¼¼°èÀÇ »ýüÈí¼ö¼º Æú¸®¸Ó ½ÃÀå
Bioresorbable Polymers
»óǰÄÚµå : 1758040
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 06¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 271 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,101,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,303,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ »ýüÈí¼ö¼º Æú¸®¸Ó ½ÃÀåÀº 2030³â±îÁö 38¾ï ´Þ·¯¿¡ µµ´Þ

2024³â¿¡ 18¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ »ýüÈí¼ö¼º Æú¸®¸Ó ½ÃÀåÀº 2024-2030³â¿¡ CAGR 12.9%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 38¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ Agro-Polymers À¯ÇüÀº CAGR 14.5%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 26¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¹ÙÀÌ¿À Æú¸®¿¡½ºÅ׸£ À¯Çü ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ Áß CAGR 9.6%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº ÃßÁ¤ 4¾ï 9,740¸¸ ´Þ·¯, Áß±¹Àº CAGR 17.6%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ »ýüÈí¼ö¼º Æú¸®¸Ó ½ÃÀåÀº 2024³â¿¡ 4¾ï 9,740¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 8¾ï 980¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³âÀÇ CAGRÀº 17.6%ÀÔ´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 9.2%¿Í 11.6%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 10.3%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ »ýüÈí¼ö¼º Æú¸®¸Ó ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

»ýüÈí¼ö¼º Æú¸®¸Ó°¡ ¹ÙÀÌ¿À¸ÞµðÄà ¹× »ê¾÷ ¿ëµµ¿¡¼­ ºÎ»óÇÏ´Â ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

