º£À̽º¹êµå ÇÁ·Î¼¼¼ ¼¼°è ½ÃÀåÀº 2030³â±îÁö 644¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á
2024³â¿¡ 405¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â º£À̽º¹êµå ÇÁ·Î¼¼¼ ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 8.0%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 644¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼¿¡¼ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ 4G À¯ÇüÀº CAGR 7.5%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á±îÁö 380¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. 5G À¯Çü ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 9.4%·Î ÃßÁ¤µË´Ï´Ù.
¹Ì±¹ ½ÃÀåÀº 106¾ï ´Þ·¯, Áß±¹Àº CAGR 7.8%·Î ¼ºÀå ¿¹Ãø
¹Ì±¹ÀÇ º£À̽º¹êµå ÇÁ·Î¼¼¼ ½ÃÀåÀº 2024³â¿¡ 106¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2024³âºÎÅÍ 2030³â ºÐ¼® ±â°£ µ¿¾È CAGR 7.8%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â ¿¹Ãø ½ÃÀå ±Ô¸ð°¡ 103¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 7.3%¿Í 6.9%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼´Â µ¶ÀÏÀÌ CAGR ¾à 6.5%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
¼¼°èÀÇ º£À̽º¹êµå ÇÁ·Î¼¼¼ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®
º£À̽º¹êµå ÇÁ·Î¼¼¼°¡ Çö´ë À̵¿Åë½ÅÀÇ ÇÙ½ÉÀÎ ÀÌÀ¯
º£À̽º¹êµå ÇÁ·Î¼¼¼´Â ¹«¼± Åë½Å ÀåºñÀÇ ÇÙ½É ºÎǰÀ¸·Î ½ÅÈ£ º¯Á¶, º¹Á¶, ÀÎÄÚµù, µðÄÚµù, ÇÁ·ÎÅäÄÝ ½ºÅà ½ÇÇà µî ¸ðµç ¼¿·ê·¯ ¹«¼± ±â´ÉÀ» ó¸®ÇÏ´Â ÁÖ¿ä ¿£Áø ¿ªÇÒÀ» ÇÕ´Ï´Ù. ÈÞ´ëÆùÀÌ ´Ù±â´É, °í¼Ó ÄÄÇ»ÆÃ Ç÷§ÆûÀ¸·Î ÁøÈÇÔ¿¡ µû¶ó ´õ¿í °·ÂÇϰí È¿À²ÀûÀÎ º£À̽º¹êµå ÇÁ·Î¼¼¼¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ Ä¨Àº ½º¸¶Æ®Æù, ÅÂºí¸´, ¿þ¾î·¯ºí ±â±â, IoT ±â±â°¡ 3G, 4G LTE, ±×¸®°í ÃÖ±Ù¿¡´Â 5G¿Í °°Àº ¼¿·ê·¯ ³×Æ®¿öÅ©¿¡ ¿øÈ°ÇÏ°Ô ¿¬°áµÉ ¼ö ÀÖµµ·Ï ÇÏ´Â µ¥ ÀÖ¾î ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. º£À̽º¹êµå ÇÁ·Î¼¼¼´Â ¸ÞÀÎ ¾ÖÇø®ÄÉÀÌ¼Ç ÇÁ·Î¼¼¼ÀÇ Åë½Å ºÎÇϸ¦ ÁÙ¿© È¿À²ÀûÀÎ Àü·Â ¼Òºñ¸¦ À¯ÁöÇϰí, ±î´Ù·Î¿î ³×Æ®¿öÅ© Á¶°Ç¿¡¼µµ °ß°íÇÑ ¿¬°á¼ºÀ» º¸ÀåÇÕ´Ï´Ù. ¸ð¹ÙÀÏ ³×Æ®¿öÅ© ÇÁ·ÎÅäÄÝÀÇ º¹À⼺, ƯÈ÷ 5G NR(New Radio)ÀÇ Ãâ½Ã¿Í ÇÔ²² ´õ ³ôÀº µ¥ÀÌÅÍ ¼Óµµ, ij¸®¾î ¾Ö±×¸®°ÔÀ̼Ç, ÃÊÀúÁö¿¬, MIMO¿Í °°Àº °í±Þ ¾ÈÅ׳ª ±â¼úÀ» Áö¿øÇÏ´Â º¸´Ù Á¤±³ÇÑ º£À̽º¹êµå ¼³°è°¡ ÇÊ¿äÇÏ°Ô µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ, ÀÌ·¯ÇÑ ÇÁ·Î¼¼¼´Â À½¼º ¹× µ¥ÀÌÅÍ ¼ºñ½º, ·Î¹Ö ±â´É, GNSS(Global Navigation Satellite System) ±â´É°úÀÇ ÅëÇÕÀ» ÃËÁøÇϰí, SoC(System-on-Chip) ¾ÆÅ°ÅØÃ³·ÎÀÇ ÅëÇÕÀ» ÅëÇØ ¸ð¹ÙÀÏ ±â±âÀÇ ¼ÒÇüÈ ¹× ºñ¿ë È¿À²È¸¦ °¡´ÉÇÏ°Ô Çϸç, ¼º´É°ú °¡°ÝÀ» ¸ðµÎ Çâ»ó½Ãŵ´Ï´Ù. Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. Ä¿³ØÆ¼ºñƼ°¡ ÀÏ»ó »ýȰÀÇ ±âº» À¯Æ¿¸®Æ¼·Î ÀÚ¸® ÀâÀ¸¸é¼ º£À̽º¹êµå ÇÁ·Î¼¼¼´Â Áö¿ª, ³×Æ®¿öÅ© ¼¼´ë, µð¹ÙÀ̽º Ä«Å×°í¸®¸¦ ³Ñ¾î ¿øÈ°ÇÑ Åë½ÅÀ» º¸ÀåÇÏ´Â µ¥ ÇʼöÀûÀÎ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. Ä¿³ØÆ¼ºñƼ ÀÎÇÁ¶óÀÇ ÇÙ½ÉÀÎ º£À̽º¹êµå ÇÁ·Î¼¼¼´Â °³Àοë ÀüÀÚÁ¦Ç°°ú »ê¾÷¿ë ¾ÖÇø®ÄÉÀÌ¼Ç ¸ðµÎ¿¡¼ ÇöÀç ÁøÇà ÁßÀÎ µðÁöÅÐ ÀüȯÀÇ ±âº» ¿ä¼Ò·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù.
5G´Â º£À̽º¹êµå ÇÁ·Î¼¼¼ÀÇ ±â´É°ú ¼³°è¿¡ ¾î¶² Çõ¸íÀ» °¡Á®¿Ã °ÍÀΰ¡?
