¼¼°èÀÇ ¸±·¹ÀÌ ½ÃÀå
Relays
»óǰÄÚµå : 1763244
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 238 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,171,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,515,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ¸±·¹ÀÌ ½ÃÀåÀº 2030³â±îÁö 253¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 183¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ ¸±·¹ÀÌ ½ÃÀåÀº 2024-2030³â¿¡ CAGR 5.6%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 253¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ Àü±â ±â°è ¸±·¹ÀÌ´Â CAGR 7.1%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 70¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÚµ¿Â÷¿ë ¸±·¹ÀÌ ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 5.8%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 48¾ï ´Þ·¯, Áß±¹Àº CAGR 9.6%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ¸±·¹ÀÌ ½ÃÀåÀº 2024³â¿¡ 48¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³âÀÇ CAGR 9.6%¸¦ °ßÀÎÇϸç, 2030³â±îÁö 60¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 2.1%¿Í 5.6%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 2.6%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°è ¸±·¹ÀÌ ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ Á¤¸®

¸±·¹À̶õ ¹«¾ùÀ̸ç, ¿Ö Çö´ë Àü±â ½Ã½ºÅÛ¿¡ ÇʼöÀûÀΰ¡?

¸±·¹ÀÌ´Â Àü±â ½ÅÈ£¿¡ µû¶ó Á¢Á¡À» °³ÆóÇÏ¿© ȸ·Î¸¦ Á¦¾îÇÏ´Â µ¥ »ç¿ëµÇ´Â Àü±âÀûÀ¸·Î ÀÛµ¿ÇÏ´Â ½ºÀ§Ä¡ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ Àåºñ´Â »ê¾÷ ÀÚµ¿È­, ÀÚµ¿Â÷ ½Ã½ºÅÛ, Åë½Å, °¡ÀüÁ¦Ç° µî ±¤¹üÀ§ÇÑ ¿ëµµ¿¡¼­ Áß¿äÇÑ ±¸¼º ¿ä¼Ò·Î »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀϹÝÀûÀ¸·Î ¸±·¹ÀÌ´Â ÀüÀÚ¼®, Àü±âÀÚ, Àü±âÀÚ, ½ºÇÁ¸µ, Àü±â Á¢Á¡À¸·Î ±¸¼ºµË´Ï´Ù. ÄÚÀÏ¿¡ ÀÛÀº Àü·ù¸¦ È긮¸é ÀÚ±âÀåÀÌ ¹ß»ýÇÏ¿© Àü±âÀÚ¸¦ ¿òÁ÷¿© Á¢Á¡À» °³ÆóÇÏ¿© ´õ Å« Àü±â ȸ·Î¸¦ Á¦¾îÇÕ´Ï´Ù. ¸±·¹ÀÌ´Â ÀúÀü¾Ð ȸ·Î¸¦ °íÀü¾Ð ȸ·Î·ÎºÎÅÍ ºÐ¸®ÇÏ°í º¸È£ÇÏ´Â ´É·ÂÀ¸·Î À¯¸íÇϸç, ¸¹Àº Àü±â ½Ã½ºÅÛÀÇ ¾ÈÀü°ú ±â´É¿¡ ÇʼöÀûÀÎ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ¸±·¹ÀÌÀÇ ´Ù¿ëµµ¼ºÀº Àü¾Ð ¹× Àü·ù ¿ä±¸°¡ º¯È­Çϴ ȯ°æ¿¡¼­ÀÇ ¼º´É°ú °áÇÕÇÏ¿© Çö´ë Àü±â ¹× ÀüÀÚ Àåºñ¿¡¼­ ±× ¿ªÇÒÀ» È®°íÈ÷ Çϰí ÀÖ½À´Ï´Ù.

