¼¼°èÀÇ Åͺ¸ ºÐÀÚ ÆßÇÁ ½ÃÀå
Turbomolecular Pumps
»óǰÄÚµå : 1757877
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 06¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 282 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,106,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,320,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ Åͺ¸ ºÐÀÚ ÆßÇÁ ½ÃÀåÀº 2030³â±îÁö 17¾ï ´Þ·¯¿¡ µµ´Þ

2024³â¿¡ 12¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ Åͺ¸ ºÐÀÚ ÆßÇÁ ½ÃÀåÀº 2024-2030³â¿¡ CAGR 5.2%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 17¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ Àڱ⠺λó½ÄÀº CAGR 5.9%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á±îÁö 10¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¿ÀÀÏ À±È°½Ä ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ Áß CAGR 4.4%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 3¾ï 3,350¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 9.5%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ Åͺ¸ ºÐÀÚ ÆßÇÁ ½ÃÀåÀº 2024³â¿¡ 3¾ï 3,350¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2024-2030³âÀÇ ºÐ¼® ±â°£¿¡ CAGR 9.5%·Î ÃßÀÌÇϸç, 2030³â¿¡´Â 3¾ï 5,510¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 2.1%¿Í 4.1%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 3.1%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ "Åͺ¸ ºÐÀÚ ÆßÇÁ" ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

