¼¼°èÀÇ ÀΰøÁö´É(AI) Áö¿ø ¹æ»ç¼± ÀÇÇÐ ½ÃÀå
Artificial Intelligence (AI)-assisted Radiology
»óǰÄÚµå : 1757981
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 06¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 188 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,198,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,594,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ÀΰøÁö´É(AI) Áö¿ø ¹æ»ç¼± ÀÇÇÐ ½ÃÀåÀº 2030³â±îÁö 130¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 23¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ ÀΰøÁö´É(AI) Áö¿ø ¹æ»ç¼± ÀÇÇÐ ½ÃÀåÀº 2024-2030³â¿¡ CAGR 33.8%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 130¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ X¼± ±â¼úÀº CAGR 32.4%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 40¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÚ±â°ø¸í¿µ»ó ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ Áß CAGR 37.2%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 5¾ï 9,240¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 32.2%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ÀΰøÁö´É(AI) Áö¿ø ¹æ»ç¼± ÀÇÇÐ ½ÃÀåÀº 2024³â¿¡ 5¾ï 9,240¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 19¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³âÀÇ CAGRÀº 32.2%ÀÔ´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 30.7%¿Í 29.4%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 23.7%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ÀΰøÁö´É(AI) Áö¿ø ¹æ»ç¼± ÀÇÇÐ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