5G ±â¼ú·ÎÀÇ ÀüȯÀº Àü ¼¼°è ½ÃÀå ±¸Á¶, ¿ª·® ¹× °æÀï ȯ°æÀ» ±ØÀûÀ¸·Î º¯È½Ã۰í ÀÖ½À´Ï´Ù. ÀÌÀü ¼¼´ë¿Í ´Þ¸® 5G´Â µ¥ÀÌÅÍ Ã³¸® ´É·Â, ¿¡³ÊÁö È¿À²¼º, ¸ÖƼ¹êµå, ¸ÖƼ ¸ðµå ȣȯ¼ºÀÇ ÅëÇÕÀÌ Å©°Ô Çâ»óµÇ¾î Çâ»óµÈ ¸ð¹ÙÀÏ ±¤´ë¿ªºÎÅÍ ÃÊÀúÁö¿¬ ÃÊÀúÁö¿¬ Åë½Å(URLLC)¿¡ À̸£±â±îÁö ´Ù¾çÇÑ »ç¿ë »ç·Ê¸¦ Áö¿øÇØ¾ß ÇÕ´Ï´Ù. ÇöÀç º£À̽º¹êµå ÇÁ·Î¼¼¼´Â ¹æ´ëÇÑ ¾çÀÇ µ¥ÀÌÅ͸¦ ó¸®Çϰí, ´ë±Ô¸ð MIMO ±¸¼ºÀ» ±¸¼ºÇϸç, ¹Ð¸®¹ÌÅÍÆÄ(mmWave) ¹× 6GHz ÀÌÇÏÀÇ Á֯ļö¸¦ Áö¿øÇØ¾ß ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¼ö¿ä¿¡ ´ëÀÀÇϱâ À§ÇØ Ä¨ Á¦Á¶¾÷üµéÀº 5nm ÀÌÇÏÀÇ Ã·´Ü ¹ÝµµÃ¼ ³ëµå, AI ±â¹Ý ½ÅÈ£ ó¸® ¾Ë°í¸®Áò, À̱âÁ¾ ÄÄÇ»ÆÃ ¾ÆÅ°ÅØÃ³¸¦ Ȱ¿ëÇÏ¿© Àü·Â È¿À²À» ÀúÇϽÃŰÁö ¾ÊÀ¸¸é¼µµ ó¸® ´É·ÂÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¸¹Àº Á¦Á¶¾÷üµéÀÌ ´ÜÀÏ º£À̽º¹êµå ¼³°è¿¡¼ AI ¿£Áø, GPU, Àü¿ë º¸¾È ¸ðµâÀ» ÅëÇÕÇÑ ¿ÏÀü ÅëÇÕÇü SoC·Î ÀüȯÇÏ¿© 5G ½º¸¶Æ®Æù ¹× Ä¿³ØÆ¼µå µð¹ÙÀ̽º¿¡ ÀûÇÕÇÑ ¼ÒÇü ¿ÃÀοø ¼Ö·ç¼ÇÀ» Á¦°øÇϰí ÀÖ½À´Ï´Ù. IoT ¹× »ê¾÷¿ë »ç¿ë »ç·Ê¸¦ À§ÇÑ 5G RedCap(Reduced Capability)ÀÇ µîÀåµµ 5GÀÇ ¸ðµç ±â´ÉÀ» ÇÊ¿ä·Î ÇÏÁö ¾Ê´Â µð¹ÙÀ̽º¸¦ À§ÇØ Àü·Â ¼Òºñ ÃÖÀûÈ, º¹À⼺ °¨¼Ò, Àú´ë¿ªÆøÀ» ¿ì¼±½ÃÇÏ´Â º£À̽º¹êµå ¼³°è¿¡ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. ÀÌ¿Í ÇÔ²² 5G ³×Æ®¿öÅ©ÀÇ ½½¶óÀ̰̽ú ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ³×Æ®¿öÅ© ÅëÇÕÀº ´Ù¾çÇÑ ¼ºñ½º ¿ä±¸ »çÇ׿¡ ½Ç½Ã°£À¸·Î ÀûÀÀÇÒ ¼ö ÀÖ´Â ÇÁ·Î±×·¡¸Óºí º£À̽º¹êµå Ç÷§ÆûÀÇ °³¹ßÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °³¹ßÀº º£À̽º¹êµå ÇÁ·Î¼¼¼¸¦ °í¼º´É µðÁöÅÐ ÄÚ¾î·Î ÀüȯÇÒ »Ó¸¸ ¾Æ´Ï¶ó ¹ÝµµÃ¼, Åë½Å ÀÎÇÁ¶ó, °¡ÀüÁ¦Ç°ÀÇ ±³Â÷Á¡¿¡¼ »ç¾÷À» Àü°³ÇÏ´Â ±â¾÷µéÀÇ Àü·«Àû ¹æÇ⼺À» Á¤ÀÇÇÕ´Ï´Ù.