¿Ö 'Åͺ¸ ºÐÀÚ ÆßÇÁ'°¡ ÇÏÀÌÅ×Å© Á¦Á¶¾÷¿¡ Çʼö ºÒ°¡°áÇÑ Á¸Àç°¡ µÇ°í Àִ°¡?

ÃʰíÁø°ø(UHV) ȯ°æÀ» Á¶¼ºÇÏ´Â µ¥ Áß¿äÇÑ Åͺ¸ ºÐÀÚ ÆßÇÁ´Â »ê¾÷ÀÌ Á¡Á¡ ´õ º¹ÀâÇÏ°í ¿À¿°¿¡ ¹Î°¨ÇÑ Á¦Á¶ °øÁ¤À¸·Î À̵¿ÇÔ¿¡ µû¶ó Àü ¼¼°è¿¡¼­ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ ÆßÇÁ´Â ºÐÀÚ È帧À» ó¸®Çϰí 10¹deg;mbarÀÇ Àú¾ÐÀ» ´Þ¼ºÇϴ Ź¿ùÇÑ ´É·ÂÀ¸·Î À¯¸íÇϸç, ¹Ì·®ÀÇ °¡½ºµµ Á¦Ç°ÀÇ Ç°Áú°ú ½ÇÇèÀÇ ¹«°á¼ºÀ» ¼Õ»ó½Ãų ¼ö ÀÖ´Â »ê¾÷¿¡¼­ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ¹ÝµµÃ¼ Á¦Á¶´Â ÁÖ¿ä ÃÖÁ¾»ç¿ëÀÚÀ̸ç, Æ÷Å丮¼Ò±×·¡ÇÇ ¹× ¿¡Äª °øÁ¤¿¡¼­´Â ¿ø½ÃÀûÀÎ Áø°ø Á¶°ÇÀÌ ¿ä±¸µË´Ï´Ù. Ĩ Á¦Á¶°¡ 5nm ÀÌÇÏÀÇ ¹Ì¼¼ ³ëµå·Î ÁøÇàµÊ¿¡ µû¶ó ºÒ¼ø¹° °øÂ÷´Â ´õ¿í ¾ö°ÝÇØÁ® Åͺ¸ ºÐÀÚ ÆßÇÁ´Â Çʼö ºÒ°¡°áÇÑ ¿ä¼Ò·Î ÀÚ¸® Àâ¾Ò½À´Ï´Ù. ¸¶Âù°¡Áö·Î Ç÷§ ÆÐ³Î µð½ºÇ÷¹ÀÌ ¹× OLED ºÐ¾ß¿¡¼­µµ Áø°ø ÁõÂø ¹× ¹ÐºÀ °øÁ¤¿¡ Åͺ¸ ºÐÀÚ ÆßÇÁ°¡ ÇÊ¿äÇÕ´Ï´Ù. ¿¡³ÊÁö ÀüȯÀÇ ¼¼°èµµ ÇѸòÀ» Çϰí ÀÖÀ¸¸ç, Åͺ¸ ºÐÀÚ ÆßÇÁ´Â žçÀüÁöÆÇ°ú ¿¡³ÊÁö È¿À²ÀûÀÎ Á¶¸í »ý»ê¿¡ ÇʼöÀûÀÔ´Ï´Ù. »ý¸í°úÇÐ ºÐ¾ß¿¡¼­´Â Áú·®ºÐ¼®±â ¹× ÀüÀÚÇö¹Ì°æ¿¡ ÇʼöÀûÀ̸ç, Çмú±â°ü ¹× ±¹¸³ ¿¬±¸¼Ò¿¡¼­´Â ¹°¸®ÇÐ ¹× Àç·á °úÇÐÀÇ ±âÃÊ ¿¬±¸¸¦ Áö¿øÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¿ìÁÖ ±â°ü°ú ¹Î°£ Ç×°ø¿ìÁÖ ±â¾÷ÀÌ ÀΰøÀ§¼º ºÎǰ°ú ¿ìÁÖ¿¡¼­ »ç¿ëµÇ´Â ÀåºñÀÇ Áø°ø Å×½ºÆ®¸¦ ¼öÇàÇÔ¿¡ µû¶ó ÆßÇÁÀÇ Á߿伺Àº Á¡Á¡ ´õ È®´ëµÇ°í ÀÖ½À´Ï´Ù. ŸÀÇ ÃßÁ¾À» ºÒÇãÇÏ´Â Á¤È®¼º, û°áµµ, ½Å·Ú¼ºÀ¸·Î ÀÎÇØ ¼º´É¿¡ ŸÇùÀÌ Çã¿ëµÇÁö ¾Ê´Â ÃÖ÷´Ü ¿ëµµ¿¡ ¼±ÅõǴ ÆßÇÁ°¡ µÇ¾ú½À´Ï´Ù.