AI´Â Áø´Ü ÀÇ·á¿¡¼­ ¿µ»óÀÇÇаú ÀÇ»çÀÇ ¿ªÇÒÀ» º¯È­½Ãų °ÍÀΰ¡?

ÀΰøÁö´É(AI)Àº ¿µ»óÀÇÇÐ ºÐ¾ß¿¡ Å« º¯È­¸¦ °¡Á®¿ÔÀ¸¸ç, ¼ø¼ö Áø´ÜÇп¡¼­ ¼Óµµ, Á¤È®¼º, ¿¹ÃøÀû ÀλçÀÌÆ®¸¦ ÅëÇÕÇÑ µ¥ÀÌÅͺ£À̽º »ýŰè·Î ÀüȯÇϰí ÀÖ½À´Ï´Ù. Àü¹®°¡ÀÇ À̹ÌÁö ÇØ¼®¿¡ ÀÇÁ¸ÇÏ´Â ±âÁ¸ ¹æ»ç¼± Áø´Ü°ú ´Þ¸®, AI Áö¿ø ¹æ»ç¼± Áø´ÜÀº ¸Ó½Å·¯´× ¾Ë°í¸®Áò, ƯÈ÷ µö·¯´× ³×Æ®¿öÅ©¸¦ Ȱ¿ëÇÏ¿© ¸Å¿ì ³ôÀº Á¤È®µµ·Î ÀÇ·á À̹ÌÁö¸¦ ºÐ¼®ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¾Ë°í¸®ÁòÀº ¿¢½º·¹ÀÌ, CT ½ºÄµ, MRI, ÃÊÀ½ÆÄ °Ë»çÀÇ ¹æ´ëÇÑ µ¥ÀÌÅͼ¼Æ®·Î ÈÆ·ÃµÇ¾î Á¾¾ç, °ñÀý, ÃâÇ÷, °¨¿° µîÀÇ ÀÌ»ó ¡Èĸ¦ Á¶±â¿¡ ¹ß°ßÇÒ ¼ö ÀÖ½À´Ï´Ù. AI´Â ¿µ»óÀÇÇаú Àǻ縦 ´ëüÇÏ´Â °ÍÀÌ ¾Æ´Ï¶ó ÀáÀçÀûÀÎ ¹®Á¦¿¡ Ç÷¡±×¸¦ Ç¥½ÃÇÏ°í ±ä±ÞÇÑ »ç·ÊÀÇ ¿ì¼±¼øÀ§¸¦ Á¤ÇÔÀ¸·Î½á ¿µ»óÀÇÇаú ÀÇ»çÀÇ ´É·ÂÀ» °­È­ÇÏ´Â Á¦2ÀÇ ´« ¿ªÇÒÀ» ÇÕ´Ï´Ù. ÀϺΠAI ½Ã½ºÅÛÀº ÇöÀç À̹ÌÁö¿Í ÀÌÀü ½ºÄµ À̹ÌÁö¸¦ ºñ±³ÇÏ¿© Áúº´ÀÇ ÁøÇàÀ̳ª Àç¹ßÀ» ¾Ë¸± ¼ö ÀÖ´Â ¹Ì¹¦ÇÑ º¯È­¸¦ °¨ÁöÇÒ ¼öµµ ÀÖ½À´Ï´Ù. ¶ÇÇÑ AI ÅøÀº ÇöÀç ÀÚ¿¬ ¾ð¾î ó¸®¿Í ÅëÇյǾî À̹ÌÁö ÇØ¼®À» ±¸Á¶È­µÈ ¹æ»ç¼± Áø´Ü º¸°í¼­·Î º¯È¯ÇÏ¿© ¸íÈ®¼º°ú Àϰü¼ºÀ» ³ôÀÌ´Â µ¥ µµ¿òÀ» ÁÖ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀÇ °íµµÈ­¿¡ µû¶ó ¿µ»óÀÇÇаú Àü¹®ÀÇ´Â º¹ÀâÇÑ ÀÇ»ç°áÁ¤°ú ȯÀÚµé°úÀÇ ¼ÒÅë¿¡ ÁýÁßÇϰí, AI°¡ ¿µ»ó °ËÅäÀÇ ´ëºÎºÐÀ» ó¸®ÇÏ´Â µ¿¾È °¨µ¶ ¹× ÀÚ¹® ¿ªÇÒÀ» ¸Ã°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ º¯È­´Â ¹æ»ç¼± Áø·áÀÇ ¹üÀ§¸¦ ÀçÁ¤ÀÇÇϰí, º¸´Ù È¿À²ÀûÀÌ°í ´Éµ¿ÀûÀÎ ¸ÂÃãÇü ÀÇ·áÀÇ ¸ñÇ¥¿¡ ºÎÇÕÇÏ´Â ¹æÇâÀ¸·Î º¯È­Çϰí ÀÖ½À´Ï´Ù.