¸±·¹ÀÌ ¼¼°è ½ÃÀåÀº ´Ù¾çÇÑ ºÐ¾ßÀÇ ÀÚµ¿È­ ¹× ½º¸¶Æ® ±â±â¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ÀÎÇØ ¼ºÀå¼¼¸¦ º¸À̰í ÀÖ½À´Ï´Ù. »ê¾÷ ºÐ¾ß¿¡¼­ ¸±·¹ÀÌ´Â ±â°è ¹× °øÁ¤ Á¦¾î¿¡ »ç¿ëµÇ¾î »ý»ê¼º°ú ¾ÈÀü¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù. ÀÚµ¿Â÷ ºÐ¾ß¿¡¼­´Â Á¶¸í, ¿ÍÀÌÆÛ, ¿£Áø Á¦¾î µîÀÇ ½Ã½ºÅÛ¿¡ ¸±·¹À̰¡ ÇʼöÀûÀ̸ç, ¿­¾ÇÇÑ Á¶°Ç¿¡¼­ ¾ÈÁ¤ÀûÀÎ ÀÛµ¿ÀÌ Áß¿äÇÕ´Ï´Ù. ¶ÇÇÑ ½º¸¶Æ®È¨ ¹× IoT Áö¿ø ±â±âÀÇ µîÀåÀ¸·Î ¸±·¹ÀÌ´Â ¿¡³ÊÁö ¼Òºñ °ü¸®, Á¶¸í ½Ã½ºÅÛ ÀÚµ¿È­, Ȩº¸¾È ½Ã½ºÅÛ°úÀÇ ÅëÇÕ¿¡ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. ±â¼úÀÇ ¹ßÀü¿¡ µû¶ó ´õ ºü¸¥ ½ºÀ§Äª ¼Óµµ¿Í ³ôÀº ³»±¸¼ºÀ» Á¦°øÇÏ´Â ¼Ö¸®µå ½ºÅ×ÀÌÆ® ¸±·¹ÀÌ¿Í °°Àº °í±Þ ¸±·¹ÀÌ¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡ÇÏ¿© ½ÃÀå ¹üÀ§¸¦ È®ÀåÇϰí Á¦Á¶¾÷ü¿¡°Ô »õ·Î¿î ±âȸ¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¸±·¹À̴ Ŭ¶ó¿ìµå ±â¹Ý ¸ð´ÏÅ͸µ, µðÁöÅÐ Áø´Ü µî »õ·Î¿î ±â¼ú°úÀÇ À¶ÇÕÀ» ÅëÇØ ±× ±â´ÉÀ» ´õ¿í Çâ»ó½ÃÄÑ ´Ù¾çÇÑ ¿ëµµ¿¡ ÇʼöÀûÀÎ ºÎǰÀ¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

±â¼úÀÇ ¹ßÀüÀº ½ÃÀå¿¡¼­ ¸±·¹ÀÌÀÇ ÁøÈ­¸¦ ¾î¶»°Ô Çü¼ºÇϰí Àִ°¡?