º£À̽º¹êµå »ýŰèÀÇ ½ÃÀå ¿ªÇÐ ¹× Áö¿ª ¼ö¿ä ÆÐÅÏÀº ¾î¶»°Ô ÁøÈÇϰí Àִ°¡?
¼¼°è º£À̽º¹êµå ÇÁ·Î¼¼¼ ½ÃÀåÀº Áö¿ªº° ¼ö¿ä µ¿Çâ, °æÀï Àü·«, ±â¼ú ÇöÁöÈ ³ë·Â µîÀÌ º¹ÇÕÀûÀ¸·Î ÀÛ¿ëÇÏ¿© Çü¼ºµÇ°í ÀÖ½À´Ï´Ù. Áß±¹, Çѱ¹, ´ë¸¸, Àεµ µîÀ¸·Î ´ëÇ¥µÇ´Â ¾Æ½Ã¾ÆÅÂÆò¾çÀº °Å´ëÇÑ ¼ÒºñÀÚ ±â¹Ý, Ȱ¹ßÇÑ ½º¸¶Æ®Æù Á¦Á¶ ºÎ¹®, Àû±ØÀûÀÎ 5G ±¸Ãà Àü·«À¸·Î ½ÃÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ÁöÁ¤ÇÐÀû ±äÀåÀÌ Áö¼ÓµÇ´Â °¡¿îµ¥, ¼À¯·´ Ĩ Á¦Á¶¾÷ü¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³·Ãß·Á´Â Áß±¹Àº ¹ÝµµÃ¼ ÀÚ¸³¿¡ ÁÖ·ÂÇϰí ÀÖÀ¸¸ç, ÇÏÀ̽Ǹ®ÄÜ(Huawei), À¯´Ï¼ÒÅ©(Unisoc) µî ±¹³» º£À̽º¹êµå Á¦Á¶¾÷ü¸¦ Á¤ºÎ°¡ °·ÂÇÏ°Ô Áö¿øÇϰí ÀÖ½À´Ï´Ù. ¹Ì±¹°ú À¯·´¿¡¼´Â Ç÷¡±×½Ê ½º¸¶Æ®ÆùÀÇ °í¼º´É ¿ä±¸»çÇ×°ú 5G Áö¿ø ½ºÅ¸Æ®¾÷ ¾ÖÇø®ÄÉÀÌ¼Ç ¹× Â÷·®¿ë ¾ÖÇø®ÄÉÀ̼ÇÀÌ º£À̽º¹êµåÀÇ ±â¼ú Çõ½ÅÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ¹Ì±¹¿¡ º»»ç¸¦ µÐ Ä÷ÄÄÀº ÇÁ¸®¹Ì¾ö º£À̽º¹êµå ¼Ö·ç¼Ç¿¡¼ ¾ÐµµÀûÀÎ °Á¡À» À¯ÁöÇϰí ÀÖ½À´Ï´Ù. ÇÑÆí, MediaTekÀº Áß±Þ ¹× º¸±ÞÇü µð¹ÙÀ̽º¸¦ À§ÇÑ ºñ¿ë È¿À²ÀûÀÎ 4G ¹× 5G Ĩ Æ÷Æ®Æú¸®¿À¸¦ È®´ëÇÏ¸ç ¼¼°è »ç¾÷ È®ÀåÀ» Áö¼ÓÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Ä¿³ØÆ¼µå »ê¾÷ Àåºñ, ½º¸¶Æ® ½ÃƼ, Áõ°Çö½Ç(AR), V2X(Vehicle-to-Everything) Åë½Å ½Ã½ºÅÛ µî È¿À²ÀûÀÎ º£À̽º¹êµå Ç÷§ÆûÀ» ÅëÇÑ ÀÓº£µðµå ¿¬°áÀ» ÇÊ¿ä·Î ÇÏ´Â ºÐ¾ßµµ Á¡Â÷ ´Ù¾çȵǰí ÀÖ½À´Ï´Ù. ±¹¹æ, À§¼ºÅë½Å, ÇÁ¶óÀ̺ø ³×Æ®¿öÅ© µî¿¡¼´Â Á¤ºÎ ¹× ±â¾÷ÀÌ ¾ÈÀüÇϰí ÁÖ±ÇÀûÀÎ ¿¬°áÀ» ¿ì¼±½ÃÇÔ¿¡ µû¶ó ÀúÀü·Â, °íº¸¾È