¼¼°èÀÇ ÆÄ¼â ¼öó¸® ½ÃÀå
Fracking Water Treatment
»óǰÄÚµå : 1758773
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 06¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 275 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,106,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,320,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

ÆÄ¼â ¼öó¸® ¼¼°è ½ÃÀåÀº 2030³â±îÁö 70¾ï ´Þ·¯¿¡ À̸¦ Àü¸Á

2024³â¿¡ 57¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ÆÄ¼â ¼öó¸® ¼¼°è ½ÃÀåÀº 2024-2030³â°£ CAGR 3.6%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 70¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ Ä¡·á£¦ÀçȰ¿ë ¿ëµµ´Â CAGR 4.2%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á±îÁö 51¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Deep Well Injection ¿ëµµ ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£Áß CAGR 2.0%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 15¾ï ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 6.8%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ÆÄ¼â ¼öó¸® ½ÃÀåÀº 2024³â 15¾ï ´Þ·¯¿¡ À̸¥ °ÍÀ¸·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 14¾ï ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 6.8%¸¦ º¸ÀÏ Àü¸ÁÀÔ´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î¼­´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 1.4%¿Í 2.8%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 2.1%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ÆÄ¼â ¼öó¸® ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ¼ºÀå¿äÀÎ Á¤¸®

¼ö󸮰¡ ¼ö¾ÐÆÄ¼â »ç¾÷ÀÇ Áß½ÉÀÌ µÇ´Â ÀÌÀ¯´Â ¹«¾ùÀϱî?

ÆÄ¼â ¼ö󸮴 ¼ÎÀϰ¡½º ¹× ŸÀÌÆ® ¿ÀÀÏ ÃßÃâÀÇ ¹°·® Áõ°¡·Î ÀÎÇØ ¼ö¾ÐÆÄ¼â »ýŰ迡 ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ¾Ò½À´Ï´Ù. ÇÑ ¹øÀÇ ¼ö¾ÐÆÄ¼â ÀÛ¾÷Àº ¼ö¹é¸¸ °¶·±ÀÇ ¹°À» ¼ÒºñÇϸç, ±× Áß ´ëºÎºÐÀº È­Çй°Áú, źȭ¼ö¼Ò, Á߱ݼÓ, ÀÚ¿¬ À¯·¡ ¹æ»ç¼º ¹°Áú·Î ¿À¿°µÈ ¿ª·ù¼ö ¶Ç´Â »ý»ê¼ö·Î ÁöÇ¥¸éÀ¸·Î µÇµ¹¾Æ¿É´Ï´Ù. ÀûÀýÇÑ Ã³¸®°¡ ÀÌ·ç¾îÁöÁö ¾ÊÀ¸¸é ÀÌ Æó¼ö´Â ȯ°æÀû, ±ÔÁ¦Àû, ¿î¿µÀû Ãø¸é¿¡¼­ Å« ¹®Á¦°¡ µË´Ï´Ù. µû¶ó¼­ È¿À²ÀûÀÎ ¼öó¸® ½Ã½ºÅÛÀº ¼®À¯ ¹× °¡½º ¾÷½ºÆ®¸² »ç¾÷¿¡¼­ ºñ¿ë °ü¸®¿Í Áö¼Ó°¡´ÉÇÑ ÀÚ¿ø °ü¸® ¸ðµÎ¿¡ ÇʼöÀûÀÎ ¿ä¼ÒÀÔ´Ï´Ù.