ÆßÇÁ Á¦Á¶¾÷ü °£ ±â¼ú Çõ½Å °æÀïÀÇ ¿øµ¿·ÂÀº?

Åͺ¸ ºÐÀÚ ÆßÇÁ ½ÃÀåÀÇ ÁÖ¿ä Á¦Á¶¾÷üµéÀº ±â¼ú Çõ½Å, ¼º´É È¿À²¼º, ºñ¿ë ÃÖÀûÈ­¸¦ ÅëÇØ Â÷º°È­¸¦ À§ÇØ ¿¬±¸°³¹ß¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. ¼ÒÇü ºÐ¼® ±â±â ¹× Ź»ó¿ë ½ÇÇè½Ç ±â±âÀÇ µîÀåÀ¸·Î Áø°ø ǰÁú¿¡ ¿µÇâÀ» ¹ÌÄ¡Áö ¾Ê´Â ¼ÒÇü Åͺ¸ ºÐÀÚ ÆßÇÁ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. °¢ ¾÷üµéÀº Áøµ¿À» ÁÙÀ̰í, ÆßÇÁÀÇ ¼ö¸íÀ» ¿¬ÀåÇϸç, À¯Áöº¸¼ö°¡ ÇÊ¿ä ¾ø´Â ÇÏÀ̺긮µå º£¾î¸µ ±â¼úÀ» °³¹ßÇÏ¿© Àڱ⠺¼ º£¾î¸µ°ú ¼¼¶ó¹Í º¼ º£¾î¸µÀ» °áÇÕÇÑ ÇÏÀ̺긮µå º£¾î¸µ ±â¼úÀ» °³¹ßÇϰí ÀÖ½À´Ï´Ù. ¿¡³ÊÁö È¿À²Àº ƯÈ÷ ¼ö½Ê ´ëÀÇ ÆßÇÁ°¡ µ¿½Ã¿¡ °¡µ¿µÇ´Â ´ë±Ô¸ð Á¦Á¶ ½Ã¼³¿¡¼­ Áß¿äÇÑ ÃÊÁ¡ÀÌ µÇ°í ÀÖ½À´Ï´Ù. Â÷¼¼´ë ¸ðµ¨Àº Áö´ÉÇü Á¦¾î ½Ã½ºÅÛ, ³»Àå Áø´Ü ¹× °¡º¯ Á֯ļö µå¶óÀ̺긦 Á¦°øÇÏ¿© »ç¿ëÀÚ°¡ ¼º´ÉÀ» ¹Ì¼¼ Á¶Á¤ÇÏ°í °íÀåÀÌ ¹ß»ýÇϱâ Àü¿¡ ÀÌ»óÀ» °¨ÁöÇÒ ¼ö ÀÖµµ·Ï µµ¿ÍÁÖ¸ç, IoT Ç÷§Æû°úÀÇ ÅëÇÕÀ» ÅëÇØ ¿ø°Ý ¸ð´ÏÅ͸µ ¹× ¿¹Áöº¸ÀüÀ» °¡´ÉÇÏ°Ô ÇÏ¿© ´Ù¿îŸÀÓÀ» ÁÙÀÌ°í »ê¾÷ ȯ°æÀÇ Ã³¸® ´É·ÂÀ» ÃÖÀûÈ­ÇÕ´Ï´Ù. »ê¾÷ ȯ°æÀÇ Ã³¸® ´É·ÂÀ» ÃÖÀûÈ­Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ Á¦Á¶¾÷üµéÀº ¹ÝµµÃ¼ °øÀåÀ» À§ÇÑ Å¬¸°·ë¿ë ¹öÀü, ºÎ½Ä¼ºÀÌ °­ÇÑ È­ÇРȯ°æÀ» À§ÇÑ ³»½Ä¼º ¸ðµ¨ µî ƯÁ¤ »ê¾÷ ¿ä±¸»çÇ׿¡ ¸Â°Ô ¼³°è¸¦ ¸ÂÃãÈ­Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¾÷±×·¹ÀÌµå ¹× ºÎǰ ±³Ã¼°¡ ¿ëÀÌÇÏ°í ¼³Ä¡ ½Ã½ºÅÛÀÇ ¼ö¸í°ú ÀûÀÀ¼ºÀ» Çâ»ó½ÃŰ´Â ¸ðµâ½Ä ¼³°è¿¡ ´ëÇÑ °ü½Éµµ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº ´Ü¼øÈ÷ ±â´É¼ºÀ» Çâ»ó½Ãų »Ó¸¸ ¾Æ´Ï¶ó ÃѼÒÀ¯ºñ¿ëÀ» ³·Ãç ³ª³ëÅ×Å©³î·¯Áö¿¡¼­ ¾çÀÚÄÄÇ»ÆÃ¿¡ À̸£±â±îÁö ´Ù¾çÇÑ ºÐ¾ß·Î Àû¿ë ¹üÀ§¸¦ ³ÐÈ÷°í ÀÖ½À´Ï´Ù.

¿¬±¸, ¿¡³ÊÁö, ¿ìÁÖ°³¹ß ºÐ¾ßÀÇ ¼¼°è µ¿ÇâÀÌ ½ÃÀå ¿ªÇÐÀ» ¾î¶»°Ô Çü¼ºÇϰí Àִ°¡?

