¼¼°èÀÇ ÀÚÀ²ÁÖÇà ¹ö½º ½ÃÀå
Autonomous Bus
»óǰÄÚµå : 1758922
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 06¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 177 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,121,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,364,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

ÀÚÀ²ÁÖÇà ¹ö½º ¼¼°è ½ÃÀåÀº 2030³â±îÁö 55¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 18¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ÀÚÀ²ÁÖÇà ¹ö½º ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 20.4%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 55¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ÁØ ÀÚÀ²ÁÖÇà ¹ö½º´Â CAGR 18.1%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 31¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¿ÏÀü ÀÚÀ²ÁÖÇà ¹ö½º ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 23.8%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 4¾ï 7,340¸¸ ´Þ·¯, Áß±¹Àº CAGR 19.4%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ÀÚÀ²ÁÖÇà ¹ö½º ½ÃÀåÀº 2024³â¿¡ 4¾ï 7,340¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 8¾ï 4,460¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 19.4%¸¦ ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 18.3%¿Í 17.7%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 14.2%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ÀÚÀ²ÁÖÇà ¹ö½º ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

ÀÚÀ²ÁÖÇà ¹ö½º°¡ ¹Ì·¡ µµ½Ã ¸ðºô¸®Æ¼ÀÇ ÇÙ½ÉÀ¸·Î ¶°¿À¸£´Â ÀÌÀ¯´Â ¹«¾ùÀϱî?