ÀÓ»ó È¿À²¼º°ú Áø´Ü Á¤È®µµ°¡ ¿µ»óÀÇÇаú¿¡¼­ AI µµÀÔÀ» ¾î¶»°Ô ÃËÁøÇϰí Àִ°¡?

Áø´Ü Á¤È®µµ¿Í ÀÓ»ó ¿öÅ©Ç÷οìÀÇ È¿À²¼ºÀ» ȹ±âÀûÀ¸·Î Çâ»ó½Ãų ¼ö ÀÖ´Â AIÀÇ ´É·ÂÀ¸·Î ÀÎÇØ ¿µ»óÀÇÇÐ ºÐ¾ß¿¡¼­ÀÇ AI µµÀÔÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. °úºÎÇϰ¡ °É¸° ÀÇ·á ½Ã½ºÅÛ¿¡¼­ ¿µ»óÀÇÇаú Àü¹®ÀÇ´Â ¸ÅÀÏ ¼öõ ÀåÀÇ À̹ÌÁö¸¦ °ËÅäÇÏ´Â µ¥ ¾î·Á¿òÀ» °Þ´Â °æ¿ì°¡ ¸¹¾Æ Áø´Ü ¿À·ù¿Í ¼ÒÁøÀÇ À§ÇèÀÌ ³ô¾ÆÁö´Âµ¥, AI ½Ã½ºÅÛÀº ±ä±Þ¼º¿¡ µû¶ó °Ë»ç¸¦ ÀÚµ¿À¸·Î ºÐ·ùÇϰí, ÀÌ»ó ¡Èĸ¦ Ç¥½ÃÇϰí, ³õÄ¥ ¼ö ÀÖ´Â ¿ì¹ßÀû ¼Ò°ßÀ» ½Äº°ÇÔÀ¸·Î½á ÀÌ·¯ÇÑ ºÎ´ãÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ¿ì¹ßÀû ¼Ò°ßÀ» ½Äº°ÇÏ¿© ÀÌ·¯ÇÑ ºÎ´ãÀ» ÁÙÀÌ´Â µ¥ µµ¿òÀ» ÁÙ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î AI ¾Ë°í¸®ÁòÀº Æó°áÀý, ³úÃâÇ÷, °ñÀý µîÀ» ¸î ÃÊ ¸¸¿¡ °¨ÁöÇÒ ¼ö ÀÖÀ¸¸ç, Áß¿äÇÑ ¼Ò°ßÀÌ ÆÇµ¶ ¼ø¼­¸¦ ±â´Ù¸®´Â µ¿¾È Áö¿¬µÇ´Â °ÍÀ» ¹æÁöÇÒ ¼ö ÀÖÀ¸¸ç, AI´Â ÀÌ»ó ¡Èĸ¦ Ç¥½ÃÇÒ »Ó¸¸ ¾Æ´Ï¶ó ¿µ»ó ¹ÙÀÌ¿À¸¶Ä¿¸¦ Á¤·®È­Çϰí, º´º¯ÀÇ Å©±â¸¦ ÃøÁ¤Çϰí, Ä¡·á ¹ÝÀÀÀ» Á¤È®ÇÏ°Ô ÃßÀûÇÏ¿© ÀÓ»óÀû ÆÇ´ÜÀ» ³»¸± ¼ö ÀÖµµ·Ï µµ¿ÍÁÝ´Ï´Ù. ÀÓ»óÀû ÆÇ´Ü¿¡ ±ÍÁßÇÑ ÄÁÅØ½ºÆ®¸¦ Ãß°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿öÅ©Ç÷οì ÃÖÀûÈ­µµ Áß¿äÇÑ ÀåÁ¡À¸·Î, AI ÅøÀº º¸°í¼­¸¦ ¹Ì¸® ÀÔ·ÂÇϰí, °ü·Ã ȯÀÚ º´·ÂÀ» ¼öÁýÇϰí, À̹ÌÁö °Ë»öÀ» °£¼ÒÈ­ÇÏ¿© ¹æ»ç¼±»ç°¡ ÇØ¼®°ú ÀÓ»ó °Ë»ç¿¡ ´õ ÁýÁßÇÒ ¼ö ÀÖµµ·Ï µµ¿ÍÁÝ´Ï´Ù. ´ÙÇÐÁ¦ Áø·á ȯ°æ¿¡¼­ AI´Â ¿µ»ó ºÐ¼®À» Ç¥ÁØÈ­ÇÏ°í µ¥ÀÌÅÍ °øÀ¯¸¦ °³¼±ÇÏ¿© ¹æ»ç¼±»ç, Á¾¾ç Àü¹®ÀÇ, ¿Ü°úÀÇ»ç, 1Â÷ Áø·á ÀÇ»ç °£ÀÇ ´õ ³ªÀº ¼ÒÅëÀ» ÃËÁøÇÕ´Ï´Ù. ¶ÇÇÑ º¸»ó ¸ðµ¨ÀÌ °¡Ä¡ ±â¹Ý Áø·á·Î ÀüȯµÊ¿¡ µû¶ó º´¿ø ¹× Ŭ¸®´ÐÀº °á°ú¸¦ ÀÔÁõÇØ¾ß Çϴµ¥, AI´Â ºÒÇÊ¿äÇÑ ¿µ»ó Áø´ÜÀ» ÁÙÀ̰í, Áø´Ü ½Ã°£À» ´ÜÃàÇϸç, ¿µ»óÀÇÇаú Àü¹®ÀÇ °£ÀÇ Àϰü¼ºÀ» Çâ»ó½ÃÅ´À¸·Î½á À̸¦ Áö¿øÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¾÷¹« ¹× Áø´Ü»óÀÇ ÀÌÁ¡Àº Ç¥ÁØ Ä¡·á¸¦ °³¼±ÇÒ »Ó¸¸ ¾Æ´Ï¶ó, Çö´ë ¿µ»óÀÇÇп¡¼­ AI°¡ Àü·«Àû Åø·Î Ȱ¿ëµÉ ¼ö ÀÖ´Â ±Ù°Å¸¦ °­È­Çϰí ÀÖ½À´Ï´Ù.

