃÀåÀÇ ¼ºÀåÀº À§»ý ¹× ½Â°´ ¾ÈÀü¿¡ ´ëÇÑ ÀÎ½Ä Áõ°¡, Ç×°ø ¿©Çà Áõ°¡, ÄÚÆÃ ±â¼ú ¹ßÀü µî ¿©·¯ °¡Áö ¿äÀο¡ ÀÇÇØ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. ¼¼°è ÆÒµ¥¹Í(Àü¿°º´ ´ëÀ¯Çà)À¸·Î ÀÎÇØ ´ëÁß±³Åë, ƯÈ÷ ½Â°´ÀÌ Àå½Ã°£ Á¼Àº °ø°£¿¡ °¤Çô ÀÖ¾î¾ß ÇÏ´Â Ç×°ø »ê¾÷¿¡¼­ À§»ý ´ëÃ¥ °­È­¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼ÒºñÀÚ ÇൿÀÇ º¯È­·Î ÀÎÇØ Ç×°ø»ç´Â ½Â°´ÀÇ ¿ì·Á¸¦ ÇØ°áÇÏ°í ¾ÈÀüÇÑ ¿©Çà °æÇèÀ» º¸ÀåÇϱâ À§ÇØ Ç×±Õ ÄÚÆÃ°ú °°Àº Àå±âÀûÀÎ ¼Ö·ç¼ÇÀ» äÅÃÇÒ ¼ö¹Û¿¡ ¾ø°Ô µÇ¾ú½À´Ï´Ù. ƯÈ÷ Àúºñ¿ë Ç×°ø»çÀÇ ±Þ¼ÓÇÑ È®Àå°ú ±¹Á¦¼± ³ë¼± Àç°³·Î ÀÎÇØ Àü ¼¼°èÀûÀ¸·Î Ç×°ø ¿©Çà°´ ¼ö°¡ Áõ°¡ÇÔ¿¡ µû¶ó Àü¿°º´ È®»êÀ» ¹æÁöÇÏ´Â ÄÚÆÃÀÇ Çʿ伺ÀÌ ´õ¿í Ä¿Áö°í ÀÖ½À´Ï´Ù. Ç×°ø»ç¿Í Ç×°ø¿ìÁÖ Á¦Á¶¾÷üµéµµ Ç×±Õ ÄÚÆÃÀÇ ¾÷¹«»ó ÀÌÁ¡À» ÀνÄÇϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ÀæÀº µö Ŭ¸®´×°ú ¼Òµ¶ÀÇ Çʿ伺À» ÁÙÀÓÀ¸·Î½á Ç×°ø±â ó¸® ½Ã°£°ú °ü·ÃµÈ ½Ã°£°ú ºñ¿ëÀ» ¸ðµÎ Àý¾àÇÒ ¼ö ÀÖ½À´Ï´Ù. º¸´Ù È¿°úÀûÀÌ°í ³»±¸¼ºÀÌ ¶Ù¾î³ª¸ç ģȯ°æÀûÀÎ Ç×±Õ ¼Ö·ç¼ÇÀ¸·Î À̾îÁö´Â Àç·á °úÇÐÀÇ ²÷ÀÓ¾ø´Â Çõ½Åµµ ¶Ç ´Ù¸¥ Å« ÃËÁøÁ¦ÀÔ´Ï´Ù. ³ª³ë±â¼úÀÇ ÅëÇÕ, ÀÚ°¡ »ì±Õ Ư¼º, Çö´ë Ç×°ø±â¿¡ »ç¿ëµÇ´Â ´Ù¾çÇÑ Àç·á¿¡ ÀûÇÕÇÑ ÄÚÆÃÀÇ °³¹ß·Î ÀÎÇØ Àû¿ë ¹üÀ§°¡ ³Ð¾îÁö°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Ç×°ø ´ç±¹ÀÇ ±ÔÁ¦Àû Áö¿øÀ¸·Î ÀÎÇØ Ç×°ø »ê¾÷ Àü¹Ý¿¡ °ÉÃÄ Ç×±Õ ÄÚÆÃÀ» äÅÃÇÒ ¼ö Àִ ȯ°æÀÌ Á¶¼ºµÇ°í ÀÖÀ¸¸ç, º¸´Ù ¾ö°ÝÇÑ À§»ý Ç¥ÁØÀÌ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. Áö¼Ó°¡´É¼ºÀÌ Áß¿äÇÑ °ü½É»ç·Î ¶°¿À¸£¸é¼­ ģȯ°æ Ç×±Õ ÄÚÆÃÀº ȯ°æ ¿µÇâÀ» ÁÙÀÌ·Á´Â Ç×°ø¿ìÁÖ »ê¾÷ÀÇ ±¤¹üÀ§ÇÑ ¸ñÇ¥¿¡ ºÎÇÕÇϴ ģȯ°æ Ç×±Õ ÄÚÆÃµµ °¢±¤À» ¹Þ°í ÀÖ½À´Ï´Ù. Çö´ë Ç×°ø »ê¾÷¿¡¼­ À§»ý°ú ¾ÈÀüÀÌ °¡Àå Áß¿äÇϱ⠶§¹®¿¡ ÀÌ·¯ÇÑ ¿äÀεéÀÌ Ç×°ø¿ìÁÖ¿ë Ç×±Õ ÄÚÆÃ ½ÃÀåÀÇ ±Þ°ÝÇÑ ¼ºÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù.