»ýüÈí¼ö¼º °íºÐÀÚ´Â ±â´ÉÀû ¸ñÀûÀ» ´Þ¼ºÇÑ ÈÄ Ã¼³» ¹× ȯ°æ ³»¿¡¼­ ¹«ÇØÇÏ°Ô ºÐÇØµÇ´Â µ¶Æ¯ÇÑ ´É·ÂÀ¸·Î ÀÎÇØ ÀÇ·á ¹× »ê¾÷ ºÐ¾ß¿¡¼­ Áß¿äÇÑ Àç·á·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Æú¸®¸Ó´Â ÀÚ¿¬ÀÇ »ý¸®ÇÐÀû °úÁ¤°ú ȯ°æÀû °úÁ¤¿¡ ÀÇÇØ ¹°°ú ÀÌ»êȭź¼Ò¿Í °°Àº ¹«ÇØÇÑ ºÎ»ê¹°·Î ºÐÇØµÇ¾î ¾à¹°Àü´Þ, Á¶Á÷ °øÇÐ, ¼ö¼ú¿ë ÀÓÇöõÆ®, Àӽà ÀÇ·á±â±â µîÀÇ ºÐ¾ß¿¡ Çõ¸íÀ» ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù. ÇコÄÉ¾î ºÐ¾ß¿¡¼­ »ýüÈí¼ö¼º Æú¸®¸Ó´Â ºÀÇÕ»ç, ½ºÅÙÆ®, Á¤Çü¿Ü°ú¿ë °íÁ¤ Àåºñ, ºñ°è µî¿¡ ³Î¸® »ç¿ëµÇ¾î 2Â÷ Á¦°Å ¼ö¼úÀÇ Çʿ伺À» ¾ø¾Ö°í ȯÀÚÀÇ ¿Ü»ó, ȸº¹ ½Ã°£ ¹× Àüü ÀÇ·á ºñ¿ëÀ» ÃÖ¼ÒÈ­ÇÕ´Ï´Ù. ÀÌ Àç·á´Â ¼ºÀå°ú Ä¡À¯¿¡ µû¶ó Àç·áÀÇ ÀûÀÀ°ú ÃÖÁ¾ ¼Ò½ÇÀÌ ÇÊ¿äÇÑ ¼Ò¾Æ ÀÇ·á ¹× ¿Ü»ó »ç·Ê¿¡¼­ ƯÈ÷ °¡Ä¡°¡ ÀÖ½À´Ï´Ù. ÀÇ·á ºÐ¾ß ¿Ü¿¡µµ Æ÷Àå, ³ó¾÷, ȯ°æ º¹¿ø µî ´Ù¾çÇÑ ºÐ¾ß¿¡ Àû¿ëµÇ°í ÀÖÀ¸¸ç, »ýºÐÇØ¼ºÀ̶ó´Â Ư¼ºÀ¸·Î ÀÎÇØ ³­ºÐÇØ¼º ÇÃ¶ó½ºÆ½¿¡ ´ëÇÑ ´ë¾ÈÀÌ µÇ°í ÀÖ½À´Ï´Ù. Áö¼Ó°¡´É¼ºÀÌ Àü ¼¼°è¿¡¼­ ½Ã±ÞÇÑ °úÁ¦·Î ¶°¿À¸£¸é¼­ ±ÔÁ¦ ¾Ð·Â°ú ģȯ°æ Á¦Ç°¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ¿ä±¸¿¡ ºÎÀÀÇϱâ À§ÇØ »ê¾÷°è´Â Á¡Á¡ ´õ »ýüÈí¼ö¼º Àç·á·Î ´«À» µ¹¸®°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ Àç»ýÇÑ ÀÚ¿ø¿¡¼­ ÃßÃâÇϰųª ÇÕ¼ºÀ¸·Î ¼³°èµÈ ÀÌ·¯ÇÑ Æú¸®¸ÓÀÇ ¹ü¿ë¼ºÀº °­µµ, À¯¿¬¼º, ºÐÇØ ¼Óµµ, ÀûÇÕ¼º µîÀÇ Æ¯¼ºÀ» ´Ù¾çÇÑ ÃÖÁ¾ ¿ëµµÀÇ ¿ä±¸»çÇ׿¡ ¸Â°Ô Á¶Á¤ÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ÀÌ·¯ÇÑ ÀûÀÀ¼ºÀº »ýüÈí¼ö¼º Æú¸®¸Ó¸¦ ÀÇ·áÀû °æÀ̷οò»Ó¸¸ ¾Æ´Ï¶ó ¿À´Ã³¯ Á¦Á¶ ¹× Àç·á °úÇÐÀÇ °¡Àå ½Ã±ÞÇÑ È¯°æ ¹× ¹°·ù ¹®Á¦¿¡ ´ëÇÑ Àü·«Àû ÇØ°áÃ¥ÀÌ µÉ ¼ö ÀÖ°Ô ÇÕ´Ï´Ù.

È­ÇÐ ¹× ¿£Áö´Ï¾î¸µ Çõ½ÅÀº »ýüÈí¼ö¼º Æú¸®¸ÓÀÇ ´É·ÂÀ» ¾î¶»°Ô °¡¼ÓÈ­Çϰí Àִ°¡?