AI°¡ ÀÇ·á¼­ºñ½º°¡ ºÎÁ·ÇÑ Áö¿ªÀÇ ¿µ»óÀÇÇаú ¼­ºñ½º Á¢±Ù¼ºÀ» È®´ëÇÒ ¼ö Àִ°¡?

AI Áö¿ø ¹æ»ç¼±ÇÐÀÇ Å« º¯È­ÀÇ °¡´É¼ºÀº ¼÷·ÃµÈ ¹æ»ç¼± Àü¹®ÀÇ¿Í ¿µ»ó Áø´Ü ÀÎÇÁ¶ó¿¡ ´ëÇÑ Á¢±Ù¼ºÀÌ Á¦ÇÑÀûÀÎ Áö¿ª¿¡¼­ Áø´Ü °ÝÂ÷¸¦ ÇØ¼ÒÇÒ ¼ö ÀÖ´Â ´É·Â¿¡ ÀÖ½À´Ï´Ù. Àü ¼¼°è ¸¹Àº Áö¿ª, ƯÈ÷ ³óÃÌ Áö¿ª°ú ÀÚ¿øÀÌ ºÎÁ·ÇÑ È¯°æ¿¡¼­´Â ¹æ»ç¼± Ä¡·á Àü¹®°¡°¡ ½É°¢ÇÏ°Ô ºÎÁ·ÇÏ¿© Áø´ÜÀÌ Áö¿¬µÇ°í ȯÀÚ ¿¹Èİ¡ ³ªºüÁö°í ÀÖÀ¸¸ç, AI ÅøÀº ºñÀü¹®°¡°¡ ¿¹ºñ ¿µ»ó Æò°¡¸¦ ÇÒ ¼ö ÀÖ°Ô Çϰí, Áö¿ª Ŭ¸®´Ð°ú Áß¾Ó ÁýÁᫎ AI Ç÷§ÆûÀ» ¿¬°áÇÏ´Â ¿ø°Ý ¿µ»ó Áø´Ü ³×Æ®¿öÅ©¸¦ Áö¿øÇÔÀ¸·Î½á ÀÌ °ø¹éÀ» ¸Þ¿ï ¼ö ÀÖ½À´Ï´Ù. ³×Æ®¿öÅ©¸¦ Áö¿øÇÔÀ¸·Î½á ÀÌ °ø¹éÀ» ¸Þ¿ï ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ½ºÄµÀ» ¹Ì¸® ¼±º°ÇÏ°í ¿ø°ÝÁöÀÇ ¹æ»ç¼±°ú Àǻ簡 °ËÅäÇÒ ¼ö ÀÖµµ·Ï ¼Ò°ßÀ» °­Á¶ Ç¥½ÃÇÏ¿© Áß¿äÇÑ »ç·Ê°¡ Àû½Ã¿¡ Ä¡·á¸¦ ¹ÞÀ» ¼ö ÀÖµµ·Ï º¸ÀåÇÕ´Ï´Ù. ÈÞ´ë¿ë ¿µ»ó Áø´Ü Àåºñ¿Í AI ºÐ¼®À» °áÇÕÇÏ¿© ÇöÀå ¹× ÇöÀå Áø·á¼Ò¿¡¼­ ±âº»ÀûÀÎ Áø´Ü ¼­ºñ½º¸¦ Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÎÅÍ³Ý ¿¬°áÀÌ ºÒ¾ÈÁ¤ÇÑ È¯°æ¿¡¼­´Â ¿§Áö AI µð¹ÙÀ̽º°¡ ½ÇÇà °¡´ÉÇÑ ¼Ö·ç¼ÇÀ¸·Î ºÎ»óÇϰí ÀÖÀ¸¸ç, »ó½Ã Ŭ¶ó¿ìµå¿¡ Á¢¼ÓÇÏÁö ¾Ê°íµµ ¿ÀÇÁ¶óÀÎÀ¸·Î À̹ÌÁö 󸮸¦ ¼öÇàÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ AI ¸ðµ¨Àº ÀϹÝÈ­ °¡´É¼ºÀ» ³ôÀÌ°í Æí°ßÀ» ÁÙÀ̱â À§ÇØ ´Ù¾çÇÑ ¼¼°è µ¥ÀÌÅͼ¼Æ®·Î ÈÆ·ÃµÇ¾î ´Ù¾çÇÑ Àα¸ Áý´Ü°ú ¿µ»ó ¾ç½Ä¿¡ °ÉÃÄ ¼º´ÉÀÌ °ß°íÇÏ°Ô À¯ÁöµÇµµ·Ï º¸ÀåÇÕ´Ï´Ù. ±¹Á¦ ÀÇ·á ±â°ü°ú Á¤ºÎ´Â ÀÇ·áÀÇ µðÁöÅÐÈ­ ¹× ºÐ»êÈ­¸¦ À§ÇÑ ±¤¹üÀ§ÇÑ ³ë·ÂÀÇ ÀÏȯÀ¸·Î AI ¿µ»óÀÇÇÐ ±¸»ó¿¡ ÅõÀÚÇϱ⠽ÃÀÛÇß½À´Ï´Ù. AI´Â ÇÙ½É Áø´Ü ÀÛ¾÷À» ÀÚµ¿È­ÇÏ°í ¿ø°Ý Çù¾÷À» °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á, ƯÈ÷ Àΰ£ÀÇ Àü¹® Áö½ÄÀÌ ºÎÁ·ÇÑ È¯°æ¿¡¼­ ¿µ»óÀÇÇÐ ¼­ºñ½ºÀÇ ¹üÀ§¿Í °øÆò¼ºÀ» È®´ëÇÏ´Â Ã˸ÅÁ¦°¡ µÇ°í ÀÖ½À´Ï´Ù.