°Å½Ã °æÁ¦¿Í °úÇÐ ±â¼úÀÇ ¹ßÀüÀ¸·Î Åͺ¸ ºÐÀÚ ÆßÇÁ ¼ö¿ä °î¼±Àº ºü¸£°Ô º¯È­Çϰí ÀÖ½À´Ï´Ù. ƯÈ÷ ÇÙÀ¶ÇÕ, ¾çÀÚ°úÇÐ, ³ª³ëÆÐºê¸®ÄÉÀÌ¼Ç µîÀÇ ºÐ¾ß¿¡¼­´Â ½ÇÇè°ú Á¶ÀÛÀ» À§ÇØ ±ØÇÑÀÇ Áø°ø Á¶°ÇÀÌ ÇÊ¿äÇÕ´Ï´Ù. ¿¹¸¦ µé¾î ITER(±¹Á¦ÇÙÀ¶ÇÕ½ÇÇè·Î)¸¦ ºñ·ÔÇÑ ÇÙÀ¶ÇÕ ÇÁ·ÎÁ§Æ®¿¡¼­´Â °­·ÂÇÑ Áø°ø ½Ã½ºÅÛÀÌ ÇÊ¿äÇϸç, Åͺ¸ ºÐÀÚ ÆßÇÁ´Â Áß¿äÇÑ Àο¡ÀÌºí·¯·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù. ¾Æ½Ã¾Æ, À¯·´, ºÏ¹Ì, ³²¹Ì¿¡¼­ °Ç¼³ ÁßÀ̰ųª ¾÷±×·¹À̵å ÁßÀÎ ÀÔÀÚ °¡¼Ó±â ¹× ½ÌÅ©·ÎÆ®·Ðµµ ¸¶Âù°¡ÁöÀÔ´Ï´Ù. ¿ìÁÖ ¹Î¿µÈ­¿Í ±¤´ë¿ª Àü¼ÛÀ» À§ÇÑ ¸Þ°¡ ÄÁ½ºÅÚ·¹À̼ǿ¡ ÈûÀÔÀº À§¼º ºÕµµ Áß¿äÇÑ ¿øµ¿·ÂÀÔ´Ï´Ù. ¿­ »çÀÌŬ ¹× ºÎǰ ÀÎÁõÀ» À§ÇÑ Áø°ø Å×½ºÆ® è¹ö´Â °í󸮷® Åͺ¸ ºÐÀÚ ÆßÇÁ¿¡ Å©°Ô ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. ¿¡³ÊÁö ºÐ¾ß¿¡¼­´Â ž籤¹ßÀü°ú ¹èÅ͸® ±â¼úÀÇ È®»êÀ¸·Î ÀÎÇØ Á¦Á¶ °øÁ¤¿¡ ¿©·¯ ´Ü°èÀÇ Áø°ø ´Ü°è°¡ Æ÷ÇԵǾî ÀÖÀ¸¸ç, ÆßÇÁ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÇ·á ºÐ¾ß¿¡¼­µµ ¿µ»ó Áø´Ü ¹× Á¦¾à ¿¬±¸ÀÇ È®´ë·Î ÀÎÇØ °íÁ¤¹Ð Áø°ø ȯ°æÀÌ Áö¼ÓÀûÀ¸·Î ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾ç, ƯÈ÷ Áß±¹, Çѱ¹, ´ë¸¸Àº ÀüÀÚ±â±â Á¦Á¶¾÷ÀÇ ¿ìÀ§¸¦ ¹ÙÅÁÀ¸·Î ¿©ÀüÈ÷ ¼ö¿äÀÇ Áß½ÉÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¹Ý¸é, À¯·´°ú ºÏ¹Ì´Â ¿Â¼î¾î¸µ Àü·«°ú Á¤ºÎ Áö¿ø Çõ½Å ±¸»ó¿¡ ÈûÀÔ¾î ºÎȰÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼¼°è ¼ö¿äÀÇ ´Ùº¯È­·Î ÀÎÇØ Åͺ¸ ºÐÀÚ ÆßÇÁ ½ÃÀåÀº ±× ¾î´À ¶§º¸´Ù ź·ÂÀûÀ̰í Áö¿ªÀû ±ÕÇüÀÌ Àß ÀâÇô ÀÖ½À´Ï´Ù.

Åͺ¸ ºÐÀÚ ÆßÇÁ ½ÃÀåÀÇ ¼ºÀåÀº ¸î °¡Áö ¿äÀο¡ ÀÇÇØ ÃËÁøµÇ°í ÀÖ½À´Ï´Ù.