°íºÐÀÚ È­ÇÐ, Àç·á°øÇÐ ¹× ¹ÙÀÌ¿À¸ÞµðÄà µðÀÚÀÎÀÇ ÃÖ÷´Ü ¹ßÀüÀ¸·Î ÀÎÇØ »ýüÈí¼ö¼º Æú¸®¸ÓÀÇ ´É·ÂÀÌ ºñ¾àÀûÀ¸·Î È®´ëµÇ°í ÀÖ½À´Ï´Ù. ¿¬±¸°³¹ßÀÚµéÀº ÇöÀç Æ¯Á¤ »ý¹°ÇÐÀû ¶Ç´Â ±â´ÉÀû ŸÀÓ¶óÀÎ(¿ëµµ¿¡ µû¶ó ¼öÀÏ¿¡¼­ ¼ö°³¿ù±îÁö)¿¡ ¸ÂÃß¾î ¼¼¹ÐÇÏ°Ô Á¶Á¤ÇÒ ¼ö ÀÖ´Â Á¦¾îµÈ ºÐÇØ ÇÁ·ÎÆÄÀÏÀ» °¡Áø Â÷¼¼´ë Æú¸®¸Ó¸¦ °³¹ßÇϰí ÀÖ½À´Ï´Ù. °øÁßÇÕ ±â¼úÀÇ ¹ßÀüÀ¸·Î Æú¸®À¯»ê(PLA), Æú¸®±Û¸®ÄÝ»ê(PGA), Æú¸®Ä«ÇÁ·Î¶ôÅæ(PCL), Æú¸®ÇÏÀ̵å·Ï½Ã¾ËÄ«³ë¿¡ÀÌÆ®(PHA) µîÀÇ ´Ü·®Ã¼¸¦ ºí·»µùÇÏ¿© ±â°èÀû °­µµ, À¯¿¬¼º, Ä£¼ö¼º, »ý¸®È°¼ºÀ» ÃÖÀûÈ­ÇÑ ¸ÂÃãÇü Æú¸®¸Ó¸¦ ¸¸µé ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¿Âµµ, pH, È¿¼Ò Ȱ¼º µîÀÇ Àڱؿ¡ ¹ÝÀÀÇÏ´Â ½º¸¶Æ® Æú¸®¸Óµµ ¿¬±¸µÇ°í ÀÖÀ¸¸ç, ÇÊ¿äÇÒ ¶§ ÇÊ¿äÇÑ °÷¿¡ Á¤È®ÇÏ°Ô Ä¡·áÁ¦¸¦ ¹æÃâÇÏ´Â ¾à¹°Àü´Þ ½Ã½ºÅÛÀÌ °¡´ÉÇØÁý´Ï´Ù. ÀÇ·á¿ëÀ¸·Î´Â 3D ÇÁ¸°ÆÃ ±â¼úÀÌ »ýüÈí¼ö¼º °íºÐÀÚ¿Í ÇÔ²² »ç¿ëµÇ¾î ȯÀÚ ¸ÂÃãÇü ÀÓÇöõÆ®³ª Á¶Á÷ Àç»ýÀ» À§ÇÑ ¹ßÆÇÀÌ ¸¸µé¾îÁö°í ÀÖ½À´Ï´Ù. Àü±â ¹æ»ç ¹× ¹Ì¼¼ °¡°ø ±â¼úÀº Ç¥¸é ±¸Á¶¸¦ °­È­ÇÏ¿© ´õ ³ªÀº ¼¼Æ÷ Á¢Âø ¹× Á¶Á÷ ÅëÇÕÀ» ÃËÁøÇÕ´Ï´Ù. ü¿Ü¿¡¼­´Â Çʸ§ ¾ÐÃâ ¹× »çÃ⼺ÇüÀÇ Çõ½ÅÀ¸·Î »ýüÈí¼ö¼º Æ÷ÀåÀç¿Í ³ó¾÷¿ë Á¦Ç°ÀÌ ±âÁ¸ ÇÃ¶ó½ºÆ½¿¡ ºñÇØ °æÀï·ÂÀ» °®Ãâ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ Àç»ýÇÑ ¿ø·á·ÎºÎÅÍ ÀÌ·¯ÇÑ Æú¸®¸Ó¸¦ ÇÕ¼ºÇÏ´Â ±×¸° Äɹ̽ºÆ®¸®(Green Chemistry) Á¢±Ù¹ýÀÌ »ç¿ëµÇ¾î Á¦Á¶ °øÁ¤ ÀÚüÀÇ È¯°æÀû Áö¼Ó°¡´É¼ºÀÌ Çâ»óµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀû µµ¾àÀ» ÅëÇØ »ýÈí¼ö¼º Æú¸®¸Ó´Â Æ´»õ »ý¹°ÀÇÇÐ Åø¿¡¼­ ¼º´É, ºñ¿ë È¿À²¼º, »ýÅÂÇÐÀû ¾ÈÀü¼º Ãø¸é¿¡¼­ ±âÁ¸ Æú¸®¸Ó¸¦ ´ëüÇÒ ¼ö ÀÖ´Â È®Àå °¡´ÉÇÑ ´Ù±â´É Àç·á·Î ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ º¯¸ðÇϰí ÀÖ½À´Ï´Ù.