±â¼úÀÇ ¹ßÀüÀº ¸±·¹ÀÌÀÇ ±â´É°ú ¼º´ÉÀ» Å©°Ô º¯È­½ÃÄÑ »õ·Î¿î ¿ëµµ¿Í È¿À²¼º Çâ»óÀ» À§ÇÑ ±æÀ» ¿­¾îÁÖ°í ÀÖ½À´Ï´Ù. °¡Àå ¿µÇâ·Â ÀÖ´Â Çõ½Å Áß Çϳª´Â ¼Ö¸®µå ½ºÅ×ÀÌÆ® ¸±·¹ÀÌ(SSR)ÀÇ °³¹ßÀÔ´Ï´Ù. ±âÁ¸ÀÇ Àü±â±â°è½Ä ¸±·¹ÀÌ¿Í ´Þ¸® SSRÀº »çÀ̸®½ºÅÍ, Æ®¶óÀ̾×, Æ®·£Áö½ºÅÍ¿Í °°Àº ¹ÝµµÃ¼ ¼ÒÀÚ¸¦ »ç¿ëÇÏ¿© ȸ·Î¸¦ ÀüȯÇÕ´Ï´Ù. SSRÀº ¶ÇÇÑ ³ôÀº ½ºÀ§Äª Á֯ļö¸¦ Áö¿øÇÏ°í ±ØÇÑÀÇ ¿Âµµ º¯È­ ȯ°æ¿¡¼­µµ ÀÛµ¿ÇÒ ¼ö ÀÖ´Â ´É·ÂÀ¸·Î À¯¸íÇϸç, ÀÚµ¿È­ ¹× »ê¾÷ Á¦¾î ½Ã½ºÅÛ¿¡ »ç¿ëÇϱ⿡ ÀÌ»óÀûÀÔ´Ï´Ù. ¶ÇÇÑ ¸±·¹ÀÌ ºÎǰÀÇ ¼ÒÇüÈ­·Î ÀÎÇØ ´õ ÀÛ°í °¡º­¿î ¸±·¹ÀÌ ¼³°è°¡ °¡´ÉÇØÁ® °ø°£ Á¦¾àÀÌ ¿ì·ÁµÇ´Â ÃֽŠÀüÀÚ±â±â ¹× ÀÚµ¿Â÷ ½Ã½ºÅÛ¿¡ ´ëÇÑ Å¾Àç°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â ƯÈ÷ ÀÚµ¿Â÷ »ê¾÷¿¡¼­ µÎµå·¯Áö¸ç, ¸±·¹ÀÌ´Â ÀÚµ¿ ºê·¹ÀÌÅ©, ¾î´ðƼºê Å©·çÁî ÄÁÆ®·Ñ, Àü±âÀÚµ¿Â÷ÀÇ ¹èÅ͸® °ü¸® ½Ã½ºÅÛ°ú °°Àº °í±Þ ±â´ÉÀ» Áö¿øÇÏ´Â ÀüÀÚ Á¦¾î Àåºñ(ECU)¿¡ ³»ÀåµÇ¾î ÀÖ½À´Ï´Ù.

¶Ç ´Ù¸¥ Áß¿äÇÑ ±â¼ú ¹ßÀüÀº ÇÁ·Î±×·¡¸Óºí ¸±·¹ÀÌ¿Í µðÁöÅÐ ¸±·¹ÀÌÀÇ µµÀÔÀÔ´Ï´Ù. ÀÌ·¯ÇÑ Àåºñ´Â ÇÁ·Î±×·¡¹Ö °¡´ÉÇÑ ·ÎÁ÷ ÀúÀå, ½Ã°£ Áö¿¬ ±â´É ½ÇÇà, ½Ç½Ã°£ ¸ð´ÏÅ͸µ ¹× Áø´Ü°ú °°Àº °í±Þ ±â´ÉÀ» Á¦°øÇÕ´Ï´Ù. ÇÁ·Î±×·¡¸Óºí ¸±·¹ÀÌ´Â ¹èÀü¸ÁÀÇ Á¦¾î ¹× º¸È£, °íÀå °¨Áö, ÀÚµ¿ ½ºÀ§ÄªÀ» °¡´ÉÇÏ°Ô ÇÏ´Â ½º¸¶Æ® ±×¸®µå¿¡ Àû¿ëµÇ°í ÀÖ½À´Ï´Ù. µðÁöÅÐ ¸±·¹ÀÌ´Â Modbus³ª ÀÌ´õ³Ý°ú °°Àº Åë½Å ÀÎÅÍÆäÀ̽º¸¦ °®Ãß°í ÀÖÀ¸¸ç, »ê¾÷ Á¦¾î ½Ã½ºÅÛ¿¡ ÅëÇÕÇÏ¿© ¿ø°Ý ¸ð´ÏÅ͸µ ¹× Á¦¾î ±â´ÉÀ» Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µðÁöÅÐ ÀüȯÀ» ÅëÇØ ¸±·¹À̸¦ ½º¸¶Æ® ÆÑÅ丮, IoT »ýŰè, Ŭ¶ó¿ìµå ±â¹Ý Ç÷§Æû¿¡ ¿øÈ°ÇÏ°Ô ÅëÇÕÇÏ¿© ½Ã½ºÅÛ °ü¸® ¹× À¯Áöº¸¼ö¸¦ °³¼±ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±× °á°ú, Á¦Á¶¾÷üµéÀº »ê¾÷ ÀÚµ¿È­, ½º¸¶Æ® ÀÎÇÁ¶ó, ±³Åë ½Ã½ºÅÛ¿¡¼­ Áö´ÉÇü Á¦¾î ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ´ëÀÀÇϱâ À§ÇØ ´õ ³ôÀº È¿À²¼º, ´õ ³ôÀº Á¤È®µµ, ´õ ³ôÀº ¿¬°á¼ºÀ» Á¦°øÇÏ´Â ¸±·¹ÀÌ °³¹ß¿¡ Á¡Á¡ ´õ ÁýÁßÇϰí ÀÖ½À´Ï´Ù.