ÀÚÀ²ÁÖÇà ¹ö½º´Â ´ëÁß±³Åë ºÐ¾ß¿¡¼­ Çõ½ÅÀûÀÎ ¼Ö·ç¼ÇÀ¸·Î ºü¸£°Ô ºÎ»óÇϰí ÀÖÀ¸¸ç, µµ½Ã°¡ ±³ÅëÀ» °ü¸®ÇÏ´Â ¹æ½ÄÀ» À籸¼ºÇϰí, ¹è±â°¡½º¸¦ ÁÙÀ̰í, Áõ°¡ÇÏ´Â µµ½Ã Àα¸¿¡°Ô Á¢±Ù¼ºÀÌ ¶Ù¾î³ª°í È¿À²ÀûÀÎ À̵¿¼ºÀ» Á¦°øÇÒ ¼ö ÀÖ´Â ÀáÀç·ÂÀ» Á¦°øÇϰí ÀÖ½À´Ï´Ù. ÷´Ü ¼¾¼­ Á¦Ç°±º, ¸Ó½Å·¯´× ¾Ë°í¸®Áò, ½Ç½Ã°£ ¿¬°á¼ºÀ» °®Ãá ¹«ÀÎ ¹ö½º´Â »ç¶÷ÀÇ °³ÀÔÀ» ÃÖ¼ÒÈ­Çϰųª ÀüÇô ÇÊ¿ä·Î ÇÏÁö ¾Ê°í º¹ÀâÇÑ È¯°æ¿¡¼­µµ ÀϰüµÇ°í ¿¹Ãø °¡´ÉÇÑ ¼­ºñ½º¸¦ Á¦°øÇÒ ¼ö ÀÖµµ·Ï ¼³°èµÆ½À´Ï´Ù. µµ½ÉÀÇ È¥Àâ°ú °øÇØ·Î ÀÎÇØ ¾ÈÀüÇϰí Àú·ÅÇÑ ±³Åë¼ö´Ü¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ´Â °¡¿îµ¥, ÀÚÀ²ÁÖÇà ¹ö½º´Â ÀΰǺñ¸¦ Àý°¨Çϰí, ¿îÇà ºóµµ¸¦ ³ôÀ̸ç, 24½Ã°£ Á¤½Ã ¿îÇàÀ» À¯ÁöÇÒ ¼ö ÀÖ´Â ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ, Àü±â ÆÄ¿öÆ®·¹Àΰú °æ·Î ÃÖÀûÈ­ ±â´ÉÀº ´ëÁß±³ÅëÀÇ È¯°æ ºÎÇϸ¦ ÁÙÀ̴µ¥µµ Å©°Ô ±â¿©ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÚÀ²ÁÖÇà ¹ö½º´Â °íÁ¤ ³ë¼± ½Ã½ºÅÛ, ¼ÅƲ ¼­ºñ½º, ÆÛ½ºÆ® ¸¶ÀÏ/¶ó½ºÆ® ¸¶ÀÏ ¿î¼Û¿¡ µµÀÔÇÒ ¼ö ÀÖÀ¸¸ç, ±âÁ¸ ¹ö½º·Î´Â °æÁ¦¼ºÀÌ ¾ø´Â Áö¿ª¿¡ ¼­ºñ½º¸¦ Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù. À¯·´, ¾Æ½Ã¾Æ, ºÏ¹ÌÀÇ ÁÖ¿ä µµ½ÃµéÀº ±³Åë ½Ã½ºÅÛ, º¸ÇàÀÚ ±¸¿ª, ±âÁ¸ ±³Åë ÀÎÇÁ¶ó¿ÍÀÇ ÅëÇÕÀ» Æò°¡Çϸ鼭 À̵é Â÷·®À» ½ÇÁ¦ ȯ°æ¿¡¼­ Å×½ºÆ®ÇÏ´Â ÆÄÀÏ·µ ÇÁ·Î±×·¥À» ½ÃÇàÇϰí ÀÖ½À´Ï´Ù. °ø°ø ¹× ¹Î°£ ÀÌÇØ°ü°èÀÚµéÀº ÀÌ·¯ÇÑ ¹ö½º°¡ ƯÈ÷ ±³Åë ¼­ºñ½º°¡ ºÎÁ·ÇÑ Áö¿ª »çȸ¿Í °í·ÉÈ­ »çȸ¿¡¼­ ±³Åë °ÝÂ÷¸¦ ¿ÏÈ­ÇÒ ¼ö ÀÖ´Ù´Â Á¡À» ÀνÄÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ °³³äÀº ½º¸¶Æ® ½ÃƼÀÇ ±¤¹üÀ§ÇÑ ºñÀü, Áï ¿¬°á¼º, È¿À²¼º, Áö¼Ó°¡´É¼ºÀ» ¿ì¼±½ÃÇÏ´Â ÅëÇÕµÈ µ¥ÀÌÅÍ ±â¹Ý µµ½Ã »ýŰè¿Íµµ ÀÏÄ¡ÇÕ´Ï´Ù. ÀÌó·³ ÀÚÀ²ÁÖÇà ¹ö½º´Â ´Ü¼øÇÑ ±³Åë¼ö´ÜÀÌ ¾Æ´Ï¶ó Á¢±Ù¼º, È¿À²¼º, ºñ¿ë È¿À²¼º Ãø¸é¿¡¼­ Àå±âÀûÀÎ ÀÌÁ¡À» Á¦°øÇÏ´Â µµ½Ã ¸ðºô¸®Æ¼ ÁøÈ­ÀÇ Áß½ÉÃàÀ¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

AI, ¼¾¼­, Ä¿³ØÆ¼ºñƼ µîÀÇ ±â¼úÀº ¾î¶»°Ô °³¹ßÀ» ÃËÁøÇϰí Àִ°¡?