¼±ÇüÀûÀÎ ¹° »ç¿ë ¸ðµ¨¿¡¼­ Æó¼â ·çÇÁ, ÇöÀå ¹° ÀçȰ¿ëÀ¸·ÎÀÇ ÀüȯÀº °­·ÂÇÑ ÆÄ¼â ¼öó¸® ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. »ç¾÷ÀÚµéÀº ´ã¼ö Ãë¼ö·®À» ÁÙÀ̰í, Æó¼ö 󸮷®À» ÁÙÀ̸ç, °­È­µÇ´Â ȯ°æ ±âÁØÀ» ÁؼöÇϱâ À§ÇØ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù. ¿ì¹° ÇöÀå°ú Áö¿ª °ÅÁ¡¿¡ ¹èÄ¡µÈ ¼öó¸® ½Ã½ºÅÛÀº »ç¾÷ÀÚ°¡ ÈÄ¼Ó ÆÄ¼â ´Ü°è¿¡¼­ ó¸®µÈ ¹°À» Àç»ç¿ëÇÒ ¼ö ÀÖµµ·Ï ÇÏ¿© »ýÅÂÇÐÀû À§ÇèÀ» ÁÙÀ̸鼭 ¿î¿µ È¿À²À» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °æÁ¦Àû ¾Ð·Â°ú ±ÔÁ¦ ¾Ð·ÂÀÇ ¼ö·ÅÀ¸·Î ¼ö󸮴 ¼±ÅÃÀû ¼­ºñ½º°¡ ¾Æ´Ñ Àü·«Àû Çʼö ¿ä¼Ò·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù.

ÆÄ¼â ¼öó¸® È¿À²°ú È®À强À» ³ôÀÌ´Â ±â¼úÀ̶õ?

ÆÄ¼â ¼ö󸮿¡´Â ƯÁ¤ ¿À¿°¹°Áú ¹× Àç»ç¿ë ¸ñÇ¥¿¡ µû¶ó °¢ ´Ü°è¸¦ Á¶Á¤ÇÏ¿© ´Ù¾çÇÑ ±â¼úÀÌ È°¿ëµÇ°í ÀÖ½À´Ï´Ù. ħÀüÁ¶³ª ÇÏÀ̵å·Î »çÀÌŬ·Ð°ú °°Àº 1Â÷ ó¸® ½Ã½ºÅÛÀº ºÎÀ¯ °íÇü¹°À» Á¦°ÅÇϰí, È­ÇÐÀû 󸮴 pH Á¶Àý, ½ºÄÉÀÏ ¾ïÁ¦, ¿¡¸ÖÁ¯ ÆÄ±«¿¡ µµ¿òÀÌ µË´Ï´Ù. 2Â÷ 󸮿¡´Â ¿ëÁ¸ °ø±â ºÎ¾ç, ¸· ¿©°ú(ÇÑ¿Ü ¿©°ú ¹× ³ª³ë ¿©°ú Æ÷ÇÔ), À¯±â È­ÇÕ¹° ¹× »ì»ý¹°Á¦¸¦ ºÐÇØÇÏ´Â °íµµÀÇ »êÈ­ ó¸® µîÀÌ Æ÷ÇԵǴ °æ¿ì°¡ ¸¹½À´Ï´Ù. ¿ª»ïÅõ ¹× ¿­ Áõ·ù¿Í °°Àº 3Â÷ ó¸® ½Ã½ºÅÛÀº °í¼øµµ ¹°ÀÌ ÇÊ¿äÇϰųª Á¦·Î ¾×ü ¹èÃâ(ZLD)À» ÃæÁ·ÇÏ´Â °æ¿ì¿¡ äÅõ˴ϴÙ.