´Ù¾çÇÑ »ê¾÷º° ¸±·¹ÀÌ Ã¤ÅÃÀ» ÃËÁøÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

¸±·¹ÀÌÀÇ Ã¤ÅÃÀº ÀÚµ¿È­ ¼ö¿ä Áõ°¡, Àü±âÀÚµ¿Â÷(EV) ½ÃÀå ¼ºÀå, ¿¡³ÊÁö È¿À²°ú Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ °ü½É Áõ°¡ µî ¿©·¯ »ê¾÷º° ¿äÀο¡ ÀÇÇØ ÃËÁøµÇ°í ÀÖ½À´Ï´Ù. »ê¾÷ ºÐ¾ß¿¡¼­ ¸±·¹ÀÌ´Â ÀÚµ¿È­ ½Ã½ºÅÛÀÇ ÇÙ½É ±¸¼º ¿ä¼Ò·Î ±â°è Á¦¾î, ¾ÈÀü ±â´É ½ÇÇà, »ý»ê °øÁ¤ÀÇ ¿øÈ°ÇÑ ¿î¿µÀ» À§ÇØ »ç¿ëµË´Ï´Ù. ½º¸¶Æ® Á¦Á¶ ±â¼ú°ú Ä¿³ØÆ¼µå µð¹ÙÀ̽ºÀÇ È°¿ëÀ» Áß½ÃÇÏ´Â Àδõ½ºÆ®¸® 4.0À¸·ÎÀÇ ÀüȯÀÌ ÁøÇàµÇ¸é¼­ ½Ç½Ã°£ µ¥ÀÌÅÍ ¸ð´ÏÅ͸µ, ¿ø°Ý Á¦¾î ±â´É, ¿¹Áöº¸Àü ±â´ÉÀ» °®Ãá ÷´Ü °èÀü±â¿¡ ´ëÇÑ ¼ö¿ä°¡ ´õ¿í Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â µðÁöÅÐ ÇÁ·Î±×·¡¹ÖÀÌ °¡´ÉÇÑ ¸±·¹ÀÌÀÇ Ã¤ÅÃÀ» ÃËÁøÇÏ¿© Á¦Á¶¾÷ü°¡ »ý»êÀ» ÃÖÀûÈ­Çϰí, ´Ù¿îŸÀÓÀ» ÁÙÀ̸ç, Àü¹ÝÀûÀÎ ¿î¿µ È¿À²¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖµµ·Ï µ½°í ÀÖ½À´Ï´Ù. ÃֽЏ±·¹ÀÌ´Â º¹ÀâÇÑ ³í¸® ¿¬»êÀ» ¼öÇàÇϰí SCADA(Supervisory Control and Data Acquisition) ½Ã½ºÅÛ°ú ÅëÇÕÇÒ ¼ö ÀÖÀ¸¸ç, °øÀå, ¹ßÀü¼Ò, À¯Æ¿¸®Æ¼ ³×Æ®¿öÅ©ÀÇ ÀÚµ¿È­¿¡ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù.