º£À̽º¹êµå ÇÁ·Î¼¼¼¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÇÑÆí, °³¹æÇü RAN(¹«¼± ¾×¼¼½º ³×Æ®¿öÅ©) °³³äÀº Åë½Å ÀåºñÀÇ Àü¸ÁÀ» À籸¼ºÇϰí ÀÖÀ¸¸ç, º¸´Ù ±¤¹üÀ§ÇÑ ³×Æ®¿öÅ© ±¸¼º¿ä¼Ò¿Í ÀÎÅÍÆäÀ̽ºÇÒ ¼ö ÀÖ´Â ¸ðµâ½Ä º£À̽º¹êµå ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä¸¦ ³ôÀ̰í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ È¯°æ º¯È·Î ÀÎÇØ Á¦Á¶¾÷üµéÀº Çϵå¿þ¾î¿Í ¼ÒÇÁÆ®¿þ¾îÀÇ ÅëÇÕ Àü·«À» Àç°ËÅäÇϰí Á¦Ç° ·Îµå¸ÊÀ» Áö¿ªº° ±ÔÁ¦, º¸¾È ¹× ¼º´É ¿ä±¸»çÇ׿¡ ¸Â°Ô Á¶Á¤ÇØ¾ß ÇÏ´Â »óȲ¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù.
º£À̽º¹êµå ÇÁ·Î¼¼¼ ¼¼°è ½ÃÀå ¼ºÀå ¿øµ¿·ÂÀº?
º£À̽º¹êµå ÇÁ·Î¼¼¼ ¼¼°è ½ÃÀå ¼ºÀåÀº Åë½Å ±â¼úÀÇ ¹ßÀü, ÃÖÁ¾»ç¿ëÀÚ ¾ÖÇø®ÄÉÀ̼ÇÀÇ ´Ù¾çÈ, ¼¼°è ¿¬°á¼º È®´ë¿Í Á÷°áµÇ´Â ¿©·¯ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ±× ÇÙ½ÉÀº 5G ³×Æ®¿öÅ©ÀÇ ¼¼°è È®»êÀ¸·Î, °í¼ÓÀÇ ÀúÁö¿¬ ¹«¼± µ¥ÀÌÅ͸¦ ó¸®ÇÒ ¼ö ÀÖ´Â °í±Þ º£À̽º¹êµå ÇÁ·Î¼¼¼¿¡ ´ëÇÑ Áö¼ÓÀûÀÎ ¼ö¿ä¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù. »õ·Î¿î ¼¼´ëÀÇ ½º¸¶Æ®ÆùÀÌ µîÀåÇÒ ¶§¸¶´Ù ¿¬°á ¼º´ÉÀÇ °³¼±ÀÌ ¿ä±¸µÇ´Â °¡¿îµ¥, ¸ð¹ÙÀÏ ±â±â Á¦Á¶»çµéÀº °æÀï·ÂÀ» À¯ÁöÇϱâ À§ÇØ ÃÖ÷´Ü º£À̽º¹êµå ¼Ö·ç¼Ç¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³ôÀ̰í ÀÖ½À´Ï´Ù. ½º¸¶Æ®¿öÄ¡, ÇÇÆ®´Ï½º Æ®·¡Ä¿, ½º¸¶Æ®È¨ ½Ã½ºÅÛ, ¿þ¾î·¯ºí µî ¼ÒºñÀÚ IoT ºÐ¾ß¿¡¼ Ä¿³ØÆ¼µå µð¹ÙÀ̽ºÀÇ Æø¹ßÀûÀÎ ¼ºÀåµµ ´Ü°Å¸® ¹«¼± ÇÁ·ÎÅäÄÝ ¹× Çù´ë¿ª IoT Ç¥ÁØ¿¡ ÃÖÀûÈµÈ ÃÊÀúÀü·Â º£À̽º¹êµå