»ýÈí¼ö¼º Æú¸®¸ÓÀÇ Ã¤ÅÃÀ» ÃËÁøÇÏ´Â »ê¾÷°ú Áö¿ªÀº?

»ýüÈí¼ö¼º Æú¸®¸ÓÀÇ Ã¤ÅÃÀº ´Ù¾çÇÑ »ê¾÷°ú Áö¿ª¿¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖÀ¸¸ç, °¢ »ê¾÷Àº °íÀ¯ÇÑ ±ÔÁ¦, °æÁ¦ ¹× »çȸÀû ¿äÀο¡ ÀÇÇØ µ¿±â¸¦ ºÎ¿©¹Þ°í ÀÖ½À´Ï´Ù. ÀÇ·á ¹× ÇコÄÉ¾î ºÐ¾ß´Â ¿Ü°ú¿ë ºÀÇÕ»ç, Á¤Çü¿Ü°ú¿ë ±â±â, ½ÉÇ÷°ü¿ë ÀÓÇöõÆ®, ¾àÁ¦¿ëÃ⠽ýºÅÛ µî¿¡ ±¤¹üÀ§ÇÏ°Ô »ç¿ëµÇ°í ÀÖÀ¸¸ç, ¿©ÀüÈ÷ ÁÖ¿ä °ßÀÎÂ÷ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. Àúħ½ÀÀûÀ̰í ȯÀÚ Ä£È­ÀûÀÌ¸ç ºñ¿ë È¿À²ÀûÀÎ ÀÇ·á ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä·Î ÀÎÇØ »ýüÈí¼ö¼º Àç·áÀÇ »ç¿ëÀÌ ±ÞÁõÇϰí ÀÖÀ¸¸ç, ƯÈ÷ ºÏ¹Ì¿Í À¯·´¿¡¼­´Â FDA¿Í EMAÀÇ ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©°¡ »ýü ÀûÇÕ¼º ÀåºñÀÇ ±â¼ú Çõ½ÅÀ» Àå·ÁÇϰí ÀÖ½À´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾ç, ƯÈ÷ Áß±¹, ÀϺ», Çѱ¹, Àεµ¿¡¼­´Â ÀÇ·á ÅõÀÚ Áõ°¡, Àα¸ °í·ÉÈ­, »ý¹°ÀÇÇÐ Çõ½ÅÀ» ÃËÁøÇÏ´Â Á¤ºÎÀÇ Àå·ÁÃ¥¿¡ ÈûÀÔ¾î ÀÇ·á±â±â ¹× ÀǾàǰ ºÎ¹®ÀÌ ºü¸£°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ÇコÄÉ¾î ¿Ü¿¡µµ Æ÷Àå ¾÷°è´Â ÀÏȸ¿ë ÇÃ¶ó½ºÆ½À» ´ëüÇÒ ¼ö ÀÖ´Â »ýÈí¼ö¼º Çʸ§°ú ÄÚÆÃ¿¡ ÁÖ¸ñÇϰí ÀÖÀ¸¸ç, ƯÈ÷ À¯·´¿¡¼­´Â ±âÁ¸ ÇÃ¶ó½ºÆ½ Á¦Ç°ÀÇ »ç¿ëÀÌ ±ÝÁöµÇ¸é¼­ ÅðºñÈ­ ¹× »ýºÐÇØ°¡ °¡´ÉÇÑ ´ëüǰ¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. ³ó¾÷ ºÐ¾ß¿¡¼­´Â »ý¹°Èí¼ö¼º ¸ÖÄ¡ Çʸ§°ú Á¾ÀÚ ÄÚÆÃÀÌ È¸¼ö °úÁ¤ ¾øÀÌ Åä¾ç ¿À¿°À» ÁÙÀ̰í ÀÛ¹° ¼öÈ®·®À» Çâ»ó½ÃÄÑ Àα⸦ ²ø°í ÀÖ½À´Ï´Ù. ¶óƾ¾Æ¸Þ¸®Ä«³ª µ¿³²¾Æ½Ã¾ÆÃ³·³ ÇÃ¶ó½ºÆ½ ¿À¿°ÀÌ »ýŰ迡 ½É°¢ÇÑ ¿µÇâÀ» ¹ÌÄ¡´Â Áö¿ª¿¡¼­´Â ȯ°æ ¹× ÇØ¾ç ¿ëµµ°¡ ºÎ»óÇϰí ÀÖ½À´Ï´Ù. Àü ¼¼°è¿¡¼­ Áö¼Ó°¡´É¼ºÀ» Áß½ÃÇÏ´Â ¼ÒºñÀÚµéÀÌ Áõ°¡ÇÏ°í ¾ö°ÝÇÑ È¯°æ ±ÔÁ¦°¡ °­È­µÇ¸é¼­ ¸ðµç ºÐ¾ßÀÇ Á¦Á¶¾÷üµéÀÌ ¼øÈ¯ °æÁ¦¸¦ Áö¿øÇÏ´Â ¼ÒÀ縦 äÅÃÇϰí ÀÖ½À´Ï´Ù. »ýüÈí¼ö¼º Æú¸®¸Ó°¡ ¹ü¿ë¼ºÀ» °è¼Ó ÀÔÁõÇÔ¿¡ µû¶ó ´õ ¸¹Àº »ê¾÷°ú Áö¿ª¿¡¼­ ÁÖ·ù »ý»ê¿¡ ÅëÇյǾî Çõ½Å°ú Áö¼Ó°¡´É¼ºÀÇ Ãʼ®ÀÌ µÇ°í ÀÖ½À´Ï´Ù.