ÀÚÀ²ÁÖÇà ¹ö½ºÀÇ °³¹ßÀº Â÷·®ÀÌ º¹ÀâÇÑ È¯°æÀ» Ž»öÇϰí, ½Ç½Ã°£ ÀÇ»ç°áÁ¤À» ³»¸®°í, ÀÎÇÁ¶ó ¹× ½Â°´°ú ¿øÈ°ÇÏ°Ô »óÈ£ ÀÛ¿ëÇÒ ¼ö ÀÖµµ·Ï Çϴ ÷´Ü ±â¼úÀÇ Áý°á¿¡ ÀÇÇØ ÃßÁøµÇ°í ÀÖ½À´Ï´Ù. ÀÌ ±â´ÉÀÇ ÇÙ½ÉÀº LiDAR, ·¹ÀÌ´õ, ÃÊÀ½ÆÄ ¼¾¼­, GPS, °íÇØ»óµµ Ä«¸Þ¶ó µî ¿©·¯ ¼¾¼­¸¦ ÅëÇÕÇÑ ADAS(÷´Ü ¿îÀüÀÚ º¸Á¶ ½Ã½ºÅÛ)ÀÇ »ç¿ëÀÔ´Ï´Ù. ÀÌ ¼¾¼­µéÀº ÇÔ²² ÀÛµ¿ÇÏ¿© ¹ö½º ÁÖº¯ÀÇ 360µµ Á¾ÇÕÀûÀÎ ºä¸¦ »ý¼ºÇϰí, Àå¾Ö¹°À» °¨ÁöÇϰí, ±³Åë ½ÅÈ£¸¦ ÇØ¼®Çϰí, ¿ªµ¿ÀûÀÎ µµ·Î »óȲ¿¡ ´ëÀÀÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. ÀΰøÁö´É°ú µö·¯´× ¾Ë°í¸®ÁòÀº ÀÌ·¯ÇÑ ¼¾¼­¿¡¼­ »ý¼ºµÇ´Â ¹æ´ëÇÑ ¾çÀÇ µ¥ÀÌÅ͸¦ ó¸®ÇÏ¿© ¹ö½º°¡ º¸ÇàÀÚ, ÀÚÀü°Å, Â÷·®À» ÀνÄÇϰí Ãæµ¹À» ÇÇÇϱâ À§ÇØ ±×µéÀÇ ÇൿÀ» ¿¹ÃøÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. °íÈ­Áú ¸ÅÇΰú V2X(Vehicle-to-Everything) Åë½ÅÀ» ÅëÇÑ ½Ç½Ã°£ ¾÷µ¥ÀÌÆ®¸¦ ÅëÇØ ¹ö½º´Â ÃÖÀûÈ­µÈ °æ·Î¸¦ µû¶ó°¡°í, ±³Åë º¯È­¿¡ ÀûÀÀÇϸç, ½ÅÈ£µî ¹× ½º¸¶Æ® ÀÎÇÁ¶ó ½Ã½ºÅÛ°ú ¿¬µ¿ÇÒ ¼ö ÀÖ½À´Ï´Ù. Ŭ¶ó¿ìµå ±â¹Ý ºÐ¼® ¹× ¿§Áö ÄÄÇ»ÆÃÀº °æ·Î °èȹ, Áø´Ü ¹× Â÷·® Çù¾÷À» À§ÇÑ ÄÄÇ»ÆÃ ¼º´ÉÀ» Á¦°øÇÏ¿© ÀÌ·¯ÇÑ ÀÛ¾÷À» Áö¿øÇÕ´Ï´Ù. ¶ÇÇÑ, Â÷·® žÀç ½Ã½ºÅÛÀº ½Â°´°úÀÇ ¿øÈ°ÇÑ »óÈ£ÀÛ¿ëÀ» Á¦°øÇϱâ À§ÇØ °³¹ßµÇ¾úÀ¸¸ç, À½¼º Áö¿ø, ÀÚµ¿È­µÈ ž½Â±¸, AI¸¦ ÅëÇÑ ¼­ºñ½º ¾÷µ¥ÀÌÆ® µîÀÇ ±â´ÉÀ» Á¦°øÇÕ´Ï´Ù. ÀÚÀ²ÁÖÇà ¹ö½º°¡ ÇØÅ·¿¡ °­ÇÏ°í ±â¹Ð¼ºÀÌ ³ôÀº ¿îÇà µ¥ÀÌÅ͸¦ ¾ÈÀüÇÏ°Ô Ã³¸®ÇÒ ¼ö ÀÖµµ·Ï »çÀ̹ö º¸¾ÈÀÇ Áö¼ÓÀûÀÎ ¹ßÀüµµ ÇʼöÀûÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úµéÀÌ °áÇյǾî ÀÚÀ²ÁÖÇà ¹ö½º ±â´ÉÀÇ ÁßÃ߸¦ Çü¼ºÇϰí, Çö´ë µµ½Ã »ýȰÀÇ ¼ö¿ä¸¦ ÃæÁ·½ÃŰ´Â ¾ÈÀüÇÏ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â Áö´ÉÇü ±³Åë¼ö´ÜÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.

Àü ¼¼°èÀûÀ¸·Î ÀÚÀ²ÁÖÇà ¹ö½º¿¡ ´ëÇÑ °ü½ÉÀÌ ¹Î°üÀ» ¸··ÐÇÏ°í °¡¼ÓÈ­µÇ°í ÀÖ´Â ÀÌÀ¯´Â ¹«¾ùÀϱî?

Àü ¼¼°èÀûÀ¸·Î ´ëÁß±³Åë ´ç±¹°ú ¹Î°£ ¸ðºô¸®Æ¼ Á¦°ø¾÷ü ¸ðµÎ Áõ°¡ÇÏ´Â µµ½Ã À̵¿¼º ¼ö¿ä¿¡ ´ëÀÀÇϱâ À§ÇØ È®Àå °¡´ÉÇÏ°í ºñ¿ë È¿À²ÀûÀ̸ç Áö¼Ó°¡´ÉÇÑ ¼Ö·ç¼ÇÀ» ã°í Àֱ⠶§¹®¿¡ ÀÚÀ²ÁÖÇà ¹ö½º¿¡ ´ëÇÑ °ü½ÉÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. µµ½ÃµéÀº ÀÌ»êȭź¼Ò ¹èÃâ·® °¨¼Ò, ±³Åë ÇüÆò¼º Çâ»ó, Àα¸ Áõ°¡ °ü¸® µîÀÇ ¾Ð¹ÚÀ» ¹Þ°í ÀÖÀ¸¸ç, ÀÚÀ²ÁÖÇà Àü±â ¹ö½º´Â ±âÁ¸ µðÁ© ¿£Áø Â÷·®¿¡ ´ëÇÑ ¸Å·ÂÀûÀÎ ´ë¾ÈÀ¸·Î ¶°¿À¸£°í ÀÖ½À´Ï´Ù. Á¤ºÎ¿Í ÁöÀÚü´Â ÀÚÀ²ÁÖÇà ¹ö½ºÀÇ ¿î¿µÀ» Å×½ºÆ®ÇÏ°í °ËÁõÇϱâ À§ÇÑ ÆÄÀÏ·µ ÇÁ·Î±×·¥, Çõ½Å Çãºê, ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©¿¡ Àû±ØÀûÀ¸·Î ÀÚ±ÝÀ» Áö¿øÇϰí ÀÖ½À´Ï´Ù. À¯·´¿¡¼­´Â ½º¿þµ§, µ¶ÀÏ, ÇÁ¶û½º µîÀÇ ±¹°¡µéÀÌ µµ½Ã ´ÜÀ§ÀÇ ½Ã¹ü ¿î¿µÀ» ÁÖµµÇϰí ÀÖÀ¸¸ç, Áß±¹¿¡¼­´Â ´ë±Ô¸ð ÀÚÀ²ÁÖÇà ¹ö½º ¹èÄ¡¸¦ Æ÷ÇÔÇÑ ½º¸¶Æ® ½ÃƼ ÀÌ´Ï¼ÅÆ¼ºê¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. ¹Ì±¹¿¡¼­´Â ±â¼ú °ÅÁ¡ ¹× ´ëÇÐ Ä·ÆÛ½º¿¡¼­ ¼ÅƲ ½Ã½ºÅÛÀ» ½Ã¹üÀûÀ¸·Î