ÀÚµ¿Â÷ ¾÷°è¿¡¼­´Â Àü±âÀÚµ¿Â÷(EV)·ÎÀÇ Àüȯ°ú ÷´Ü¿îÀüÀÚº¸Á¶½Ã½ºÅÛ(ADAS)ÀÇ Ã¤ÅÃÀÌ ¸±·¹ÀÌ¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖÀ¸¸ç, EV´Â ¹èÅ͸® °ü¸®, ¹èÀü, º¸Á¶ ½Ã½ºÅÛ Á¦¾î µî Á¤È®ÇÏ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â µ¿ÀÛÀÌ Áß¿äÇÑ ¸±·¹À̰¡ ÇÊ¿äÇÕ´Ï´Ù. ¾ÈÀü¼º°ú È¿À²¼ºÀ» È®º¸Çϸ鼭 °íÀü¾Ð, °íÀü·ù¸¦ °ßµô ¼ö ÀÖ´Â ¸±·¹À̸¦ ¿ä±¸Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ADAS ¹× ÀÚÀ²ÁÖÇà ±â¼úÀÇ º¸±ÞÀ¸·Î º¹ÀâÇÑ Á¦¾î ±â´ÉÀ» Áö¿øÇϰí Áß¿äÇÑ ½Ã½ºÅÛÀÇ ¾ÈÁ¤ÀûÀÎ ÀÛµ¿À» º¸ÀåÇÒ ¼ö ÀÖ´Â ¸±·¹ÀÌ¿¡ ´ëÇÑ »õ·Î¿î ¿ä±¸»çÇ×ÀÌ »ý°Ü³ª°í ÀÖ½À´Ï´Ù. ¸±·¹ÀÌ Ã¤ÅÃÀÇ ¶Ç ´Ù¸¥ Å« ¿øµ¿·ÂÀº ¿¡³ÊÁö È¿À²°ú Áö¼Ó°¡´ÉÇÑ ½Çõ¿¡ ´ëÇÑ °­Á¶ÀÔ´Ï´Ù. ¸±·¹ÀÌ´Â Á¶¸í, ³­¹æ, ȯ±â, °øÁ¶(HVAC) ½Ã½ºÅÛÀ» Á¦¾îÇÏ´Â ¿¡³ÊÁö °ü¸® ½Ã½ºÅÛ¿¡ ³Î¸® »ç¿ëµÇ¾î ¿¡³ÊÁö ¼Òºñ¸¦ ÃÖÀûÈ­ÇÏ°í ºñ¿ëÀ» Àý°¨ÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ¶ÇÇÑ ºÐ»êÇü ¿¡³ÊÁö ÀÚ¿øÀÇ ÅëÇÕÀ» °¡´ÉÇÏ°Ô ÇÏ°í ±×¸®µåÀÇ ¾ÈÁ¤¼ºÀ» Áö¿øÇϱâ À§ÇØ ½º¸¶Æ® ±×¸®µå ¹× dz·Â, ž籤¹ßÀü°ú °°Àº Àç»ý¿¡³ÊÁö ¿ëµµ¿¡¼­ ¸±·¹ÀÌÀÇ »ç¿ëÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

¸±·¹ÀÌ ¼¼°è ½ÃÀå ¼ºÀå ¿øµ¿·ÂÀº?

¼¼°è ¸±·¹ÀÌ ½ÃÀåÀÇ ¼ºÀåÀº ¿¡³ÊÁö È¿À²ÀûÀÎ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, ÀÎÇÁ¶ó ¹× »ê¾÷ ÀÚµ¿È­¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡, Àç»ý¿¡³ÊÁö ÇÁ·ÎÁ§Æ®ÀÇ ¼ºÀå µî ¿©·¯ °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ÁÖ¿ä ¼ºÀå ¿äÀÎ Áß Çϳª´Â ¾÷°è Àü¹Ý¿¡¼­ ¿¡³ÊÁö È¿À²¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. Àü ¼¼°è ±â¾÷°ú Á¤ºÎ°¡ ¿¡³ÊÁö ¼Òºñ¿Í ź¼Ò ¹èÃâ·®À» ÁÙÀ̱â À§ÇØ ³ë·ÂÇϸ鼭 ½º¸¶Æ® Àü·Â °ü¸®¸¦ Áö¿øÇÏ´Â ¿¡³ÊÁö È¿À²ÀûÀÎ ¸±·¹ÀÌÀÇ Ã¤ÅÃÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¸±·¹ÀÌ´Â Á¶¸í ½Ã½ºÅÛ, HVAC Àåºñ, »ê¾÷ ÀåºñÀÇ Á¦¾î¿¡ »ç¿ëµÇ¾î Á¶Á÷ÀÌ ¿¡³ÊÁö »ç¿ëÀ» ÃÖÀûÈ­ÇÏ°í ¿î¿µ ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. ¸±·¹ÀÌ¿¡ ´ëÇÑ ¼ö¿ä´Â dz·Â¹ßÀü¼Ò ¹× ž籤¹ßÀü ¼³ºñ¿Í °°Àº Àç»ý¿¡³ÊÁö ÇÁ·ÎÁ§Æ®ÀÇ ¼ºÀå¿¡ ÀÇÇØ ÃËÁøµÇ°í ÀÖÀ¸¸ç, ¸±·¹ÀÌ´Â ¹èÀü ½Ã½ºÅÛÀÇ Á¦¾î ¹× º¸È£¿¡ Áß¿äÇÑ ¿ªÇÒÀ» ¼öÇàÇÏ¿© ¾ÈÀüÇϰí È¿À²ÀûÀÎ ¿¡³ÊÁö È帧À» º¸ÀåÇÕ´Ï´Ù.