ÇÁ·Î¼¼¼¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. »ê¾÷ ȯ°æ¿¡¼´Â Àδõ½ºÆ®¸® 4.0 ±â¼úÀÇ ºÎ»óÀ¸·Î ÀÎÇØ, ½Å·ÚÇÒ ¼ö ÀÖ´Â ½Ç½Ã°£ Åë½ÅÀÌ ÇÊ¿äÇÑ ¿§Áö µð¹ÙÀ̽º, ¼¾¼, ÀÚµ¿È ½Ã½ºÅÛ¿¡ Àü·ÂÀ» °ø±ÞÇÏ´Â °ß°íÇÑ º£À̽º¹êµå ÇÁ·Î¼¼¼ÀÇ Ã¤ÅÃÀÌ °¡¼Óȵǰí ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ ÅÚ·¹¸Åƽ½º, ÀÚÀ²ÁÖÇà, ÀÎÆ÷Å×ÀÎ¸ÕÆ® ½Ã½ºÅÛÀº ³»ºñ°ÔÀ̼Ç, Áø´Ü, V2X Åë½ÅÀ» À§ÇÑ ¼¿·ê·¯ ¿¬°á¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ Áõ°¡ÇÔ¿¡ µû¶ó ¶Ç ´Ù¸¥ °í¼ºÀå ºÐ¾ß·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, À§¼º ±â¹Ý ÀÎÅͳݿ¡ ´ëÇÑ ³ë·Â°ú ½ÅÈï±¹ÀÇ ³óÃÌ Áö¿ª ±¤´ë¿ª ÇÁ·Î±×·¥ È®´ë´Â Ä¿¹ö¸®Áö¿Í ³»°áÇÔ¼ºÀ» °ÈÇÑ ¸ÂÃãÇü º£À̽º¹êµå Ç÷§ÆûÀÇ »õ·Î¿î »ç¿ë »ç·Ê¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, º£À̽º¹êµå, AI, GPU ±â´ÉÀ» °áÇÕÇÑ ÅëÇÕ SoCÀÇ Ãß¼¼´Â ¼³°èÀÇ º¹À⼺°ú °³¹ß ºñ¿ëÀ» ÁÙ¿© ÇÏÀÌ¿£µå ¹× ¿£Æ®¸® ·¹º§ µð¹ÙÀ̽º·ÎÀÇ º¸±ÞÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¹ÝµµÃ¼ ±â¾÷, Åë½Å»ç, OEM °£ÀÇ Àü·«Àû ÆÄÆ®³Ê½ÊÀº ±â¼ú Çõ½Å°ú ½ÃÀå ħÅõ¸¦ ´õ¿í °¡¼ÓÈÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÈûµéÀ» Á¾ÇÕÇϸé, º£À̽º¹êµå ÇÁ·Î¼¼¼´Â ´Ü¼øÇÑ Åë½Å ºÎǰÀÌ ¾Æ´Ñ Ä¿³ØÆ¼µå µðÁöÅÐ °æÁ¦ÀÇ ÇÙ½É ¿øµ¿·ÂÀ¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.
ºÎ¹®
À¯Çü(4G À¯Çü, 5G À¯Çü, ±âŸ À¯Çü), ¾ÖÇø®ÄÉÀ̼Ç(½º¸¶Æ®Æù ¾ÖÇø®ÄÉÀ̼Ç, ÅÂºí¸´ ¾ÖÇø®ÄÉÀ̼Ç)
AI ÅëÇÕ
¿ì¸®´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.