µµÀÔÇÏ¿© ¾ÈÀü¼º, ºñ¿ë Àý°¨ ¹× È¿À²¼º Çâ»óÀ» ÀÔÁõÇϰí ÀÖ½À´Ï´Ù. ¸ðºô¸®Æ¼ ½ºÅ¸Æ®¾÷, ÀÚµ¿Â÷ OEM, ÇÏÀÌÅ×Å© ´ë±â¾÷À» Æ÷ÇÔÇÑ ¹Î°£ ºÎ¹® ±â¾÷µéÀº Á¦ÈÞ, Àμö, ÀÚü °³¹ß ÇÁ·Î±×·¥À» ÅëÇØ ÀÚÀ²Çü ´ëÁß±³ÅëÀ¸·ÎÀÇ ÀüȯÀ» Ȱ¿ëÇϱâ À§ÇØ ½ÃÀå¿¡ ÁøÀÔÇϰí ÀÖ½À´Ï´Ù. ¼­ºñ½ºÇü ¸ðºô¸®Æ¼(Mobility-as-a-Service, MaaS)ÀÇ ºÎ»óµµ ÀÌ·¯ÇÑ ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ÅëÇÕ Ç÷§ÆûÀº ½Ç½Ã°£À¸·Î ÀûÀÀÇÒ ¼ö ÀÖ´Â À¯¿¬ÇÑ ¿Âµð¸Çµå ¿î¼Û ¼­ºñ½º¸¦ Á¡Á¡ ´õ ¼±È£Çϰí Àֱ⠶§¹®ÀÔ´Ï´Ù. ÀÚÀ²ÁÖÇà ¹ö½º´Â ºñÁî´Ï½º ÆÄÅ©, °øÇ×, °ü±¤Áö µî ¹Ì¸® Á¤ÀÇµÈ °æ·Î¿Í ¿¹Ãø °¡´ÉÇÑ ±³Åë ÆÐÅÏÀ¸·Î ¹èÄ¡¸¦ ´Ü¼øÈ­ÇÒ ¼ö ÀÖ´Â °ü¸®µÈ ȯ°æ¿¡ ÀÌ»óÀûÀ¸·Î ÀûÇÕÇÕ´Ï´Ù. ¶ÇÇÑ, Àü ¼¼°èÀûÀ¸·Î ÀÚ°ÝÀ» °®Ãá ¹ö½º ¿îÀü±â»ç°¡ ºÎÁ·Çϱ⠶§¹®¿¡ ±³Åë ±â°üÀº Àη Ȯº¸ ¹®Á¦¿¡ ´ëÇÑ Àå±âÀûÀÎ ÇØ°áÃ¥À¸·Î ÀÚµ¿È­¸¦ °í·ÁÇϰí ÀÖ½À´Ï´Ù. ½ÃÇèÀÇ ¼º°øÀÌ ´õ ±¤¹üÀ§ÇÑ ¹èÄ¡·Î À̾îÁö¸é¼­ ÀÚÀ²ÁÖÇà ¹ö½ºÀÇ ¸Å·ÂÀº Âü½ÅÇÔÀ» ³Ñ¾î ´ëÁß±³ÅëÀÇ ¹Ì·¡¸¦ Ã¥ÀÓÁú Áß¿äÇÑ Èĺ¸·Î È®´ëµÇ°í ÀÖ½À´Ï´Ù.