¶Ç ´Ù¸¥ Áß¿äÇÑ ¿øµ¿·ÂÀº »ê¾÷ ÀÚµ¿È­ ¹× ½º¸¶Æ® ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡ÀÔ´Ï´Ù. »ý»ê¼º, ¾ÈÀü¼º, À¯¿¬¼ºÀ» ³ôÀ̱â À§ÇØ ÀÚµ¿È­°¡ ÁøÇàµÊ¿¡ µû¶ó ¿©·¯ ±â´ÉÀ» ¼öÇàÇÏ°í µðÁöÅÐ Á¦¾î ½Ã½ºÅÛ°ú ÅëÇÕÇÒ ¼ö ÀÖ´Â °í±Þ ¸±·¹ÀÌ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÇÁ·Î±×·¡¸Óºí ¸±·¹ÀÌ, µðÁöÅÐ ¸±·¹ÀÌ, ¼Ö¸®µå ½ºÅ×ÀÌÆ® ¸±·¹ÀÌ´Â ÀÚµ¿È­ »ý»ê ¶óÀÎ, Àü·Â °ü¸® ½Ã½ºÅÛ, ºôµù ÀÚµ¿È­¿¡ ÇʼöÀûÀÎ ±¸¼º ¿ä¼Ò°¡ µÇ¾ú½À´Ï´Ù. ½º¸¶Æ® ±×¸®µå ±â¼úÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ½Ç½Ã°£À¸·Î ±×¸®µå ¿î¿µÀ» ¸ð´ÏÅ͸µÇϰí Á¦¾îÇÒ ¼ö ÀÖ´Â Áö´ÉÇü °èÀü±â¿¡ ´ëÇÑ ¼ö¿ä°¡ ´õ¿í Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÚµ¿Â÷ »ê¾÷ÀÇ È®Àå, ƯÈ÷ Àü±âÀÚµ¿Â÷¿Í ÀÚÀ²ÁÖÇàÀ¸·ÎÀÇ ÀüȯÀº ¸±·¹ÀÌ Á¦Á¶¾÷ü¿¡°Ô »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù. ¸±·¹ÀÌ´Â Àü±âÀÚµ¿Â÷ ÃæÀü¼Ò, ¹èÅ͸® °ü¸® ½Ã½ºÅÛ, °¢Á¾ Á¦¾îÀåºñ¿¡ »ç¿ëµÇ¾î ÀÌ ºÐ¾ß ½ÃÀå ¼ºÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â ´Ù¾çÇÑ ¿ëµµ¿¡¼­ ½Å·Ú¼º, È¿À²¼º, Áö´ÉÇü ½ºÀ§Äª ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¿ä±¸·Î ÀÎÇØ ¼¼°è ¸±·¹ÀÌ ½ÃÀåÀº Áö¼ÓÀûÀÎ ¼ºÀåÀÌ ¿¹»óµË´Ï´Ù.