AI Áö¿ø ¹æ»ç¼± ÀÇÇÐÀÇ ¼¼°è ¼ºÀåÀ» °¡¼ÓÇÏ´Â ÁÖ¿ä ¿äÀÎÀº ¹«¾ùÀΰ¡?

ÀΰøÁö´É(AI) Áö¿ø ¹æ»ç¼± ÀÇÇÐ ½ÃÀåÀÇ ¼ºÀåÀº Çö´ë ÀÇ·áÀÇ ÁøÈ­ÇÏ´Â ¿ä±¸¸¦ ¹Ý¿µÇÏ´Â ±â¼úÀû, ÀÓ»óÀû, Á¦µµÀû ¿øµ¿·ÂÀÇ °áÇÕ¿¡ ÀÇÇØ ÃßÁøµÇ°í ÀÖ½À´Ï´Ù. ÁÖ¿ä ÃËÁø¿äÀÎ Áß Çϳª´Â AI ¸ðµ¨, ƯÈ÷ ÄÁº¼·ç¼Ç ½Å°æ¸Á(CNN) ¹× º¯È¯±âÀÇ ±Þ¼ÓÇÑ ¹ßÀüÀ¸·Î À̹ÌÁö ÀÎ½Ä ¹× ºÐ·ù ÀÛ¾÷ÀÇ Á¤È®µµ°¡ ±ØÀûÀ¸·Î Çâ»óµÇ°í ÀÖ½À´Ï´Ù. ÁÖ¼®ÀÌ ´Þ¸° ´ë±Ô¸ð ÀÇ·á ¿µ»ó µ¥ÀÌÅͼ¼Æ®ÀÇ °¡¿ë¼ºÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ÀÌ·¯ÇÑ ¸ðµ¨À» ÈÆ·ÃÇÏ°í °ËÁõÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. µ¿½Ã¿¡ ÄÄÇ»ÆÃ ÀÎÇÁ¶ó, ƯÈ÷ Ŭ¶ó¿ìµå ¹× ¿§Áö ÄÄÇ»ÆÃÀÇ °³¼±À¸·Î ´ë±Ô¸ð IT °³Æí ¾øÀ̵µ ÀÓ»ó ÇöÀå¿¡ AI ÅøÀ» ½±°Ô µµÀÔÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¶Ç ´Ù¸¥ Å« ¿äÀÎÀº Áø´Ü ¹× Ä¡·á ¸ð´ÏÅ͸µÀ» À§ÇØ Áö¼ÓÀûÀÎ ¿µ»ó Áø´ÜÀÌ ÇÊ¿äÇÑ ¾Ï, ½ÉÇ÷°ü Áúȯ, ½Å°æÁúȯ°ú °°Àº ¸¸¼ºÁúȯÀÇ ºÎ´ãÀÌ Áõ°¡Çϰí ÀÖÀ¸¸ç, AI´Â ¹æ»ç¼±°úÀÇ ¿ª·®À» °­È­ÇÏ¿© ÀηÂÀ» ´Ã¸®Áö ¾Ê°íµµ ÀÌ·¯ÇÑ ¼ö¿ä Áõ°¡¸¦ °ü¸®ÇÒ ¼ö ÀÖ½À´Ï´Ù. FDA ¹× CE¿Í °°Àº ±â°ü¿¡¼­ ÀÌ¹Ì ¿©·¯ AI ±â¹Ý ¿µ»óÀÇÇаú ÅøÀÌ ½ÂÀεǾî ÀÓ»ó µµÀÔÀ¸·Î °¡´Â ±æÀÌ ¸íÈ®ÇØÁö¸é¼­ ±ÔÁ¦ ¸ð¸àÅÒµµ ½ÃÀå ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. º´¿ø°ú ¿µ»óÀÇÇм¾ÅͰ¡ AI¸¦ µµÀÔÇÏ´Â µ¿±â´Â Áø´ÜÀû À¯¿ë¼º»Ó¸¸ ¾Æ´Ï¶ó °æÀï·Â È®º¸, ȯÀÚ ¸¸Á·µµ Çâ»ó, µðÁöÅÐ Àüȯ ³ë·Â¿¡ ºÎÇÕÇϱâ À§Çؼ­µµ AI¸¦ µµÀÔÇϰí ÀÖ½À´Ï´Ù. º¥Ã³Ä³ÇÇÅÐ, ÇコÄÉ¾î ±â¾÷, ÇаèÀÇ ÅõÀÚ´Â ÀÌ ºÐ¾ßÀÇ Çõ½ÅÀ» ´õ¿í °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÈûµéÀÌ ÇÕÃÄÁ® AI Áö¿ø ¹æ»ç¼± Áø´ÜÀÇ °ß°íÇÏ°í ºü¸£°Ô ¼ºÀåÇÏ´Â ¼¼°è ½ÃÀåÀ» Çü¼ºÇϰí ÀÖÀ¸¸ç, ¿µ»ó Áø´ÜÀÇ ¹Ì·¡¸¦ À籸¼ºÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ºÎ¹®

