¼¼°èÀÇ ½Ç¸®ÄÜ À½±ØÀç ½ÃÀå
Silicon-based Anode Materials
»óǰÄÚµå : 1757837
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 06¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 271 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,009,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,027,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

½Ç¸®ÄÜ À½±ØÀç ¼¼°è ½ÃÀåÀº 2030³â±îÁö 8¾ï 1,340¸¸ ´Þ·¯¿¡ À̸¦ Àü¸Á

2024³â¿¡ 4¾ï 4,470¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â ½Ç¸®ÄÜ À½±ØÀç ¼¼°è ½ÃÀåÀº 2030³â¿¡´Â 8¾ï 1,340¸¸ ´Þ·¯¿¡ À̸£°í, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 10.6%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ »êÈ­ ½Ç¸®ÄÜ/Ä«º»Àº CAGR 9.1%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 4¾ï 9,760¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ½Ç¸®ÄÜ/Ä«º» ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ Áß CAGR 13.2%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 1¾ï 2,120¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 14.2%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ½Ç¸®ÄÜ À½±ØÀç ½ÃÀåÀº 2024³â¿¡ 1¾ï 2,120¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGR 14.2%·Î 2030³â±îÁö 1¾ï 6,530¸¸ ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î¼­´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 7.8%¿Í 9.3%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 8.3%¸¦ º¸ÀÏ Àü¸ÁÀÔ´Ï´Ù.

¼¼°è '½Ç¸®ÄÜ À½±ØÀç' ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ Á¤¸®

½Ç¸®ÄÜ À½±ØÀÌ ¸®Æ¬ À̿ ¹èÅ͸®ÀÇ ¼º´ÉÀ» ÀçÁ¤ÀÇÇÏ´Â ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

½Ç¸®ÄÜ À½±ØÀç´Â À̷лó ¿ë·®ÀÌ Èæ¿¬ÀÇ ¾à 10¹è·Î ¸Å¿ì ³ô¾Æ ¸®Æ¬ÀÌ¿ÂÀüÁöÀÇ ±âÁ¸ Èæ¿¬ À½±ØÀ» ´ëüÇÒ Â÷¼¼´ë À½±ØÀç·Î ±ÞºÎ»óÇϰí ÀÖ½À´Ï´Ù. Èæ¿¬ÀÇ ¿ë·®ÀÌ 370mAh/gÀÎ ¹Ý¸é ½Ç¸®ÄÜÀº ÃÖ´ë 3,600mAh/g±îÁö ÀúÀåÇÒ ¼ö ÀÖ¾î ´õ ³ôÀº ¿¡³ÊÁö ¹Ðµµ, Àü±âÀÚµ¿Â÷ÀÇ Ç׼ӰŸ® ¿¬Àå, °¡ÀüÁ¦Ç°ÀÇ ¼º´É Çâ»óÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. Èæ¿¬ÀÇ ÀÏºÎ¶óµµ ½Ç¸®ÄÜÀ¸·Î ´ëüÇÒ ¼ö ÀÖ´Ù¸é ³ª³ë ½Ç¸®ÄÜ, »êÈ­ ½Ç¸®ÄÜ, ½Ç¸®ÄÜ-ź¼Ò º¹ÇÕÀç µî ¾î¶² °ÍÀÌµç ¹èÅ͸® ¼ö¸í, ±Þ¼Ó ÃæÀü ´É·Â, Àüü È¿À²À» ȹ±âÀûÀ¸·Î Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ¹èÅ͸® Á¦Á¶¾÷üµéÀÌ Àü±âÂ÷, ½º¸¶Æ®Æù, µå·Ð, ±×¸®µå ½ºÅ丮Áö ¼ö¿ä¸¦ ÃæÁ·½Ã۱â À§ÇØ °æÀïÇÏ´Â °¡¿îµ¥, ½Ç¸®ÄÜ ±â¹Ý À½±ØÀº ±âÁ¸ ¸®Æ¬ À̿ ±â¼úÀÇ ¿¡³ÊÁö ¹Ðµµ ÇѰ踦 µ¹ÆÄÇÒ ¼ö ÀÖ´Â ¼³µæ·Â ÀÖ´Â ±æÀ» Á¦°øÇÕ´Ï´Ù. Àç·á °øÇÐ ¹× »çÀÌŬ ¾ÈÁ¤¼ºÀÇ Áö¼ÓÀûÀÎ Çõ½ÅÀ¸·Î ½Ç¸®ÄÜ ±â¹Ý À½±Ø Àç·á´Â ½ÇÇè½Ç ±Ô¸ðÀÇ °³¹ß¿¡¼­ ½ÇÁ¦ Àû¿ëÀ¸·Î ºü¸£°Ô ÀüȯµÇ°í ÀÖ½À´Ï´Ù.