ºÎ¹®

Á¦Ç° À¯Çü(Àü±â ±â°è½Ä ¸±·¹ÀÌ, ÀÚµ¿Â÷¿ë ¸±·¹ÀÌ, ¼Ö¸®µå ½ºÅ×ÀÌÆ® ¸±·¹ÀÌ, ·¡Äª ¸±·¹ÀÌ, °úºÎÇÏ º¸È£ °èÀü±â, ±âŸ Á¦Ç° À¯Çü), ¿ëµµ(»ê¾÷ ÀÚµ¿È­, ÀÏ·ºÆ®·Î´Ð½º, ±º, ±âŸ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹

AI ÅëÇÕ

´ç»ç´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI Åø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾ç ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÔ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Relays Market to Reach US$25.3 Billion by 2030

The global market for Relays estimated at US$18.3 Billion in the year 2024, is expected to reach US$25.3 Billion by 2030, growing at a CAGR of 5.6% over the analysis period 2024-2030. Electromechanical Relay, one of the segments analyzed in the report, is expected to record a 7.1% CAGR and reach US$7.0 Billion by the end of the analysis period. Growth in the Automotive Relay segment is estimated at 5.8% CAGR over the analysis period.

The U.S. Market is Estimated at US$4.8 Billion While China is Forecast to Grow at 9.6% CAGR

The Relays market in the U.S. is estimated at US$4.8 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$6.0 Billion by the year 2030 trailing a CAGR of 9.6% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 2.1% and 5.6% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 2.6% CAGR.

Global Relays Market - Key Trends & Drivers Summarized

What Are Relays and Why Are They Integral to Modern Electrical Systems?

Relays are electrically operated switches used to control circuits by opening and closing contacts in response to an electrical signal. These devices serve as critical components in a wide range of applications, including industrial automation, automotive systems, telecommunications, and household appliances. Typically, relays consist of an electromagnet, an armature, a spring, and a set of electrical contacts. When a small current flows through the coil, it generates a magnetic field that moves the armature, thereby opening or closing the contacts and controlling a larger electrical circuit. Relays are known for their ability to isolate and protect low-voltage circuits from high-voltage ones, making them essential for safety and functionality in many electrical systems. The versatility of relays, coupled with their capability to perform in environments with varying voltage and current requirements, has solidified their role in modern electrical and electronic devices.

The global relays market is gaining momentum due to the increasing demand for automation and smart devices across various sectors. In industrial settings, relays are used to control machinery and processes, enhancing productivity and safety. In the automotive sector, relays are integral to systems such as lighting, wipers, and engine control, where reliable operation under challenging conditions is crucial. Additionally, with the rise of smart homes and IoT-enabled devices, relays are being utilized to manage energy consumption, automate lighting systems, and integrate with home security systems. As technology continues to evolve, the need for more advanced relays-such as solid-state relays that offer faster switching speeds and higher durability-has grown, expanding the market’s scope and creating new opportunities for manufacturers. The integration of relays with emerging technologies such as cloud-based monitoring and digital diagnostics is further enhancing their functionality, making them indispensable components in a wide array of applications.

How Are Technological Advancements Shaping the Evolution of Relays in the Market?

Technological advancements are significantly transforming the capabilities and performance of relays, paving the way for new applications and increased efficiency. One of the most impactful innovations is the development of solid-state relays (SSRs). Unlike traditional electromechanical relays, SSRs use semiconductor devices such as thyristors, triacs, and transistors to switch circuits. This eliminates the need for moving parts, resulting in faster response times, quieter operation, and longer lifespans. SSRs are also known for their ability to handle high switching frequencies and operate in environments with extreme temperature variations, making them ideal for use in automation and industrial control systems. Additionally, the miniaturization of relay components has enabled the design of more compact and lightweight relays, which are being increasingly incorporated into modern electronic devices and automotive systems where space constraints are a concern. This trend is particularly evident in the automotive industry, where relays are being integrated into electronic control units (ECUs) to support advanced features such as automatic braking, adaptive cruise control, and electric vehicle battery management systems.