±â¼ú(X¼± ±â¼ú, ÀÚ±â°ø¸í¿µ»ó ±â¼ú, ÄÄÇ»ÅÍ ´ÜÃþÃÔ¿µ ±â¼ú, ¾çÀüÀÚ ¹æ»ç ´ÜÃþÃÔ¿µ ±â¼ú, ±âŸ ±â¼ú), ¿ëµµ(½Å°æÇÐ ¿ëµµ, ¸¾¸ð±×·¡ÇÇ ¿ëµµ, ½ÉÀåÇ÷°ü ¿ëµµ, È£Èí±â¡¤È£Èí±â Á¤Çü¿Ü°ú ¿ëµµ, ±âŸ ¿ëµµ), ÃÖÁ¾ ¿ëµµ(º´¿ø ÃÖÁ¾ ¿ëµµ, ¿µ»ó Áø´Ü ¼¾ÅÍ ÃÖÁ¾ ¿ëµµ, ±âŸ ÃÖÁ¾ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹(ÁÖ¸ñ 48»ç)

AI ÅëÇÕ

¿ì¸®´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI Åø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾ç ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÔ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Artificial Intelligence (AI)-assisted Radiology Market to Reach US$13.0 Billion by 2030

The global market for Artificial Intelligence (AI)-assisted Radiology estimated at US$2.3 Billion in the year 2024, is expected to reach US$13.0 Billion by 2030, growing at a CAGR of 33.8% over the analysis period 2024-2030. X-Ray Technique, one of the segments analyzed in the report, is expected to record a 32.4% CAGR and reach US$4.0 Billion by the end of the analysis period. Growth in the Magnetic Resonance Imaging Technique segment is estimated at 37.2% CAGR over the analysis period.

The U.S. Market is Estimated at US$592.4 Million While China is Forecast to Grow at 32.2% CAGR

The Artificial Intelligence (AI)-assisted Radiology market in the U.S. is estimated at US$592.4 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$1.9 Billion by the year 2030 trailing a CAGR of 32.2% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 30.7% and 29.4% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 23.7% CAGR.

Global Artificial Intelligence (AI)-Assisted Radiology Market - Key Trends & Drivers Summarized

Is AI Transforming the Role of Radiologists in Diagnostic Medicine?

Artificial Intelligence (AI) is bringing a profound shift to the field of radiology, transitioning it from a purely diagnostic discipline to a data-driven ecosystem that integrates speed, precision, and predictive insights. Unlike traditional radiology, which relies on the interpretation of images by human specialists, AI-assisted radiology leverages machine learning algorithms-especially deep learning networks-to analyze medical images with exceptional accuracy. These algorithms are trained on vast datasets of X-rays, CT scans, MRIs, and ultrasounds, enabling them to detect anomalies such as tumors, fractures, hemorrhages, and infections at an early stage. This capability allows for faster turnaround times and reduces the risk of oversight, which is particularly crucial in high-volume clinical settings. Rather than replacing radiologists, AI augments their capabilities by acting as a second set of eyes, flagging potential issues and prioritizing urgent cases. Some AI systems can even compare current images with prior scans to detect subtle changes that may signal disease progression or recurrence. Additionally, AI tools are now being integrated with natural language processing to help convert image interpretations into structured radiology reports, enhancing clarity and consistency. As these systems become more sophisticated, radiologists are increasingly taking on a supervisory and consultative role, focusing on complex decision-making and patient communication while AI handles the bulk of image review. This shift is redefining the scope of radiological practice, making it more efficient, proactive, and aligned with personalized medicine goals.

How Are Clinical Efficiency and Diagnostic Accuracy Driving AI Adoption in Radiology?

The adoption of AI in radiology is accelerating due to its ability to dramatically enhance diagnostic accuracy and clinical workflow efficiency. In overburdened healthcare systems, radiologists often face the challenge of reviewing thousands of images daily, increasing the risk of diagnostic errors and burnout. AI systems help alleviate this burden by automatically triaging studies based on urgency, flagging abnormalities, and even identifying incidental findings that may otherwise be missed. For instance, AI algorithms can detect lung nodules, brain bleeds, or bone fractures in seconds, helping ensure that critical findings are not delayed in the reading queue. Beyond flagging abnormalities, AI can quantify imaging biomarkers, measure lesion dimensions, and track treatment responses with high precision, adding valuable context to clinical decisions. Workflow optimization is another key benefit-AI tools can pre-populate reports, retrieve relevant patient history, and streamline image retrieval, allowing radiologists to focus more on interpretation and clinical consultation. In multidisciplinary care settings, AI facilitates better communication between radiologists, oncologists, surgeons, and primary care physicians by standardizing image analysis and improving data sharing. Furthermore, as reimbursement models shift toward value-based care, hospitals and clinics are under pressure to demonstrate outcomes. AI supports this by reducing unnecessary imaging, shortening diagnosis timelines, and improving consistency across radiologists. These operational and diagnostic benefits are not only elevating the standard of care but also strengthening the case for AI as a strategic tool in modern radiology departments.