¼¼°è ÀÚÀ²ÁÖÇà ¹ö½º ½ÃÀåÀÇ ±Þ°ÝÇÑ ¼ºÀåÀ» À̲ô´Â ÈûÀº ¹«¾ùÀϱî?

¼¼°è ÀÚÀ²ÁÖÇà ¹ö½º ½ÃÀåÀÇ ¼ºÀå¿¡´Â ±â¼ú Çõ½Å, ±ÔÁ¦ Áö¿ø, ȯ°æ ±ÔÁ¦, µµ½Ã ¸ðºô¸®Æ¼¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ±â´ëÄ¡ º¯È­ µîÀÌ º¹ÇÕÀûÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. °¡Àå ¿µÇâ·Â ÀÖ´Â ¿øµ¿·Â Áß Çϳª´Â ½º¸¶Æ®Çϰí Áö¼Ó°¡´ÉÇÑ µµ½Ã·ÎÀÇ ÀüȯÀ¸·Î, ÀÚÀ²ÁÖÇà Â÷·®ÀÌ Àú¹èÃâ, °íÈ¿À²ÀÇ ±³Åë ³×Æ®¿öÅ©¸¦ ½ÇÇöÇÏ´Â Áß¿äÇÑ ¿øµ¿·ÂÀ¸·Î °£Áֵǰí ÀÖ½À´Ï´Ù. Àü±â ±¸µ¿°è´Â ÀϹÝÀûÀ¸·Î ÀÚÀ²ÁÖÇà ¹ö½º Ç÷§Æû°ú ÅëÇÕµÇ¾î ¿Â½Ç °¡½º ¹èÃâ·®À» ÁÙÀÌ°í ´õ ±ú²ýÇÑ ´ëÁß±³Åë ¼ö´ÜÀ» º¸±ÞÇÏ·Á´Â Á¤ºÎ Á¤Ã¥¿¡ ºÎÇÕÇÕ´Ï´Ù. µ¿½Ã¿¡ ÀΰøÁö´É, ¼¾¼­ ¼ÒÇüÈ­, 5G ¿¬°á, ½Ç½Ã°£ µ¥ÀÌÅÍ Ã³¸®ÀÇ ¹ßÀüÀ¸·Î ÀÚÀ²ÁÖÇà ¹ö½º ½Ã½ºÅÛÀÇ ½Å·Ú¼º, È®À强, Àúºñ¿ëÀÌ Çâ»óµÇ°í ÀÖ½À´Ï´Ù. ±ÔÁ¦ ±â°üÀº ¾ÈÀü ÇÁ·ÎÅäÄÝÀ» ¼ö¸³Çϰí, ½ÃÇè Çã°¡¸¦ ¹ß±ÞÇϰí, Á¶±â ¹èÄ¡ÀÇ À§ÇèÀ» ÁÙÀ̱â À§ÇÑ ¿¬±¸ ÀÌ´Ï¼ÅÆ¼ºê¿¡ ÀÚ±ÝÀ» Áö¿øÇÔÀ¸·Î½á Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, °í·ÉÈ­, ±â¼ú¿¡ Á¤ÅëÇÑ ÀþÀºÀ̵é, Á¢±Ù¼º¿¡ ´ëÇÑ ¿ä±¸ Áõ°¡ µî ÁøÈ­ÇÏ´Â µµ½Ã Àα¸Åë°è´Â ±³Åë ½Ã½ºÅÛÀÌ º¸´Ù Æ÷°ýÀûÀ̰í ÀÚµ¿È­µÇ¾î¾ß ÇÑ´Ù´Â ¾Ð·ÂÀ» °¡Çϰí ÀÖ½À´Ï´Ù. ÀÚÀ²ÁÖÇà ¹ö½º¸¦ º¸´Ù ±¤¹üÀ§ÇÑ MaaS »ýŰ迡 ÅëÇÕÇϰí, ÀÚÀ²ÁÖÇà Àü¿ë Â÷¼± ¹× ½º¸¶Æ® ±³Åë °üÁ¦ ½Ã½ºÅÛÀ» °³¹ßÇÔÀ¸·Î½á ÀÚÀ²ÁÖÇà ¹ö½ºÀÇ µµÀÔÀÌ ´õ¿í ÃËÁøµÇ°í ÀÖ½À´Ï´Ù. ÀÚÀ²ÁÖÇà ¹ö½º´Â Àü±â ÆÄ¿öÆ®·¹Àΰú ¿¹Ãø Áø´ÜÀ» ÅëÇØ ÀΰǺñ, ¿¬·áºñ, À¯Áöº¸¼ö ºóµµ¸¦ ÁÙ¿©Áֱ⠶§¹®¿¡ Â÷·® ¿î¿µ¾÷ü¿Í ÁöÀÚüµµ Àå±âÀûÀÎ ºñ¿ë ÀÌÁ¡À» ÀνÄÇϰí ÀÖ½À´Ï´Ù. ±â¼ú ±â¾÷, OEM, ´ëÇÐ, Á¤ºÎ ±â°ü °£ÀÇ Àü·«Àû Çù·ÂÀº ÀÚÀ²ÁÖÇà ¹ö½º¸¦ ½ÇÇèÀû °³³ä¿¡¼­ »ó¾÷ÀûÀ¸·Î ½ÇÇà °¡´ÉÇÑ ¼Ö·ç¼ÇÀ¸·Î ÀüȯÇÏ¿© Çõ½Å°ú ¹èÆ÷¸¦ °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ÆÄÀÏ·µ ÇÁ·Î±×·¥ÀÌ ¿µ±¸ÀûÀÎ ÀÎÇÁ¶ó·Î ÀüȯµÇ°í ÀÚÀ²ÁÖÇà ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ½Å·Ú°¡ ³ô¾ÆÁü¿¡ µû¶ó ¼¼°è ÀÚÀ²ÁÖÇà ¹ö½º ½ÃÀåÀº Áö¼ÓÀûÀ̰í Å« ÆøÀ¸·Î È®´ëµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ºÎ¹®