ºÎ¹®

Ç÷§Æû(Ç×°ø, ¿ìÁÖ), ÇÇÆ®(OEM, ¾ÖÇÁÅ͸¶ÄÏ), Àç·á(Àº, ±¸¸®, ±âŸ Àç·á)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå°ú °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM ¹× ¾÷°èº° SLM Äõ¸®¸¦ µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Aerospace Antimicrobial Coatings Market to Reach US$56.6 Million by 2030

The global market for Aerospace Antimicrobial Coatings estimated at US$38.8 Million in the year 2024, is expected to reach US$56.6 Million by 2030, growing at a CAGR of 6.5% over the analysis period 2024-2030. Aviation, one of the segments analyzed in the report, is expected to record a 6.8% CAGR and reach US$43.9 Million by the end of the analysis period. Growth in the Space segment is estimated at 5.4% CAGR over the analysis period.

The U.S. Market is Estimated at US$10.1 Million While China is Forecast to Grow at 9.5% CAGR

The Aerospace Antimicrobial Coatings market in the U.S. is estimated at US$10.1 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$13.0 Million by the year 2030 trailing a CAGR of 9.5% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 3.5% and 5.8% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 3.8% CAGR.

Global Aerospace Antimicrobial Coatings Market - Key Trends and Drivers Summarized

Why Are Antimicrobial Coatings Becoming Critical in Aerospace?

Aerospace antimicrobial coatings have emerged as an essential solution in ensuring the health and safety of passengers and crew in modern aviation. With the ever-increasing movement of people across continents, aircraft cabins, including seats, tray tables, and lavatories, can become hotspots for the spread of bacteria and viruses. The aerospace industry, which already maintains high standards of cleanliness, has heightened its focus on antimicrobial technologies, especially in the wake of global health concerns like the COVID-19 pandemic. These coatings are applied to surfaces within aircraft cabins to inhibit the growth of harmful microorganisms, thereby reducing the risk of disease transmission. Unlike traditional cleaning methods, which are temporary and labor-intensive, antimicrobial coatings provide long-term protection, actively working 24/7 to neutralize pathogens that come into contact with treated surfaces. This innovation is not only helping to create a safer flying environment but also easing concerns among passengers and staff regarding hygiene during flights. Beyond health safety, antimicrobial coatings are being used in areas like the cockpit and galley, where contamination could lead to equipment malfunction, ensuring the highest level of operational integrity. As air travel continues to grow, the importance of these coatings in protecting public health has never been more evident.

How Have Technological Advances Driven the Development of Antimicrobial Coatings?