À̵¿½Ä ó¸® ÀåÄ¡, ¸ðµâ½Ä ¼³°è ¹× ÀÚµ¿ °øÁ¤ Á¦¾îÀÇ Çõ½ÅÀ» ÅëÇØ ¼öó¸® ½Ã½ºÅÛÀº ´õ¿í È®Àå °¡´ÉÇÏ°í ºñ¿ë È¿À²ÀûÀ̸ç ÇöÀå Á¶°Ç¿¡ ÀûÇÕÇÕ´Ï´Ù. ½Ç½Ã°£ ¼¾¼­, AI ±â¹Ý ¼öÁú ¸ð´ÏÅ͸µ, µðÁöÅÐ Æ®À©À» »ç¿ëÇÏ¿© ¿î¿µÀÚ´Â ¾àǰ Åõ¿© ¹× ¸· ¼¼Ã´ Áֱ⸦ ÃÖÀûÈ­ÇÏ°í °¡µ¿ ÁßÁö ½Ã°£°ú ¿î¿µ ºñ¿ëÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. °í±Þ Àü±â ÀÀ°í, À̿ ±³È¯ ½Ã½ºÅÛ, ¼¼¶ó¹Í ¸âºê·¹ÀÎÀº ¸Å¿ì º¯µ¿ÀÌ ½ÉÇÑ È帧 ¿ª·ù ¼ººÐÀ» ó¸®ÇÒ ¶§ °ß°í¼ºÀ¸·Î ÀÎÇØ Àα⸦ ¾ò°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú ¹ßÀüÀ¸·Î ÆÄ¼â ¼öó¸®ÀÇ ½Å·Ú¼ºÀÌ Çâ»óµÇ¾î ÁÖ¿ä »ó¾÷¿ë ±¸¼º ¿ä¼Ò·Î äÅõǰí ÀÖ½À´Ï´Ù.

ºÐÇØ 󸮼öÀÇ ¹üÀ§¸¦ È®´ëÇÏ´Â ½ÃÀå°ú ÀÌÇØ°ü°èÀÚ´Â ´©±¸Àΰ¡?

ÆÄ¼â ¼ö󸮴 ºñÀüÅë ¼®À¯ ¹× °¡½º °³¹ßÀÌ È°¹ßÇÑ Áö¿ª, ƯÈ÷ ¹° ºÎÁ·°ú ±ÔÁ¦°¡ ½ÉÇÑ È¯°æ¿¡¼­ °¡Àå µÎµå·¯Áö°Ô ³ªÅ¸³³´Ï´Ù. ºÏ¹Ì°¡ ±× Áß½ÉÀ̸ç, ¹Ì±¹ÀÇ Permian, Marcellus, Eagle Ford¿Í °°Àº ¼ÎÀÏ ºÐÁö¿¡¼­´Â Áõ°¡ÇÏ´Â Æó¼ö·®À» °ü¸®Çϱâ À§ÇØ Ã³¸® ¹× ÀçȰ¿ë ÀÎÇÁ¶ó¸¦ Àû±ØÀûÀ¸·Î µµÀÔÇϰí ÀÖ½À´Ï´Ù. ij³ª´Ù¿¡¼­´Â ¸óÆ®´ÏÃþ°ú µà¹ö³×ÀÌÃþÀÌ ¿Â»çÀÌÆ® ó¸®ÀÇ ÁÖ¿ä µµÀÔÁö°¡ µÇ¾ú½À´Ï´Ù. ºÏ¹Ì ÀÌ¿Ü Áö¿ª¿¡¼­´Â ¾Æ¸£ÇîÆ¼³ª, Áß±¹, Áßµ¿ ÀϺΠÁö¿ªÀÌ ºñÀüÅëÀû ½ÃÃß°¡ ½ÉÈ­µÇ°í ¹° ºÎÁ· ¹®Á¦°¡ ½É°¢ÇØÁö¸é¼­ »õ·Î¿î ¼ºÀå Áß½ÉÁö°¡ µÇ°í ÀÖ½À´Ï´Ù.