¼¼°èÀÇ »ýüÈí¼ö¼º Æú¸®¸Ó ½ÃÀå ¼ºÀå ¿øµ¿·ÂÀº?

¼¼°è »ýüÈí¼ö¼º °íºÐÀÚ ½ÃÀåÀÇ ¼ºÀåÀº ÇコÄɾî Çõ½Å, ȯ°æÀû Áö¼Ó°¡´É¼º, ±â¼ú ¹ßÀü, ¹ý±Ô Áؼö µî ¿©·¯ °¡Áö µ¿ÇâÀÇ ¼ö·ÅÀÌ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀÇ·á ºÐ¾ß¿¡¼­´Â ÃÖ¼Ò Ä§½À ¼ö¼ú, ¸ÂÃãÇü ÀÇ·á, ÷´Ü ¾à¹°Àü´Þ ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼±È£µµ°¡ ³ô¾ÆÁö¸é¼­ Áß¿äÇÑ ±â´ÉÀ» ¼öÇàÇÏ°í ¾ÈÀüÇÏ°Ô ¼Ò¸êÇÒ ¼ö ÀÖ´Â »ýüÀûÇÕ¼º ºÐÇØ¼º Àç·á¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. Àå±âÀûÀÎ °á°ú¿Í °³ÀÔ ºñ¿ë Àý°¨À» ¿ì¼±½ÃÇÏ´Â °¡Ä¡ ±â¹Ý ÀÇ·á ¼­ºñ½º·ÎÀÇ ÀüȯÀº »ýüÈí¼ö¼º ¼Ö·ç¼ÇÀÇ ¸Å·ÂÀ» ´õ¿í ³ô¿©ÁÖ°í ÀÖ½À´Ï´Ù. Àü ¼¼°è ±ÔÁ¦ ´ç±¹Àº »ýÈí¼ö¼º ±â±â¿¡ ´ëÇÑ ½ÂÀÎ ÀýÂ÷¸¦ °£¼ÒÈ­Çϰí ÁöħÀ» Á¦°øÇÔÀ¸·Î½á Á¦Á¶¾÷ü¿¡ ¸íÈ®ÇÑ ½ÃÀå ÁøÀÔ °æ·Î¸¦ Á¦°øÇÕ´Ï´Ù. µ¿½Ã¿¡ ÇÃ¶ó½ºÆ½ Æó±â¹° ¹× ¹Ì¼¼ ÇÃ¶ó½ºÆ½ ¿À¿°¿¡ ´ëÇÑ È¯°æ ¹®Á¦°¡ ´ëµÎµÇ¸é¼­ »ýºÐÇØ¼º ¹× ÅðºñÈ­ °¡´ÉÇÑ ´ëüǰ¿¡ ´ëÇÑ ¼ÒºñÀÚ¿Í ¾÷°èÀÇ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ¸¹Àº ±¹°¡µéÀÌ ÇÃ¶ó½ºÆ½ »ç¿ëÀ» ±ÝÁöÇϰí Àû±ØÀûÀÎ Áö¼Ó°¡´É¼º ¸ñÇ¥¸¦ ¼³Á¤ÇÏ¿© ºñÀÇ·á ºÐ¾ßÀÇ »ýüÈí¼ö¼º Çõ½Å¿¡ À¯¸®ÇÑ Á¤Ã¥ ȯ°æÀ» Á¶¼ºÇϰí ÀÖ½À´Ï´Ù. °íºÐÀÚ ÇÕ¼º, Àç·á °úÇÐ ¹× Á¦Á¶ ±â¼ú ºÐ¾ßÀÇ ±â¼ú ¹ßÀüÀº Á¦Á¶ ºñ¿ëÀ» ³·Ãß°í ÀÌ·¯ÇÑ °íºÐÀÚÀÇ ±â´É ¹üÀ§¸¦ È®ÀåÇÏ¿© °¡°Ý°ú ¼º´É Ãø¸é¿¡¼­ ±âÁ¸ ÇÃ¶ó½ºÆ½°ú °æÀïÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ ¹ÙÀÌ¿À Á¦Á¶ ¹× ¹ÙÀÌ¿À °¡°ø ÀÎÇÁ¶óÀÇ È®ÀåÀ¸·Î Àç»ýÇÑ ÀÚ¿øÀ» ¿ø·á·Î ÇÏ´Â »ýüÈí¼ö¼º Æú¸®¸ÓÀÇ ´ë±Ô¸ð »ý»êÀÌ °¡´ÉÇØÁ® ¼¼°è °ø±Þ¸ÁÀÇ °­ÀÎÇÔÀ» Áö¿øÇϰí ÀÖ½À´Ï´Ù. º¥Ã³Ä³ÇÇÅÐÀÇ ³ôÀº °ü½É°ú »ý¸í°øÇÐ ±â¾÷, ¿¬±¸±â°ü, ´Ù±¹Àû ±â¾÷ °£ÀÇ Àü·«Àû ÆÄÆ®³Ê½ÊÀº »ó¾÷È­ ¹× ±Ô¸ðÈ­ ³ë·ÂÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÃËÁø¿äÀεéÀÌ °áÇÕÇÏ¿© »ýüÈí¼ö¼º Æú¸®¸Ó ½ÃÀå ±Ô¸ð¿Í Àü¸ÁÀÌ È®´ëµÉ »Ó¸¸ ¾Æ´Ï¶ó, º¸´Ù Áö¼Ó°¡´ÉÇϰí ȯÀÚ Áß½ÉÀÇ È¯°æ ģȭÀûÀÎ ¹Ì·¡¸¦ ÇâÇÑ ¼¼°è ÃßÁø¿¡ ÀÖÀ¸¸ç, Çõ½ÅÀûÀÎ ¼ÒÀç Ŭ·¡½º·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