À¯Çü(ÁØ ÀÚÀ²ÁÖÇà ¹ö½º, ¿ÏÀü ÀÚÀ²ÁÖÇà ¹ö½º), ÃßÁø·Â(µðÁ© ÃßÁø·Â, Àü±â ÃßÁø·Â, ÇÏÀ̺긮µå ÃßÁø·Â), ÃÖÁ¾»ç¿ëÀÚ(´ëÁß±³Åë ÃÖÁ¾»ç¿ëÀÚ, ¹Î°£ ¼ÅƲ ¼­ºñ½º ÃÖÁ¾»ç¿ëÀÚ, ¹°·ù¡¤¹°ÀÚ ¿î¼Û ÃÖÁ¾»ç¿ëÀÚ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê(ÃÑ 47°³»ç)

AI ÅëÇÕ

¿ì¸®´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM ¹× ¾÷°è °íÀ¯ÀÇ SLMÀ» Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Autonomous Bus Market to Reach US$5.5 Billion by 2030

The global market for Autonomous Bus estimated at US$1.8 Billion in the year 2024, is expected to reach US$5.5 Billion by 2030, growing at a CAGR of 20.4% over the analysis period 2024-2030. Semi-Autonomous Bus, one of the segments analyzed in the report, is expected to record a 18.1% CAGR and reach US$3.1 Billion by the end of the analysis period. Growth in the Fully-Autonomous Bus segment is estimated at 23.8% CAGR over the analysis period.

The U.S. Market is Estimated at US$473.4 Million While China is Forecast to Grow at 19.4% CAGR

The Autonomous Bus market in the U.S. is estimated at US$473.4 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$844.6 Million by the year 2030 trailing a CAGR of 19.4% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 18.3% and 17.7% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 14.2% CAGR.

Global Autonomous Bus Market - Key Trends & Drivers Summarized

Why Are Autonomous Buses Emerging as a Cornerstone of Future Urban Mobility?

Autonomous buses are rapidly emerging as a transformative solution in the realm of public transportation, offering the potential to reshape how cities manage traffic, reduce emissions, and provide accessible, efficient mobility for growing urban populations. These driverless buses, powered by sophisticated sensor suites, machine learning algorithms, and real-time connectivity, are designed to operate with minimal or no human intervention, providing consistent and predictable service in complex environments. As urban centers grapple with congestion, pollution, and increasing demand for safe, affordable transit, autonomous buses present an opportunity to reduce labor costs, improve service frequency, and maintain punctual operations around the clock. Their electric powertrains and route optimization capabilities also contribute significantly to reducing the environmental impact of public transportation. Autonomous buses can be deployed in fixed-route systems, shuttle services, and first-mile/last-mile transit, serving areas where traditional buses may be economically unviable. Major cities across Europe, Asia, and North America are conducting pilot programs that test these vehicles in real-world settings, gauging their integration with traffic systems, pedestrian zones, and existing transport infrastructure. Public and private stakeholders are recognizing that these buses can alleviate transportation gaps, especially in underserved or aging communities. Moreover, the concept aligns with the broader vision of smart cities-integrated, data-driven urban ecosystems that prioritize connectivity, efficiency, and sustainability. As such, autonomous buses are not just another mode of transit-they are positioned to be a central pillar in the evolution of urban mobility, offering long-term benefits in accessibility, efficiency, and cost-effectiveness.

How Are Technologies Like AI, Sensors, and Connectivity Powering Autonomous Bus Development?

The development of autonomous buses is being driven by a convergence of cutting-edge technologies that allow these vehicles to navigate complex environments, make real-time decisions, and interact seamlessly with infrastructure and passengers. Central to this capability is the use of advanced driver-assistance systems (ADAS), which incorporate multiple sensor types including LiDAR, radar, ultrasonic sensors, GPS, and high-definition cameras. These sensors work in unison to create a comprehensive 360-degree view of the bus's surroundings, enabling it to detect obstacles, interpret traffic signals, and respond to dynamic road conditions. Artificial intelligence and deep learning algorithms process the vast amounts of data generated by these sensors, allowing the bus to recognize pedestrians, cyclists, and vehicles while predicting their behavior to avoid collisions. High-definition mapping and real-time updates via vehicle-to-everything (V2X) communication allow the bus to follow optimized routes, adapt to traffic changes, and cooperate with traffic lights and smart infrastructure systems. Cloud-based analytics and edge computing support these operations by providing computational power for route planning, diagnostics, and fleet coordination. Additionally, onboard systems are being developed to provide seamless interaction with passengers, offering features such as voice-activated assistance, automated boarding ramps, and AI-driven service updates. Continuous advancements in cybersecurity are also vital, ensuring that autonomous buses are resistant to hacking and can securely handle sensitive operational data. Together, these technologies form the backbone of autonomous bus functionality, enabling safe, reliable, and intelligent transportation that meets the demands of modern urban life.