½Ç¸®ÄÜÀÇ ¾çÀû È®´ë¶ó´Â °úÁ¦¸¦ ±â¾÷Àº ¾î¶»°Ô ±Øº¹Çϰí Àִ°¡?

¹èÅ͸® À½±Ø¿¡ ¼ø¼ö ½Ç¸®ÄÜÀ» »ç¿ëÇÏ´Â µ¥ ÀÖ¾î °¡Àå Å« À庮Àº ¸®Æ¬È­ ½Ã 300% ÀÌ»ó ÆØÃ¢ÇÏ´Â °æÇâÀÌ ÀÖ¾î ±¸Á¶Àû ¿­È­, ¿ë·® ÀúÇÏ, ¹èÅ͸® ¼ö¸í ÀúÇÏ·Î À̾îÁø´Ù´Â Á¡ÀÔ´Ï´Ù. ±×·¯³ª ÃÖ±Ù Àç·á°úÇÐÀÇ Çõ½ÅÀ¸·Î ÀÎÇØ »ó¾÷Àû Ȱ¿ëÀÌ °¡´ÉÇØÁ³½À´Ï´Ù. Á¦Á¶¾÷üµéÀº ÀÌ·¯ÇÑ ÆØÃ¢À» ¿ÏÃæÇϰí Àü±ØÀÇ ¹«°á¼ºÀ» À¯ÁöÇϱâ À§ÇØ ³ª³ë ±¸Á¶ÀÇ ½Ç¸®ÄÜ ÀÔÀÚ, ½Ç¸®ÄÜ-ź¼Ò º¹ÇÕÀç, ½Ç¸®ÄÜ »êÈ­¹°À» »ç¿ëÇϰí ÀÖ½À´Ï´Ù. ÄÚÆÃ, ¹ÙÀδõ, Àΰø SEI(°íü ÀüÇØÁú °è¸é) Ãþµµ °è¸éÀ» ¾ÈÁ¤È­½ÃŰ°í »çÀÌŬ ¼º´ÉÀ» Çâ»ó½Ã۱â À§ÇØ ÃÖÀûÈ­µÇ¾î ÀÖ½À´Ï´Ù. È­Çбâ»óÁõÂø¹ý(CVD), ¿øÀÚÃþ ÁõÂø¹ý(ALD), È®Àå °¡´ÉÇÑ º¼¹Ð ±â¼ú°ú °°Àº ÷´Ü Á¦Á¶ °øÁ¤À» ÅëÇØ ±ÕÀÏÇÑ ºÐ»ê°ú ÀϰüµÈ ǰÁúÀ» ½ÇÇöÇÕ´Ï´Ù. ÀϺΠ¼³°è¿¡¼­´Â ½Ç¸®ÄÜÀ» Àüµµ¼º ¸ÅÆ®¸¯½º¿¡ ³»ÀåÇϰųª ±×·¡Çɰú ÇÏÀ̺긮µåÈ­ÇÏ¿© Àüµµ¼º°ú ±â°èÀû ź¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù. ÀÌ·¯ÇÑ ¿£Áö´Ï¾î¸µ ¼Ö·ç¼ÇÀ» ÅëÇØ ½Ç¸®ÄÜ ±â¹Ý À½±ØÀº Ç¥ÁØ ¹èÅ͸® ÇüÅ¿ÍÀÇ È£È¯¼ºÀ» ³ôÀÌ´Â µ¿½Ã¿¡ »ó¾÷Àû ¼ö¿ä¸¦ ÃæÁ·½Ã۱â À§ÇØ »çÀÌŬ ¹× ¾ÈÀü¼ºÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù.