ºÎ¹®

À¯Çü(Agro-PolymersÀ¯Çü, ¹ÙÀÌ¿À Æú¸®¿¡½ºÅ׸£ À¯Çü), ¾ÖÇø®ÄÉÀ̼Ç(Á¤Çü¿Ü°ú ¾ÖÇø®ÄÉÀ̼Ç, ¾à¹°Àü´Þ ¾ÖÇø®ÄÉÀ̼Ç, »ýºÐÇØ¼º µð¹ÙÀ̽º ¾ÖÇø®ÄÉÀ̼Ç, ±âŸ ¾ÖÇø®ÄÉÀ̼Ç)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹(ÃÑ 34»ç)

AI ÅëÇÕ

¿ì¸®´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI Åø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾ç ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÔ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Bioresorbable Polymers Market to Reach US$3.8 Billion by 2030

The global market for Bioresorbable Polymers estimated at US$1.8 Billion in the year 2024, is expected to reach US$3.8 Billion by 2030, growing at a CAGR of 12.9% over the analysis period 2024-2030. Agro-Polymers Type, one of the segments analyzed in the report, is expected to record a 14.5% CAGR and reach US$2.6 Billion by the end of the analysis period. Growth in the Bio-Polyesters Type segment is estimated at 9.6% CAGR over the analysis period.

The U.S. Market is Estimated at US$497.4 Million While China is Forecast to Grow at 17.6% CAGR

The Bioresorbable Polymers market in the U.S. is estimated at US$497.4 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$809.8 Million by the year 2030 trailing a CAGR of 17.6% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 9.2% and 11.6% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 10.3% CAGR.

Global Bioresorbable Polymers Market - Key Trends & Drivers Summarized

Why Are Bioresorbable Polymers Gaining Ground Across Biomedical and Industrial Applications?

Bioresorbable polymers are emerging as critical materials in the medical and industrial sectors due to their unique ability to degrade harmlessly within the body or the environment after serving their functional purpose. These polymers, which break down into non-toxic byproducts like water and carbon dioxide through natural physiological or environmental processes, are revolutionizing areas such as drug delivery, tissue engineering, surgical implants, and temporary medical devices. In the healthcare sector, bioresorbable polymers are extensively used in sutures, stents, orthopedic fixation devices, and scaffolds, where they eliminate the need for secondary removal surgeries-minimizing patient trauma, recovery time, and overall healthcare costs. The materials are particularly valuable in pediatric care and trauma cases, where growth or healing may necessitate material adaptation or eventual disappearance. Outside of medicine, their applications are expanding into packaging, agriculture, and environmental remediation, where their biodegradable nature offers an alternative to persistent plastics. As sustainability becomes a global imperative, industries are increasingly turning to bioresorbable materials to meet regulatory pressures and consumer demand for green products. Additionally, the versatility of these polymers-derived from renewable sources or designed synthetically-enables tailoring of properties such as strength, flexibility, degradation rate, and compatibility for diverse end-use requirements. This adaptability makes bioresorbable polymers not only a medical marvel but also a strategic solution to some of the most pressing environmental and logistical challenges in manufacturing and materials science today.

How Are Innovations in Chemistry and Engineering Accelerating the Capabilities of Bioresorbable Polymers?

The capabilities of bioresorbable polymers are being vastly expanded by cutting-edge advancements in polymer chemistry, materials engineering, and biomedical design. Researchers are now developing next-generation polymers with controlled degradation profiles that can be finely tuned to match specific biological or functional timelines-from a few days to several months-depending on the application. Advances in copolymerization techniques allow for the blending of monomers such as polylactic acid (PLA), polyglycolic acid (PGA), polycaprolactone (PCL), and polyhydroxyalkanoates (PHAs) to create custom polymers with optimized mechanical strength, flexibility, hydrophilicity, and bioactivity. Smart polymers that respond to stimuli like temperature, pH, or enzymatic activity are also being explored, enabling drug delivery systems that release therapeutics precisely when and where needed. In medical applications, 3D printing technologies are being used in tandem with bioresorbable polymers to create patient-specific implants and scaffolds for tissue regeneration. Electrospinning and microfabrication techniques are enhancing surface architecture, facilitating better cellular adhesion and tissue integration. Outside the body, innovations in film extrusion and injection molding are making bioresorbable packaging and agricultural products more competitive with conventional plastics. Furthermore, green chemistry approaches are being used to synthesize these polymers from renewable feedstocks, improving the environmental sustainability of the production process itself. These technological leaps are transforming bioresorbable polymers from niche biomedical tools into scalable, multifunctional materials that can compete with traditional polymers on performance, cost-efficiency, and ecological safety across multiple sectors.