Åͺ¸ ºÐÀÚ ÆßÇÁ ½ÃÀåÀÇ ±Þ¼ÓÇÑ ¼ºÀåÀº »ê¾÷º° ¿äÀΰú ±â¼úÀû ÃËÁø¿äÀÎÀÇ °áÇÕ¿¡ ÀÇÇØ Áö¿øµÇ°í ÀÖ½À´Ï´Ù. EUV ¸®¼Ò±×·¡ÇÇ¿Í ¿øÀÚÃþ ÁõÂø(ALD)ÀÇ ´ëÁßÈ­´Â Áø°ø ½Ã½ºÅÛÀÇ ¼º´É ¿ä±¸ »çÇ×À» ´õ¿í ¾ö°ÝÇÏ°Ô ¸¸µé¾î Åͺ¸ ºÐÀÚ ÆßÇÁÀÇ »ç¿ë¿¡ Á÷Á¢ÀûÀÎ ÀÌÀÍÀ» °¡Á®´Ù ÁÖ¸ç, ¿þÀÌÆÛÀÇ ¼­ºê¸¶ÀÌÅ©·Ð ·¹º§ °¡°ø¿¡´Â ±ØµµÀÇ Áø°ø Á¦¾î°¡ ÇÊ¿äÇÕ´Ï´Ù. ºÐ¼® ±â±â ºÐ¾ß¿¡¼­´Â »ý¸í °øÇÐ, Á¦¾à ¹× ȯ°æ °úÇÐ ºÐ¾ßÀÇ °í󸮷® Áú·®ºÐ¼® ¹× ÀüÀÚÇö¹Ì°æ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡°¡ ÆßÇÁ ÅëÇÕÀÇ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. 2Â÷¿ø Àç·á ¹× ÃÊÀüµµÃ¼¿Í °°Àº ÷´Ü Àç·á ¿¬±¸¸¦ ÃßÁøÇϱâ À§Çؼ­´Â Åͺ¸ ºÐÀÚ ÆßÇÁ°¡ Áö¿øÇÏ´Â Áø°ø ȯ°æÀÌ ÇÊ¿äÇÕ´Ï´Ù. Á¦Á¶¾÷ÀÇ °üÁ¡¿¡¼­ º¼ ¶§, ÀÚµ¿È­ ¹× µðÁöÅÐ °øÀå ȯ°æÀÇ Ãß¼¼´Â ¼¾¼­¿Í IoT ±â´ÉÀ» ÅëÇÕÇÑ ½º¸¶Æ® ÆßÇÁÀÇ »ç¿ëÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¼ÒºñÀÚ Çൿ Ãø¸é¿¡¼­´Â °íÇØ»óµµ µð½ºÇ÷¹ÀÌ, Àü±âÀÚµ¿Â÷, ½º¸¶Æ® ±â±âÀÇ ÀαⰡ ³ô¾ÆÁü¿¡ µû¶ó Áø°ø ½Ã½ºÅÛÀ» Æ÷ÇÔÇÑ º¹ÀâÇÑ Á¦Á¶ °øÁ¤À» ÇÊ¿ä·Î ÇÏ´Â ÆßÇÁÀÇ º¸±ÞÀÌ °£Á¢ÀûÀ¸·Î È®´ëµÇ°í ÀÖ½À´Ï´Ù. ¾çÀÚ ÄÄÇ»ÆÃ, ½É¿ìÁÖ Å½»ç, ¸¶ÀÌÅ©·Î Àü±â ±â°è ½Ã½ºÅÛ(MEMS) Á¦Á¶¿Í °°Àº »õ·Î¿î ºÐ¾ß´Â Åͺ¸ ºÐÀÚ ÆßÇÁ¿¡ »õ·Î¿î ¿ä±¸ »çÇ×°ú ÀÀ¿ë ¸ðµå¸¦ µµÀÔÇϰí ÀÖ½À´Ï´Ù. ¸¶Áö¸·À¸·Î À¯Áöº¸¼ö ºñ¿ë Àý°¨°ú °¡µ¿ ½Ã°£ ¿¬ÀåÀ» À§ÇØ ³ë·ÂÇÏ´Â »ê¾÷°è´Â °íÈ¿À², ÀúÁøµ¿, ±ä ¼ö¸íÀÇ ÆßÇÁ¸¦ ¼±È£Çϰí ÀÖÀ¸¸ç, ÀÌ´Â ½ÃÀåÀÇ ¼ºÀå ÀáÀç·ÂÀ» ´õ¿í È®½ÇÇÏ°Ô ÇØÁÖ°í ÀÖ½À´Ï´Ù.