Technological advancements have significantly enhanced the effectiveness and durability of aerospace antimicrobial coatings. Early antimicrobial solutions were primarily based on basic chemical compounds like silver ions, which have inherent antimicrobial properties. However, these coatings had limitations in terms of longevity and the breadth of microorganisms they could combat. Today, more advanced coatings incorporate nanoparticles, such as silver or copper, which provide a broad-spectrum antimicrobial effect, killing a wide range of bacteria, fungi, and viruses. The use of nanotechnology has not only increased the efficiency of these coatings but also extended their durability, allowing them to remain effective for longer periods, even in high-traffic areas. Furthermore, self-sterilizing coatings, which can deactivate microorganisms upon contact, have emerged as a game-changing technology. These coatings are designed to be both passive and active, meaning they do not rely on external agents like UV light or cleaning chemicals to activate their antimicrobial properties. In addition, advancements in polymer science have led to the development of coatings that are lightweight, flexible, and capable of bonding with various surface materials commonly used in aircraft, such as plastics, metals, and fabrics. These technological improvements ensure that antimicrobial coatings can withstand the rigorous conditions of flight, including temperature fluctuations, pressure changes, and continuous exposure to cleaning agents. As a result, these coatings are not only more effective but also more adaptable to the demanding environment of aerospace applications.

What Are the Key Applications and End-Uses of Aerospace Antimicrobial Coatings?

The application of antimicrobial coatings in aerospace is widespread, with critical uses both inside the cabin and across operational areas of the aircraft. In the cabin, antimicrobial coatings are applied to high-touch surfaces such as seat armrests, tray tables, overhead bins, and lavatories, where passengers frequently come into contact with surfaces that could harbor bacteria and viruses. These coatings are especially important for long-haul flights, where the risk of surface contamination is higher due to prolonged exposure. In addition to passenger areas, antimicrobial coatings are applied to cockpit surfaces and control panels, helping to ensure that pilots and crew are operating in a clean and safe environment. Galley areas, where food is prepared and served, also benefit from antimicrobial protection to reduce the risk of cross-contamination and foodborne illnesses. Beyond commercial aviation, these coatings have significant applications in military and defense aircraft, where maintaining a sterile environment is crucial during long deployments and in extreme environments. Antimicrobial coatings are also increasingly used in aircraft maintenance areas, where they help protect tools and equipment from microbial degradation, prolonging the life of essential aerospace components. As the aerospace industry continues to evolve, these coatings are becoming standard across a broader range of applications, from passenger jets to unmanned aerial vehicles (UAVs), ensuring hygiene and safety across the board.

What Is Fueling the Growth of the Aerospace Antimicrobial Coatings Market?

The growth in the aerospace antimicrobial coatings market is driven by several factors, most notably heightened awareness of hygiene and passenger safety, increased air travel, and advancements in coating technology. In the wake of global pandemics, there has been a sharp rise in demand for enhanced hygiene measures in public transportation, particularly in aviation, where passengers are confined in close quarters for extended periods. This shift in consumer behavior has compelled airlines to adopt long-term solutions, like antimicrobial coatings, to address passenger concerns and ensure a safe travel experience. The growing number of air travelers worldwide, particularly with the rapid expansion of low-cost carriers and the reopening of international travel routes, has further amplified the need for coatings that protect against the spread of infectious diseases. Airlines and aerospace manufacturers are also recognizing the operational benefits of antimicrobial coatings, such as reducing the need for frequent deep cleaning and disinfecting, which can save both time and costs associated with aircraft turnaround times. Another significant growth driver is the continuous innovation in material science, which has led to more effective, durable, and environmentally friendly antimicrobial solutions. The integration of nanotechnology, self-sterilizing properties, and the development of coatings that are compatible with the wide variety of materials used in modern aircraft have expanded the range of applications. Furthermore, regulatory support from aviation authorities, which are increasingly mandating stricter hygiene standards, has created a favorable environment for the adoption of antimicrobial coatings across the industry. As sustainability becomes a key concern, eco-friendly antimicrobial coatings are also gaining traction, aligning with the aerospace industry’s broader goals of reducing environmental impact. Altogether, these factors are driving the rapid growth of the aerospace antimicrobial coatings market, as hygiene and safety remain paramount in modern aviation.

SCOPE OF STUDY:

The report analyzes the Aerospace Antimicrobial Coatings market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Platform (Aviation, Space); Fit (OEM, Aftermarket); Material (Silver, Copper, Other Materials)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 33 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â