Which Industries and Regions Are Driving the Adoption of Bioresorbable Polymers?

The adoption of bioresorbable polymers is being driven by a diverse range of industries and regions, each motivated by unique regulatory, economic, and societal factors. The medical and healthcare sector remains the dominant driver, with extensive use in surgical sutures, orthopedic devices, cardiovascular implants, and drug-eluting systems. The demand for minimally invasive, patient-friendly, and cost-effective medical solutions has led to a surge in the use of bioresorbable materials, particularly in North America and Europe, where regulatory frameworks from the FDA and EMA encourage innovation in biocompatible devices. Asia-Pacific, notably China, Japan, South Korea, and India, is witnessing rapid growth in the medical device and pharmaceutical sectors, supported by increasing healthcare investments, aging populations, and government incentives to promote biomedical innovation. Beyond healthcare, the packaging industry is turning to bioresorbable films and coatings as alternatives to single-use plastics, especially in Europe, where bans on conventional plastic products are spurring demand for compostable and biodegradable alternatives. In agriculture, bioresorbable mulch films and seed coatings are gaining popularity for reducing soil contamination and improving crop yield without the burden of retrieval. Environmental and marine applications are emerging in regions like Latin America and Southeast Asia, where plastic pollution has severe ecological consequences. The global rise in sustainability-conscious consumers, coupled with stringent environmental regulations, is pushing manufacturers across all sectors to adopt materials that support a circular economy. As bioresorbable polymers continue to prove their versatility, more industries and regions are integrating them into mainstream production, making them a cornerstone of innovation and sustainability.

What Is Fueling the Growth in the Global Bioresorbable Polymers Market?

The growth in the global bioresorbable polymers market is driven by several converging trends in healthcare innovation, environmental sustainability, technological advancement, and regulatory compliance. In the medical sector, the increasing preference for minimally invasive procedures, personalized medicine, and advanced drug delivery systems is generating strong demand for biocompatible, degradable materials that can perform critical functions and then safely disappear. The shift toward value-based healthcare, where long-term outcomes and reduced intervention costs are prioritized, further enhances the appeal of bioresorbable solutions. Regulatory agencies across the globe are streamlining approval processes and providing guidance on bioresorbable devices, giving manufacturers clearer pathways to market. At the same time, mounting environmental concerns about plastic waste and microplastic pollution are driving both consumer and industrial interest in biodegradable and compostable alternatives. Many countries are implementing plastic bans and setting aggressive sustainability goals, creating a favorable policy environment for bioresorbable innovations in non-medical sectors. Technological progress in polymer synthesis, material science, and fabrication techniques is lowering production costs and expanding the functional range of these polymers, making them competitive with conventional plastics in both price and performance. Additionally, the expansion of biomanufacturing and bioprocessing infrastructure is enabling large-scale production of bioresorbable polymers from renewable sources, supporting global supply chain resilience. Strong venture capital interest and strategic partnerships between biotech firms, research institutions, and multinational corporations are accelerating commercialization and scaling efforts. Together, these drivers are not only expanding the size and scope of the bioresorbable polymers market but are also establishing it as a transformative material class in the global push toward a more sustainable, patient-centric, and environmentally responsible future.

SCOPE OF STUDY:

The report analyzes the Bioresorbable Polymers market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Type (Agro-Polymers Type, Bio-Polyesters Type); Application (Orthopedics Application, Drug Delivery Application, Biodegradable Devices Application, Other Applications)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 34 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â