Can AI Widen Access to Radiology Services in Underserved Regions?

A major transformative potential of AI-assisted radiology lies in its ability to bridge the diagnostic gap in regions with limited access to skilled radiologists and imaging infrastructure. In many parts of the world, particularly rural and low-resource settings, there is a severe shortage of radiology professionals, leading to delayed diagnoses and compromised patient outcomes. AI tools can help fill this void by enabling non-specialists to perform preliminary image evaluations and by supporting teleradiology networks that connect local clinics with centralized AI platforms. These systems can pre-screen scans and highlight findings for review by remote radiologists, ensuring that critical cases receive timely attention. Portable imaging devices paired with AI analysis are also making it feasible to deliver basic diagnostic services in the field or at the point of care. In settings where internet connectivity is unreliable, edge AI devices are emerging as a viable solution, allowing offline image processing without the need for constant cloud access. Moreover, AI models are being trained on diverse global datasets to improve their generalizability and reduce bias, ensuring that their performance remains robust across different populations and imaging modalities. International health organizations and governments are beginning to invest in AI radiology initiatives as part of broader efforts to digitize and decentralize healthcare. By automating core diagnostic tasks and enabling remote collaboration, AI is becoming a catalyst for expanding the reach and equity of radiology services, particularly in environments where human expertise is scarce.

What Are the Key Forces Fueling Global Growth in AI-Assisted Radiology?

The growth in the artificial intelligence (AI)-assisted radiology market is driven by a confluence of technological, clinical, and institutional dynamics that reflect the evolving demands of modern healthcare. One of the primary drivers is the rapid advancement of AI models, particularly convolutional neural networks (CNNs) and transformers, which have dramatically improved the accuracy of image recognition and classification tasks. The growing availability of large, annotated medical imaging datasets has been essential in training and validating these models. At the same time, improvements in computational infrastructure-especially in cloud and edge computing-have made it easier to deploy AI tools in clinical settings without the need for extensive IT overhauls. Another major factor is the increasing burden of chronic diseases such as cancer, cardiovascular disorders, and neurological conditions, which require continuous imaging for diagnosis and treatment monitoring. AI enhances the capacity of radiology departments to manage this rising demand without proportionally increasing manpower. Regulatory momentum is also contributing to market growth; with several AI-based radiology tools already approved by agencies such as the FDA and CE, the pathway to clinical adoption is becoming clearer. Hospitals and imaging centers are motivated to adopt AI not only for its diagnostic utility but also to gain a competitive edge, improve patient satisfaction, and align with digital transformation initiatives. Investment from venture capital, health tech companies, and academic institutions is further accelerating innovation in the space. Together, these forces are creating a robust and rapidly expanding global market for AI-assisted radiology that promises to reshape the future of diagnostic imaging.

SCOPE OF STUDY:

The report analyzes the Artificial Intelligence (AI)-assisted Radiology market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Technique (X-Ray Technique, Magnetic Resonance Imaging Technique, Computed Tomography Technique, Positron Emission Tomography Technique, Other Techniques); Application (Neurology Application, Mammography Application, Cardiovascular Application, Respiratory & Pulmonary Orthopedics Application, Other Applications); End-Use (Hospitals End-Use, Diagnostic Imaging Centers End-Use, Other End-Uses)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 48 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â