Why Is Global Interest in Autonomous Buses Accelerating Across Public and Private Sectors?

Interest in autonomous buses is accelerating worldwide as both public transportation authorities and private mobility providers seek scalable, cost-effective, and sustainable solutions to meet the growing demands of urban mobility. Cities are under pressure to reduce carbon emissions, improve transportation equity, and manage increasing populations, making autonomous electric buses a compelling alternative to traditional diesel-powered fleets. Governments and municipalities are actively funding pilot programs, innovation hubs, and regulatory frameworks to test and validate autonomous bus operations. In Europe, countries like Sweden, Germany, and France are leading the charge with city-wide trials, while China is investing heavily in smart city initiatives that include large-scale autonomous bus deployments. In the United States, tech hubs and university campuses are piloting shuttle systems to demonstrate safety, cost savings, and efficiency improvements. Private sector players, including mobility startups, automotive OEMs, and tech giants, are entering the market through partnerships, acquisitions, and proprietary development programs to capitalize on the shift toward autonomous mass transit. The rise of Mobility-as-a-Service (MaaS) is also contributing to this growth, as integrated platforms increasingly favor flexible, on-demand transportation services that can adapt in real time. Autonomous buses offer an ideal fit for controlled environments such as business parks, airports, and tourist areas, where predefined routes and predictable traffic patterns simplify deployment. Moreover, the global shortage of qualified bus drivers is pushing transit agencies to consider automation as a long-term solution to staffing challenges. As successful trials lead to broader deployment, the appeal of autonomous buses is expanding beyond novelty into a serious contender for the future of public transport.

What Forces Are Driving the Rapid Growth of the Global Autonomous Bus Market?

The growth in the global autonomous bus market is being fueled by a combination of technological innovation, regulatory support, environmental mandates, and changing consumer expectations for urban mobility. One of the most influential drivers is the global transition toward smart and sustainable cities, where autonomous vehicles are seen as key enablers of low-emission, high-efficiency transportation networks. Electric drivetrains are commonly integrated with autonomous bus platforms, aligning with government policies aimed at reducing greenhouse gas emissions and promoting cleaner public transit options. In parallel, advances in artificial intelligence, sensor miniaturization, 5G connectivity, and real-time data processing are making autonomous bus systems more reliable, scalable, and affordable. Regulatory agencies are playing a vital role by establishing safety protocols, issuing permits for trials, and funding research initiatives that de-risk early deployment. Additionally, the evolving urban demographic-marked by aging populations, tech-savvy youth, and rising demand for accessibility-is creating pressure on transportation systems to become more inclusive and automated. The integration of autonomous buses into broader MaaS ecosystems, along with the development of dedicated autonomous lanes and smart traffic control systems, is further facilitating their adoption. Fleet operators and municipalities are also recognizing the long-term cost advantages, as autonomous buses reduce labor expenses, fuel costs, and maintenance frequency due to electric powertrains and predictive diagnostics. Strategic collaborations between tech companies, OEMs, universities, and government bodies are accelerating innovation and deployment, turning autonomous buses from experimental concepts into commercially viable solutions. As pilot programs transition into permanent infrastructure, and consumer trust in autonomous systems grows, the global autonomous bus market is poised for significant and sustained expansion.

SCOPE OF STUDY:

The report analyzes the Autonomous Bus market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Type (Semi-Autonomous Bus, Fully-Autonomous Bus); Propulsion (Diesel Propulsion, Electric Propulsion, Hybrid Propulsion); End-Use (Public Transportation End-Use, Private Shuttle Services End-Use, Logistics & Goods Transport End-Use)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 47 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â