Global Industry Analysts´Â LLM ¹× ¾÷°è °íÀ¯ÀÇ SLMÀ» Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.
°ü¼¼ ¿µÇâ °è¼ö
Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
Global Baseband Processor Market to Reach US$64.4 Billion by 2030
The global market for Baseband Processor estimated at US$40.5 Billion in the year 2024, is expected to reach US$64.4 Billion by 2030, growing at a CAGR of 8.0% over the analysis period 2024-2030. 4G Type, one of the segments analyzed in the report, is expected to record a 7.5% CAGR and reach US$38.0 Billion by the end of the analysis period. Growth in the 5G Type segment is estimated at 9.4% CAGR over the analysis period.
The U.S. Market is Estimated at US$10.6 Billion While China is Forecast to Grow at 7.8% CAGR
The Baseband Processor market in the U.S. is estimated at US$10.6 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$10.3 Billion by the year 2030 trailing a CAGR of 7.8% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 7.3% and 6.9% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 6.5% CAGR.
Global Baseband Processor Market - Key Trends & Drivers Summarized
Why Are Baseband Processors the Cornerstone of Modern Mobile Communications?
Baseband processors are critical components that lie at the heart of wireless communication devices, serving as the primary engine for handling all cellular radio functions, including signal modulation, demodulation, encoding, decoding, and protocol stack execution. As mobile phones evolve into multi-functional, high-speed computing platforms, the demand for more powerful and efficient baseband processors has intensified. These chips play a crucial role in enabling smartphones, tablets, wearables, and IoT devices to seamlessly connect to cellular networks such as 3G, 4G LTE, and increasingly, 5G. By offloading the communication workload from the main application processor, baseband processors help maintain efficient power consumption and ensure robust connectivity even under challenging network conditions. The increasing complexity of mobile network protocols, especially with the rollout of 5G NR (New Radio), necessitates more sophisticated baseband designs that support higher data rates, carrier aggregation, ultra-low latency, and advanced antenna technologies like MIMO. Additionally, these processors facilitate voice and data services, roaming capabilities, and integration with GNSS (Global Navigation Satellite System) functionalities. Their integration into System-on-Chip (SoC) architectures is enabling the miniaturization and cost-effectiveness of mobile devices, enhancing both performance and affordability. As connectivity becomes a basic utility in daily life, baseband processors are indispensable in ensuring seamless communication across regions, network generations, and device categories. Their centrality to connectivity infrastructure makes them a foundational element in the ongoing digital transformation of both personal electronics and industrial applications.
How Is 5G Revolutionizing the Capabilities and Design of Baseband Processors?
The transition to 5G technology is dramatically reshaping the architecture, capabilities, and competitive landscape of the global baseband processor market. Unlike previous generations, 5G demands a significant leap in data processing power, energy efficiency, and integration of multi-band, multi-mode compatibility to support diverse use cases ranging from enhanced mobile broadband to ultra-reliable low-latency communication (URLLC). Baseband processors must now handle vastly more data, orchestrate massive MIMO configurations, and support millimeter-wave (mmWave) and sub-6 GHz frequencies-each of which presents unique design and thermal challenges. To meet these demands, chipmakers are leveraging advanced semiconductor nodes (such as 5nm and below), AI-based signal processing algorithms, and heterogeneous computing architectures to boost processing capabilities without compromising power efficiency. Furthermore, many manufacturers are transitioning from standalone baseband designs to fully integrated SoCs that incorporate AI engines, GPUs, and dedicated security modules, providing a compact, all-in-one solution ideal for 5G smartphones and connected devices. The arrival of 5G RedCap (Reduced Capability) for IoT and industrial use cases is also influencing baseband design by prioritizing power optimization, reduced complexity, and lower bandwidth for devices that do not require full 5G capabilities. In parallel, 5G network slicing and software-defined network integration are prompting the development of programmable baseband platforms that can adapt in real time to diverse service requirements. These developments are not only transforming baseband processors into high-performance digital cores but are also defining the strategic direction of companies that operate at the intersection of semiconductors, telecom infrastructure, and consumer electronics.