ÁÖ¿ä ÀÌÇØ°ü°èÀÚ´Â À¯Àü ¼­ºñ½º ȸ»ç, ¼öó¸® ±â¼ú Á¦°ø¾÷ü, ȯ°æ ¿£Áö´Ï¾î¸µ ȸ»ç, Áö¿ª ¹° Çãºê¸¦ °ü¸®ÇÏ´Â ÀÎÇÁ¶ó »ç¾÷ÀÚ¸¦ Æ÷ÇÔÇÕ´Ï´Ù. Á¾ÇÕÀûÀÎ ¼­ºñ½º Á¦°øÀ» º¸ÀåÇϱâ À§ÇØ Å½»ç ȸ»ç¿Í ¼öó¸® Àü¹® ¾÷ü¿ÍÀÇ ÇÕÀÛÅõÀÚ°¡ Á¡Á¡ ´õ º¸ÆíÈ­µÇ°í ÀÖ½À´Ï´Ù. ÀÌ¿Í ÇÔ²² Á¤ºÎ¿Í ȯ°æ ±ÔÁ¦ ´ç±¹Àº ±íÀº ¿ì¹°·ÎÀÇ ¾ÐÀÔÀ» Á¦ÇÑÇϰí, ó¸® ºñ¿ëÀ» ÀλóÇϰí, ó¸® Àμ¾Æ¼ºê¸¦ ºÎ¿©Çϰí ÀÖ½À´Ï´Ù. ÀϺΠ½ÃÀå¿¡¼­´Â ó¸®µÈ ÆÄ¼â¼ö´Â ¾ö°ÝÇÑ Á¤È­ ±âÁØÀ» ÃæÁ·ÇÏ¸é ³ó¾÷¿ë¼ö³ª °ø¾÷¿ë¼ö·Î Àç»ç¿ëÇÒ ¼ö ÀÖ´Â °ÍÀ¸·Î Æò°¡¹Þ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Àû¿ë ¹üÀ§ÀÇ È®´ë·Î ÀÎÇØ ¼ö¾ÐÆÄ¼âÀÇ ¼ö¸íÁֱ⿡¼­ 󸮼öÀÇ °æÁ¦Àû °¡Ä¡°¡ È®´ëµÇ°í ÀÖ½À´Ï´Ù.

ÆÄ¼â ¼öó¸® ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ÁÖ¿ä ¿äÀÎÀº?

ÆÄ¼â ¼öó¸® ½ÃÀåÀÇ ¼ºÀåÀº ȯ°æÀû Á¦¾à, »ç¾÷Àû Çʿ伺, ±â¼ú Çõ½Å°ú °ü·ÃµÈ ¸î °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ƯÈ÷, ¼ÎÀÏ ¿î¿µ¿¡¼­ ´ã¼ö ¼Òºñ¸¦ ÁÙÀÌ°í Æó¼ö¸¦ Ã¥ÀÓ°¨ ÀÖ°Ô °ü¸®ÇØ¾ß ÇÑ´Ù´Â ¾Ð·Â, ƯÈ÷ °ÇÁ¶ÇÑ Áö¿ª°ú Æó±â ±ÔÁ¦°¡ ¾ö°ÝÇÑ °üÇұǿ¡¼­ °­È­µÇ°í ÀÖ´Â Æó¼ö °ü¸®ÀÇ ¾Ð¹ÚÀÌ ±× Áß ÇϳªÀÔ´Ï´Ù. ¼ö¾ÐÆÄ¼â¿¡ ´ëÇÑ È¯°æÀû °¨½Ã°¡ °­È­µÊ¿¡ µû¶ó, ±â¾÷µéÀº ESG ÄÄÇöóÀ̾𽺠¹× ¸®½ºÅ© ¿ÏÈ­ Àü·«ÀÇ ÀÏȯÀ¸·Î ÷´Ü ¼öó¸® ½Ã½ºÅÛÀ» äÅÃÇϰí ÀÖ½À´Ï´Ù.