EV Çõ¸íÀº ½Ç¸®ÄÜ À½±ØÀç ¼ö¿ä¸¦ µÞ¹ÞħÇÏ´Â Áß¿äÇÑ Ã˸ÅÁ¦Àΰ¡?

ÀÚµ¿Â÷ ¹× ¹èÅ͸® Á¦Á¶¾÷üµéÀº ¹èÅ͸® Å©±â¿Í ºñ¿ëÀ» Áõ°¡½ÃŰÁö ¾ÊÀ¸¸é¼­µµ ´õ ³ôÀº ¿¡³ÊÁö ¹Ðµµ¿Í ºü¸¥ ÃæÀüÀ» ¿ä±¸Çϰí ÀÖ½À´Ï´Ù. ÆÄ³ª¼Ò´Ð, LG ¿¡³ÊÁö ¼Ö·ç¼Ç, CATL, »ï¼ºSDI µî ÁÖ¿ä Àü±âÂ÷ ¹èÅ͸® °³¹ß ¾÷üµéÀº ½Ç¸®ÄÜÀÌ Ç³ºÎÇÑ À½±ØÀ» Â÷¼¼´ë ¹èÅ͸® È­Çй°Áú¿¡ Àû±ØÀûÀ¸·Î µµÀÔÇϰí ÀÖ½À´Ï´Ù. ½Ç¸®ÄÜ ±â¹Ý ¾ç±ØÀº ¿¡³ÊÁö ¹Ðµµ¸¦ 20-30% ÀÌ»ó Çâ»ó½ÃÄÑ ÁÖÇà°Å¸® ¿¬Àå ¹× ¹èÅ͸® ÆÑÀÇ °æ·®È­¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ¶ÇÇÑ, ¸®Æ¬ ÀÌ¿ÂÀÇ µ¿¿ªÇÐÀÌ °³¼±µÇ¾î ±Þ¼Ó ÃæÀü ´É·ÂÀÌ Çâ»óµÇ¾î °ø°ø½Ã¼³ ¹× Â÷·® ÃæÀü ÀÎÇÁ¶ó¿¡ »õ·Î¿î °¡´É¼ºÀ» Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ, ½Ç¸®ÄÜÀº dzºÎÇÏ°í ±âÁ¸ ¸®Æ¬ À̿ »ý»ê ¶óÀΰú ȣȯµÇ¹Ç·Î ¿ÜºÎ ´ëüǰº¸´Ù È®À强ÀÌ ¶Ù¾î³ª¸ç, Tesla, Amprius, Sila Nanotechnologies, Group14¿Í °°Àº ÆÄÀÏ·µ ÇÁ·ÎÁ§Æ® ¹× »ó¾÷Àû ÆÄÆ®³Ê½ÊÀ» ÅëÇØ ½Ç¸®ÄÜ À½±Ø Àç·á´Â ÀÌ¹Ì ¾ç»êÇü EV ¹èÅ͸® Ç÷§Æû¿¡ äÅõǰí ÀÖÀ¸¸ç, º»°ÝÀûÀÎ »ó¾÷Àû äÅÃÀº 2030³â±îÁö Å©°Ô °¡¼ÓÈ­µÉ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

½Ç¸®ÄÜ À½±ØÀç ¼¼°è ½ÃÀå ¼ºÀåÀÇ ¿øµ¿·ÂÀº?