How Are Market Dynamics and Regional Demand Patterns Evolving in the Baseband Ecosystem?
The global baseband processor market is being shaped by a complex interplay of regional demand trends, competitive strategies, and technology localization efforts. Asia-Pacific, led by China, South Korea, Taiwan, and India, dominates the market due to its massive consumer base, thriving smartphone manufacturing sector, and aggressive 5G deployment strategies. China’s focus on self-reliance in semiconductors has resulted in strong government backing for domestic baseband players like HiSilicon (Huawei), Unisoc, and others, seeking to reduce dependence on Western chipmakers amid ongoing geopolitical tensions. In the United States and Europe, baseband innovation is driven by high-performance requirements in flagship smartphones, as well as in emerging 5G-enabled enterprise and automotive applications. U.S.-based Qualcomm remains a dominant force in premium baseband solutions, while MediaTek continues to expand its global footprint with a growing portfolio of cost-effective 4G and 5G chips for mid-range and entry-level devices. The market is also seeing a gradual shift toward diversification in verticals such as connected industrial equipment, smart cities, augmented reality, and vehicle-to-everything (V2X) communication systems, all of which require embedded connectivity powered by efficient baseband platforms. Demand for low-power, high-security baseband processors is growing in defense, satellite communications, and private networks as governments and enterprises prioritize secure, sovereign connectivity. Meanwhile, open RAN (Radio Access Network) initiatives are reshaping the telecom equipment landscape, increasing demand for modular baseband solutions that can interface with a wider range of network components. This evolving environment is driving manufacturers to rethink their hardware-software integration strategies and align product roadmaps with region-specific regulatory, security, and performance requirements.
What Is Fueling the Growth in the Global Baseband Processor Market?
The growth in the global baseband processor market is driven by several factors directly tied to advancements in communication technology, diversification of end-user applications, and global connectivity expansion. At the core is the widespread global rollout of 5G networks, which is creating sustained demand for advanced baseband processors capable of handling high-speed, low-latency wireless data. With every new smartphone generation requiring improved connectivity performance, mobile device manufacturers are increasing their reliance on cutting-edge baseband solutions to stay competitive. The explosive growth of connected devices in the consumer IoT segment-including smartwatches, fitness trackers, smart home systems, and wearables-is also fueling demand for ultra-low power baseband processors optimized for short-range wireless protocols and narrowband IoT standards. In industrial settings, the rise of Industry 4.0 technologies is prompting adoption of robust baseband processors to power edge devices, sensors, and automated systems that require reliable, real-time communication. Automotive telematics, autonomous driving, and infotainment systems represent another high-growth sector, as vehicles become increasingly reliant on cellular connectivity for navigation, diagnostics, and V2X communication. Satellite-based internet initiatives and expansion of rural broadband programs in developing countries are also creating new use cases for customized baseband platforms with extended coverage and enhanced resilience. Furthermore, the trend toward integrated SoCs combining baseband, AI, and GPU functionalities is lowering design complexity and development costs, encouraging widespread adoption in both high-end and entry-level devices. Strategic partnerships among semiconductor companies, telecom operators, and OEMs are further accelerating innovation and market penetration. Collectively, these forces are positioning the baseband processor not just as a telecom component, but as a central enabler of the connected digital economy.
SCOPE OF STUDY:
The report analyzes the Baseband Processor market in terms of units by the following Segments, and Geographic Regions/Countries:
Segments:
Type (4G Type, 5G Type, Other Types); Application (Smartphone Application, Tablets Application)
Geographic Regions/Countries:
World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.
Select Competitors (Total 48 Featured) -
AI INTEGRATIONS
We're transforming market and competitive intelligence with validated expert content and AI tools.
Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.
TARIFF IMPACT FACTOR
Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.