µ¿½Ã¿¡, ¹° ȹµæ ¹× Æó±â ºñ¿ëÀÇ »ó½ÂÀ¸·Î ÀÎÇØ »ç¾÷ÀÚµéÀº Àå±âÀûÀÎ ºñ¿ë Àý°¨°ú ¹°·ù È¿À²¼ºÀ» ½ÇÇöÇÏ´Â ÀçȰ¿ë ±â¼ú¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. À̵¿½Ä ¹× ¸ðµâ½Ä ó¸® ½Ã½ºÅÛÀÇ ÁøÈ­´Â ƯÈ÷ ¿©·¯ °³ÀÇ ¿ì¹° ÆÐµå¸¦ ±ÙÁ¢ÇÏ°Ô °ü¸®ÇÏ´Â »ç¾÷Àڵ鿡°Ô ºÐ»êµÈ ÇöÀå ¹° °ü¸®¸¦ °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù. ½Ç½Ã°£ ¼öÁú ºÐ¼® ¹× ¿¹Ãø ½Ã½ºÅÛ Áø´ÜÀ» À§ÇÑ µðÁöÅÐ Ç÷§ÆûÀÇ ÅëÇÕÀ¸·Î ½Ã½ºÅÛÀÇ È¿À²¼º°ú ½Å·Ú¼ºÀÌ ´õ¿í Çâ»óµÇ°í ÀÖ½À´Ï´Ù. ¼¼°è ¼ÎÀÏ »ê¾÷ÀÌ È®´ëµÇ°í ȯ°æ¿¡ ´ëÇÑ Ã¥ÀÓ°¨ÀÌ ³ô¾ÆÁü¿¡ µû¶ó, ÀÌ·¯ÇÑ ÃßÁø·ÂÀº ÆÄ¼â ¼öó¸® ¼Ö·ç¼ÇÀÇ Áö¼ÓÀûÀÎ ¼ºÀå°ú Çõ½ÅÀ» µÞ¹ÞħÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ºÎ¹®

¿ëµµ(Ä¡·á ¹× ÀçȰ¿ë ¿ëµµ, Deep Well Injection ¿ëµµ), ÃÖÁ¾ ¿ëµµ(»ó¾÷¿ë ÃÖÁ¾ ¿ëµµ, »ê¾÷¿ë ÃÖÁ¾ ¿ëµµ, ÁÖÅÿë ÃÖÁ¾ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ ¿¹(ÃÑ 41°³»ç)

AI ÅëÇÕ

¿ì¸®´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ¼­, ½ÃÀå°ú °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Fracking Water Treatment Market to Reach US$7.0 Billion by 2030

The global market for Fracking Water Treatment estimated at US$5.7 Billion in the year 2024, is expected to reach US$7.0 Billion by 2030, growing at a CAGR of 3.6% over the analysis period 2024-2030. Treatment & Recycle Application, one of the segments analyzed in the report, is expected to record a 4.2% CAGR and reach US$5.1 Billion by the end of the analysis period. Growth in the Deep Well Injection Application segment is estimated at 2.0% CAGR over the analysis period.

The U.S. Market is Estimated at US$1.5 Billion While China is Forecast to Grow at 6.8% CAGR

The Fracking Water Treatment market in the U.S. is estimated at US$1.5 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$1.4 Billion by the year 2030 trailing a CAGR of 6.8% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 1.4% and 2.8% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 2.1% CAGR.

Global Fracking Water Treatment Market - Key Trends & Drivers Summarized

Why Is Water Treatment Becoming Central to Hydraulic Fracturing Operations?

Fracking water treatment has become an essential part of the hydraulic fracturing ecosystem, driven by the increasing water intensity of shale gas and tight oil extraction. Each fracking operation can consume millions of gallons of water, much of which returns to the surface as flowback and produced water, contaminated with chemicals, hydrocarbons, heavy metals, and naturally occurring radioactive materials. Without proper treatment, this wastewater poses significant environmental, regulatory, and operational challenges. As such, efficient water treatment systems are now integral to both cost control and sustainable resource management in upstream oil and gas operations.