½Ç¸®ÄÜ À½±ØÀç¼¼°è ½ÃÀåÀÇ ¼ºÀåÀº EV º¸±Þ·ü Áõ°¡, °í¿¡³ÊÁö ¹Ðµµ ¹èÅ͸® ÃßÁø, ½Ç¸®ÄÜ ¼ÒÀç °øÇÐÀÇ ¹ßÀü, ¹èÅ͸® ±â¼ú Çõ½Å¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡ µî ¿©·¯ ¿äÀο¡ ÀÇÇØ ÀÌ·ç¾îÁö°í ÀÖÀ¸¸ç, EV°¡ ÁÖ·ù°¡ µÇ°í ¿¡³ÊÁö ÀúÀå ¿ëµµ°¡ È®´ëµÊ¿¡ µû¶ó ´õ Å« ¿ë·®, ´õ ºü¸¥ ÃæÀü, ´õ ³ªÀº »çÀÌŬ ¼ö¸íÀ» °¡Áø ¾ç±Ø¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. µÈ ¾ç±Ø¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¼¼°è °¢±¹ Á¤ºÎ¿Í ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀº °íü ¸®Æ¬À̿ ¹× °í¼º´É ¸®Æ¬À̿ ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÁøÇàÇϰí ÀÖÀ¸¸ç, ½Ç¸®Äܰè À½±ØÀº À̸¦ ½ÇÇöÇÏ´Â Áß¿äÇÑ ¿ä¼Ò·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ¹èÅ͸® ½ºÅ¸Æ®¾÷°ú ¼ÒÀç ±â¾÷µéÀº ÀÚµ¿Â÷, Ç×°ø¿ìÁÖ, °¡Àü ºÎ¹®ÀÇ ÁÖ¹® Áõ°¡¿¡ ´ëÀÀÇϱâ À§ÇØ ÀÚ±ÝÀ» È®º¸ÇÏ°í »ý»ê ±Ô¸ð¸¦ È®´ëÇϰí ÀÖ½À´Ï´Ù. µ¿½Ã¿¡ ¿¬±¸ °³¹ßÀÇ È¹±âÀûÀÎ ¹ßÀüÀº »çÀÌŬ ¼ö¸í°ú Á¦Á¶¼ºÀ» Çâ»ó½Ã۰í ÀÌÀüÀÇ ±â¼úÀû Àå¾Ö¹°À» °¨¼Ò½Ã۰í ÀÖ½À´Ï´Ù. ¹Ì±¹, EU, Áß±¹, Çѱ¹ÀÇ Áö¿ªÀû ¹èÅ͸® Á¦Á¶·ÎÀÇ ÀüȯÀº Áö¿ª ½Ç¸®ÄÜ À½±Ø °ø±Þ¸Á¿¡µµ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. ¿¡³ÊÁö ÀúÀåÀÌ ¸ðºô¸®Æ¼, ÀüÀÚÁ¦Ç°, Àü·Â¸Á ¾ÈÁ¤¼ºÀÇ ±Ù°£ÀÌ µÇ¸é¼­ ½Ç¸®ÄÜ À½±ØÀç´Â ¼¼°è ¹èÅ͸® Çõ½Å¿¡ °áÁ¤ÀûÀÎ ¿ªÇÒÀ» ÇÏ°Ô µÉ °ÍÀÔ´Ï´Ù.

ºÎ¹®

À¯Çü(½Ç¸®ÄÜ »êÈ­¹°/Ä«º», ½Ç¸®ÄÜ/Ä«º»), ¿ëµµ(ÀÚµ¿Â÷, °¡Àü, Àüµ¿ °ø±¸, ±âŸ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ ¿¹(ÃÑ 34°³»ç)

AI ÅëÇÕ

°ËÁõ µÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇÕ´Ï´Ù.

Global Industry Analysts´Â LLMÀ̳ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾ç ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Silicon-based Anode Materials Market to Reach US$813.4 Million by 2030

The global market for Silicon-based Anode Materials estimated at US$444.7 Million in the year 2024, is expected to reach US$813.4 Million by 2030, growing at a CAGR of 10.6% over the analysis period 2024-2030. Silicon Oxide / Carbon, one of the segments analyzed in the report, is expected to record a 9.1% CAGR and reach US$497.6 Million by the end of the analysis period. Growth in the Silicon / Carbon segment is estimated at 13.2% CAGR over the analysis period.

The U.S. Market is Estimated at US$121.2 Million While China is Forecast to Grow at 14.2% CAGR

The Silicon-based Anode Materials market in the U.S. is estimated at US$121.2 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$165.3 Million by the year 2030 trailing a CAGR of 14.2% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 7.8% and 9.3% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 8.3% CAGR.

Global "Silicon-Based Anode Materials" Market - Key Trends & Drivers Summarized

Why Are Silicon-Based Anodes Poised to Redefine Lithium-Ion Battery Performance?