ºÎ¹®

Á¦Ç°(Àڱ⠺λó½Ä, ¿ÀÀÏ À±È°½Ä, ÇÏÀ̺긮µå), ¿ëµµ(ºÐ¼® ±â±â, ¹ÝµµÃ¼, ¿¬±¸°³¹ß, ±âŸ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹(ÁÖ¸ñ ÇÕ°è 42»ç)

AI ÅëÇÕ

¿ì¸®´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI Åø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾ç ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÔ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Turbomolecular Pumps Market to Reach US$1.7 Billion by 2030

The global market for Turbomolecular Pumps estimated at US$1.2 Billion in the year 2024, is expected to reach US$1.7 Billion by 2030, growing at a CAGR of 5.2% over the analysis period 2024-2030. Magnetically Levitated, one of the segments analyzed in the report, is expected to record a 5.9% CAGR and reach US$1.0 Billion by the end of the analysis period. Growth in the Oil Lubricated segment is estimated at 4.4% CAGR over the analysis period.

The U.S. Market is Estimated at US$333.5 Million While China is Forecast to Grow at 9.5% CAGR

The Turbomolecular Pumps market in the U.S. is estimated at US$333.5 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$355.1 Million by the year 2030 trailing a CAGR of 9.5% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 2.1% and 4.1% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 3.1% CAGR.

Global "Turbomolecular Pumps" Market - Key Trends & Drivers Summarized

Why Are Turbomolecular Pumps Becoming Indispensable in High-Tech Manufacturing?

Turbomolecular pumps, crucial for creating ultra-high vacuum (UHV) environments, are seeing accelerating global demand as industries shift toward increasingly complex and contamination-sensitive manufacturing processes. These pumps, known for their exceptional ability to handle molecular flows and achieve pressures as low as 10?¹° mbar, are critical in industries where even minute traces of gas can compromise product quality or experimental integrity. Semiconductor manufacturing stands out as a key end-user, with photolithography and etching processes requiring pristine vacuum conditions. As chip fabrication advances toward smaller nodes-sub-5nm and beyond-the tolerances for impurities tighten, making turbomolecular pumps an absolute necessity. Similarly, the flat panel display and OLED sectors depend on these pumps for vacuum deposition and encapsulation processes. The global push for energy transition is also playing a role, with turbomolecular pumps integral to the production of solar panels and energy-efficient lighting. In life sciences, they’re vital for mass spectrometry and electron microscopy, while in academia and national labs, they support fundamental research in physics and materials science. Moreover, as space agencies and private aerospace firms conduct vacuum testing for satellite components and space-bound instruments, the relevance of these pumps continues to broaden. Their unmatched precision, cleanliness, and reliability make them the pump of choice for cutting-edge applications where performance cannot be compromised.

What’s Driving the Innovation Race Among Pump Manufacturers?