The shift from linear water usage models toward closed-loop, on-site water recycling is fueling demand for robust fracking water treatment technologies. Operators are looking to reduce freshwater withdrawals, cut down on wastewater disposal volumes, and comply with tightening environmental standards. Water treatment systems deployed at well sites or regional hubs enable operators to reuse treated water in subsequent fracturing stages, improving operational efficiency while mitigating ecological risks. This convergence of economic and regulatory pressure is making water treatment a strategic necessity rather than an optional service.

What Technologies Are Advancing Fracking Water Treatment Efficiency and Scalability?

A wide spectrum of technologies is being utilized to treat fracking wastewater, with each stage tailored to specific contaminants and reuse goals. Primary treatment systems such as settling tanks and hydrocyclones remove suspended solids, while chemical treatments help with pH adjustment, scaling inhibition, and emulsion breaking. Secondary treatment often includes dissolved air flotation, membrane filtration (including ultrafiltration and nanofiltration), and advanced oxidation processes that break down organic compounds and biocides. Tertiary systems such as reverse osmosis and thermal distillation are employed for high-purity water needs or zero liquid discharge (ZLD) compliance.

Innovations in mobile treatment units, modular design, and automated process controls are making water treatment systems more scalable, cost-effective, and suitable for field conditions. The use of real-time sensors, AI-based water quality monitoring, and digital twins allows operators to optimize chemical dosing and membrane cleaning cycles, reducing downtime and operating costs. Advanced electrocoagulation, ion exchange systems, and ceramic membranes are gaining traction for their robustness in handling highly variable flowback compositions. These technological advancements are elevating the reliability and adoption of fracking water treatment as a mainstream operational component.

Which Markets and Stakeholders Are Expanding the Scope of Treated Water in Fracking?

Fracking water treatment is most prominent in regions with extensive unconventional oil and gas activity, particularly in water-stressed or highly regulated environments. North America remains the epicenter, with shale basins in the U.S. such as the Permian, Marcellus, and Eagle Ford actively deploying treatment and recycling infrastructure to manage growing wastewater volumes. In Canada, the Montney and Duvernay formations are also leading adopters of on-site treatment. Outside of North America, regions such as Argentina, China, and parts of the Middle East are emerging growth centers as unconventional drilling intensifies and water scarcity challenges mount.

Key stakeholders include oilfield service companies, water treatment technology providers, environmental engineering firms, and infrastructure operators managing regional water hubs. Joint ventures between exploration companies and water treatment specialists are increasingly common to ensure integrated service delivery. In parallel, governments and environmental regulators are setting limits on deep well injection, increasing the cost of disposal and incentivizing treatment. In some markets, treated frack water is even being evaluated for agricultural or industrial reuse, provided stringent purification standards are met. This growing scope of application is expanding the economic value of treated water in the fracking lifecycle.

What Are the Key Factors Driving Growth in the Fracking Water Treatment Market?

The growth in the fracking water treatment market is driven by several factors related to environmental constraints, operational imperatives, and technological innovation. Chief among them is the intensifying pressure to reduce freshwater consumption and manage wastewater responsibly in shale operations, particularly in arid regions and jurisdictions with strict disposal regulations. As environmental scrutiny of hydraulic fracturing escalates, companies are adopting advanced water treatment systems as part of their ESG compliance and risk mitigation strategies.

Simultaneously, the rising cost of water acquisition and disposal is pushing operators to invest in recycling technologies that offer long-term cost savings and logistical efficiency. The evolution of mobile and modular treatment systems is enabling decentralized, on-site water management, particularly for operators managing multiple well pads in close proximity. Increasing integration of digital platforms for real-time water quality analytics and predictive system diagnostics is further enhancing system efficiency and reliability. As the global shale industry expands and environmental accountability grows, these drivers are expected to underpin sustained growth and innovation in fracking water treatment solutions.

SCOPE OF STUDY:

The report analyzes the Fracking Water Treatment market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Application (Treatment & Recycle Application, Deep Well Injection Application); End-Use (Commercial End-Use, Industrial End-Use, Residential End-Use)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 41 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â