Silicon-based anode materials are rapidly emerging as the next-generation alternative to conventional graphite anodes in lithium-ion batteries due to their significantly higher theoretical capacity-approximately ten times greater than graphite. Silicon can store up to ~3,600 mAh/g, compared to graphite’s ~370 mAh/g, enabling higher energy density, longer range for electric vehicles, and better performance in consumer electronics. The ability to replace even a fraction of graphite with silicon, whether in the form of nano-silicon, silicon oxide, or silicon-carbon composites, can dramatically enhance battery life, fast-charging capabilities, and overall efficiency. As battery makers race to meet the demands of EVs, smartphones, drones, and grid storage, silicon-based anodes offer a compelling pathway to break past the energy density limits of traditional lithium-ion technologies. With ongoing breakthroughs in material engineering and cycle stability, silicon-based anode materials are quickly transitioning from lab-scale development to real-world deployment.

How Are Companies Overcoming the Challenge of Silicon’s Volume Expansion?

The primary barrier to using pure silicon in battery anodes has been its tendency to expand by over 300% during lithiation, leading to structural degradation, capacity fading, and reduced battery life. However, recent material science innovations are enabling commercial viability. Manufacturers are using nano-structured silicon particles, silicon-carbon composites, and silicon oxides to buffer this expansion and maintain electrode integrity. Coatings, binders, and artificial SEI (Solid Electrolyte Interphase) layers are also being optimized to stabilize interfaces and improve cycling performance. Advanced manufacturing processes such as chemical vapor deposition (CVD), atomic layer deposition (ALD), and scalable ball milling techniques are allowing for uniform dispersion and consistent quality. In some designs, silicon is embedded in conductive matrices or hybridized with graphene to improve conductivity and mechanical resilience. These engineering solutions are making silicon-based anodes increasingly compatible with standard battery formats, while improving cyclability and safety to meet commercial demands.

Is the EV Revolution the Key Catalyst Behind Silicon Anode Material Demand?

The explosive growth of electric vehicles is the primary driver for silicon-based anode development, as automakers and battery manufacturers seek higher energy density and faster charging without increasing battery size or cost. Major EV battery developers-including Panasonic, LG Energy Solution, CATL, and Samsung SDI-are actively integrating silicon-rich anodes into their next-generation battery chemistries. Silicon-based anodes can help achieve over 20-30% energy density improvements, allowing longer driving ranges or reduced battery pack weight. Fast-charging capabilities are also enhanced due to better lithium ion kinetics, enabling new possibilities for public and fleet charging infrastructure. Additionally, silicon’s abundance and compatibility with existing lithium-ion manufacturing lines make it more scalable than exotic alternatives. Pilot projects and commercial partnerships-such as those involving Tesla, Amprius, Sila Nanotechnologies, and Group14-are already pushing silicon anode materials into production-grade EV battery platforms, with full commercial adoption expected to accelerate significantly through 2030.

What’s Driving the Global Market Growth for Silicon-Based Anode Materials?

The growth in the global silicon-based anode materials market is driven by several factors including rising EV adoption, the push for high-energy-density batteries, advances in silicon material engineering, and increasing investment in battery innovation. As EVs become mainstream and energy storage applications expand, the demand for anodes with greater capacity, faster charging, and improved cycle life is intensifying. Governments and automakers worldwide are investing in solid-state and high-performance lithium-ion technologies, where silicon-based anodes serve as a critical enabler. Battery startups and materials companies are securing funding and scaling production to meet growing orders from automotive, aerospace, and consumer electronics sectors. At the same time, R&D breakthroughs are improving cycle life and manufacturability, reducing earlier technical roadblocks. The shift toward regional battery manufacturing in the U.S., EU, China, and South Korea is also spurring local silicon anode supply chains. As energy storage becomes the backbone of mobility, electronics, and grid stability, silicon-based anode materials are set to play a defining role in the global battery transformation.

SCOPE OF STUDY:

The report analyzes the Silicon-based Anode Materials market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Type (Silicon Oxide / Carbon, Silicon / Carbon); Application (Automotive, Consumer Electronics, Power Tools, Other Applications)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 34 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â