Leading manufacturers in the turbomolecular pump market are heavily investing in R&D to differentiate their offerings through innovation, performance efficiency, and cost optimization. With the rise of compact analytical instruments and benchtop lab devices, there is a growing demand for miniaturized turbomolecular pumps that do not compromise on vacuum quality. Companies are developing hybrid bearing technologies-combining magnetic and ceramic ball bearings-to reduce vibration, increase pump life, and enable maintenance-free operation. Energy efficiency is also a key focus, especially in large manufacturing facilities where dozens of pumps operate simultaneously. New-generation models offer intelligent control systems, built-in diagnostics, and variable frequency drives, helping users fine-tune performance and detect anomalies before failures occur. Integration with IoT platforms is enabling remote monitoring and predictive maintenance, reducing downtime and optimizing throughput in industrial settings. Additionally, manufacturers are tailoring designs to specific industry requirements-for example, cleanroom-compatible versions for semiconductor fabs and corrosion-resistant models for aggressive chemical environments. There’s also growing focus on modular designs that allow for easy upgrades or component replacement, increasing the lifespan and adaptability of installed systems. Such innovations are not just enhancing functionality but also lowering total cost of ownership, thereby widening the adoption base across sectors ranging from nanotechnology to quantum computing.

How Are Global Trends in Research, Energy, and Space Exploration Reshaping Market Dynamics?

Macroeconomic and scientific developments are rapidly reshaping demand curves in the turbomolecular pump landscape. Governments worldwide are ramping up investments in R&D, particularly in areas like nuclear fusion, quantum science, and nanofabrication-each of which requires extreme vacuum conditions for experimentation and operation. For instance, ITER (International Thermonuclear Experimental Reactor) and other fusion projects necessitate robust vacuum systems, positioning turbomolecular pumps as critical enablers. The same holds true for particle accelerators and synchrotrons being built or upgraded across Asia, Europe, and the Americas. The satellite boom, driven by space privatization and mega-constellations for broadband delivery, is also a significant driver. Vacuum testing chambers for thermal cycling and component qualification rely heavily on high-throughput turbomolecular pumps. On the energy front, increased deployment of photovoltaics and battery technology involves multiple vacuum steps in their manufacturing process, bolstering pump demand. Even in the medical sector, the expansion of diagnostic imaging and pharmaceutical research is creating sustained requirements for high-precision vacuum environments. The Asia-Pacific region, especially China, South Korea, and Taiwan, remains a powerhouse of demand, driven by their dominance in electronics manufacturing. Meanwhile, Europe and North America are witnessing a resurgence fueled by onshoring strategies and government-backed innovation initiatives. This global diversification of demand is making the turbomolecular pump market more resilient and geographically balanced than ever before.

The Growth in the Turbomolecular Pumps Market Is Driven by Several Factors…

The rapid expansion of the turbomolecular pumps market is anchored in a confluence of industry-specific and technological drivers. Foremost among these is the scaling complexity in semiconductor and electronics fabrication, where wafer processing at sub-micron levels necessitates extreme vacuum control. The widespread adoption of EUV lithography and atomic layer deposition (ALD) further tightens vacuum system performance requirements, directly benefiting turbomolecular pump usage. In the analytical instrumentation space, rising demand for high-throughput mass spectrometry and electron microscopy in biotechnology, pharmaceuticals, and environmental science is driving pump integration. The push toward advanced materials research, including 2D materials and superconductors, also necessitates vacuum environments supported by turbomolecular pumps. From a manufacturing standpoint, the trend toward automation and digital factory environments is encouraging the use of smart pumps with embedded sensors and IoT capabilities. On the consumer behavior front, the growing popularity of high-resolution displays, electric vehicles, and smart devices-all of which require complex manufacturing processes involving vacuum systems-is indirectly expanding pump deployment. Emerging verticals such as quantum computing, deep-space exploration, and microelectromechanical systems (MEMS) fabrication are introducing new requirements and application modes for turbomolecular pumps. Finally, the commitment of industries to reduce maintenance costs and extend uptime is leading to a preference for high-efficiency, low-vibration, long-life pumps, further solidifying the market's growth potential.

SCOPE OF STUDY:

The report analyzes the Turbomolecular Pumps market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Product (Magnetically Levitated, Oil Lubricated, Hybrid); Application (Analytical Instrumentation, Semiconductor, Research & Development, Other Applications)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 42 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â