Another significant technological advancement is the introduction of programmable relays and digital relays. These devices offer enhanced functionality, such as the ability to store programmable logic, execute time-delay functions, and provide real-time monitoring and diagnostics. Programmable relays are finding applications in smart grids, where they are used to control and protect distribution networks, detect faults, and enable automated switching. Digital relays, equipped with communication interfaces like Modbus or Ethernet, can be integrated into industrial control systems to provide remote monitoring and control capabilities. This digital transformation is enabling the seamless integration of relays into smart factories, IoT ecosystems, and cloud-based platforms, allowing for improved system management and maintenance. As a result, manufacturers are increasingly focusing on developing relays that offer higher efficiency, greater precision, and advanced connectivity features, catering to the growing demand for intelligent control solutions in industrial automation, smart infrastructure, and transportation systems.

What Factors Are Driving the Adoption of Relays Across Different Industry Verticals?

The adoption of relays is being driven by several industry-specific factors, including the rising demand for automation, the growth of the electric vehicle (EV) market, and the increasing focus on energy efficiency and sustainability. In the industrial sector, relays are essential components of automation systems, where they are used to control machinery, execute safety functions, and ensure the seamless operation of production processes. The ongoing shift towards Industry 4.0, which emphasizes the use of smart manufacturing technologies and connected devices, has further boosted the demand for advanced relays that offer real-time data monitoring, remote control capabilities, and predictive maintenance features. This trend is driving the adoption of digital and programmable relays, which enable manufacturers to optimize production, reduce downtime, and enhance overall operational efficiency. The ability of modern relays to perform complex logic operations and integrate with supervisory control and data acquisition (SCADA) systems has made them indispensable in the automation of factories, power plants, and utility networks.

In the automotive industry, the transition to electric vehicles (EVs) and the adoption of advanced driver-assistance systems (ADAS) are fueling the demand for relays. EVs require relays for battery management, power distribution, and control of auxiliary systems, where precise and reliable operation is critical. As EV production ramps up globally, manufacturers are looking for relays that can withstand high voltages and currents while ensuring safety and efficiency. Moreover, the proliferation of ADAS and autonomous driving technologies is creating new requirements for relays that can support complex control functions and ensure the reliable operation of critical systems. Another significant driver of relay adoption is the emphasis on energy efficiency and sustainable practices. Relays are widely used in energy management systems to control lighting, heating, ventilation, and air conditioning (HVAC) systems, helping to optimize energy consumption and reduce costs. The use of relays in smart grids and renewable energy applications, such as wind and solar power, is also on the rise, as they enable the integration of distributed energy resources and support grid stability.

What Is Driving the Growth of the Global Relays Market?

The growth in the global Relays market is driven by several factors, including the rising demand for energy-efficient solutions, increasing investments in infrastructure and industrial automation, and the growth of renewable energy projects. One of the primary growth drivers is the increasing focus on energy efficiency across industries. As businesses and governments worldwide seek to reduce energy consumption and carbon emissions, the adoption of energy-efficient relays that support smart power management is gaining momentum. These relays are being used to control lighting systems, HVAC units, and industrial equipment, enabling organizations to optimize energy usage and lower operational costs. The demand for relays is also being fueled by the growth of renewable energy projects, such as wind farms and solar power installations, where relays play a critical role in controlling and protecting power distribution systems, ensuring safe and efficient energy flow.

Another significant driver is the rising investment in industrial automation and smart infrastructure. As industries embrace automation to enhance productivity, safety, and flexibility, the demand for advanced relays that can perform multiple functions and integrate with digital control systems is increasing. Programmable relays, digital relays, and solid-state relays are becoming essential components in automated production lines, power management systems, and building automation. The growing adoption of smart grid technologies is further boosting the demand for intelligent relays that can monitor and control grid operations in real-time. Additionally, the expansion of the automotive industry, particularly the shift towards electric vehicles and autonomous driving, is creating new opportunities for relay manufacturers. Relays are being used in EV charging stations, battery management systems, and various control units, driving market growth in this sector. As these trends continue to evolve, the global Relays market is poised for sustained growth, driven by the need for reliable, efficient, and intelligent switching solutions across a diverse range of applications.

SCOPE OF STUDY:

The report analyzes the Relays market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Product Type (Electromechanical Relay, Automotive Relay, Solid State Relay, Latching Relay, Overload Protection Relay, Other Product Types); Application (Industrial Automation, Electronics, Military, Other Applications)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 72 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â