¼¼°èÀÇ À¯¸® ±ÝÇü ½ÃÀå
Glass Mold
»óǰÄÚµå : 1757765
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 06¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 276 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,053,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,161,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

À¯¸® ±ÝÇü ¼¼°è ½ÃÀåÀº 2030³â±îÁö 11¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 9¾ï 1,160¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â À¯¸® ±ÝÇü ¼¼°è ½ÃÀåÀº ºÐ¼® ±â°£ÀÎ 2024-2030³â¿¡ CAGR 3.0%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 11¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ÇÕ±Ý ÁÖö ±ÝÇüÀº CAGR 3.3%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 6¾ï 9,940¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º¸Åë ÁÖö ±ÝÇü ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 2.1%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 2¾ï 4,840¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 5.7%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ À¯¸® ±ÝÇü ½ÃÀåÀº 2024³â¿¡ 2¾ï 4,840¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGR 5.7%·Î ¼ºÀåÇÏ¿© 2030³â±îÁö 2¾ï 1,300¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 1.1%¿Í 2.3%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 1.7%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ À¯¸® ±ÝÇü ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

¿Ö À¯¸® ±ÝÇüÀº »ê¾÷¿ë ¹× °¡Á¤¿ë Á¤¹Ð À¯¸® ¼ºÇü¿¡ ÇʼöÀûÀΰ¡?

À¯¸® ±ÝÇüÀº ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼­ Á¤¹Ð À¯¸® ºÎǰÀÇ ¼ºÇü¿¡ ÇʼöÀûÀÎ µµ±¸·Î, ±â´É¼º ¹× Àå½Ä¿ë À¯¸® Á¦Ç° Á¦Á¶¿¡ ÇÊ¿äÇÑ ¸ð¾ç, Ç¥¸é Áú°¨ ¹× Ä¡¼ö Á¤È®µµ¸¦ Á¦°øÇÕ´Ï´Ù. ÀϹÝÀûÀ¸·Î ÁÖö, Èæ¿¬, ¼¼¶ó¹Í, ¼¼¶ó¹Í, °í±Þ °­Ã¶ µîÀ¸·Î ¸¸µé¾îÁö´Â ÀÌ ±ÝÇüµéÀº ÇÁ·¹½º, ºí·ÎÀ×, ÁÖÁ¶, ¼ºÇü µîÀÇ °øÁ¤¿¡ »ç¿ëµÇ¸ç, º´°ú ½Ä±â¿¡¼­ ±¤ÇÐ ·»Áî, Á¶¸í±â±¸, ÀÚµ¿Â÷ À¯¸® ºÎǰ¿¡ À̸£±â±îÁö ¸ðµç °ÍÀ» »ý»êÇÕ´Ï´Ù. ±ÝÇüÀº ¿ëÀ¶ À¯¸®¿Í ÃÖÁ¾ Á¦Ç°ÀÇ Áß°£ ¿ªÇÒÀ» Çϸç Ç¥¸é ǰÁú, Àϰü¼º, ±¸Á¶Àû ¹«°á¼º¿¡ ¿µÇâÀ» ¹ÌĨ´Ï´Ù. ¿¹¸¦ µé¾î, ¿ë±â À¯¸® Á¦Á¶¿¡¼­ ±ÝÇüÀº ±ÕÀÏÇÑ µÎ²²¿Í ºÎÇǸ¦ º¸ÀåÇϸç, ƯÈ÷ ½Äǰ, À½·á ¹× ÀǾàǰ Æ÷ÀåÀÇ °æ¿ì ¹ÌÀû °¡Ä¡¿Í ±â´É¼º ¸ðµÎ¿¡ Áß¿äÇÕ´Ï´Ù. ÀÚµ¿Â÷ »ê¾÷°ú Á¶¸í »ê¾÷¿¡¼­ À¯¸® ±ÝÇüÀº º¹ÀâÇÑ Çü»ó°ú ±¤ÇÐ Á¤¹Ðµµ¸¦ °¡´ÉÇÏ°Ô ÇÏ¿© Çìµå¶óÀÌÆ®, µð½ºÇ÷¹ÀÌ, °è±âÆÇ°ú °°Àº ºÎǰ¿¡ ÇʼöÀûÀÔ´Ï´Ù. ¶ÇÇÑ, ¹Ì¼ú ¹× ½Ç³» Àå½Ä ºÐ¾ß¿¡¼­´Â ±ÝÇüÀ» »ç¿ëÇÏ¿© °ÇÃà ¿ä¼Ò¿Í Àå½Äǰ¿¡ µ¶Æ¯ÇÑ Áú°¨°ú ¸¶°¨À» ºÎ¿©ÇÕ´Ï´Ù. ±ÝÇü Àç·áÀÇ ³»±¸¼º°ú ¿­ÀüµµÀ²Àº »çÀÌŬ ŸÀÓ°ú Á¦Ç° ǰÁú¿¡ Á÷Á¢ÀûÀÎ ¿µÇâÀ» ¹ÌÄ¡±â ¶§¹®¿¡ ±ÝÇü ¿£Áö´Ï¾î¸µÀº »ý»ê¼ºÀÇ ÇÙ½É ¿ä¼ÒÀÔ´Ï´Ù. »ê¾÷°è°¡ ´õ ¾ö°ÝÇÑ °øÂ÷, ´õ ³ôÀº ó¸® ´É·Â ¹× Çõ½ÅÀûÀÎ À¯¸® Çü»óÀ» °è¼Ó Ãß±¸ÇÔ¿¡ µû¶ó ÷´Ü Á¤¹Ð À¯¸® ±ÝÇüÀÇ ¿ªÇÒÀº ¼¼°è Á¦Á¶ ¹ë·ùüÀο¡¼­ Á¡Á¡ ´õ Áß½ÉÀûÀÎ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù.

À¯¸® ±ÝÇü ¼³°èÀÇ Çõ½ÅÀº ¾ÖÇø®ÄÉÀÌ¼Ç ¿ä±¸ »çÇ×°ú »ê¾÷ ¿ä±¸ »çÇ׿¡ µû¶ó ¾î¶»°Ô Çü¼ºµË´Ï±î?

À¯¸® ±ÝÇü ±â¼úÀÇ ÁøÈ­´Â Á¦Ç° ǰÁú Çâ»ó, »çÀÌŬ ŸÀÓ ´ÜÃà, ÀÛ¾÷ È¿À²¼º Çâ»ó°ú °°Àº »ê¾÷º° ¿ä±¸»çÇ׿¡ ÀÇÇØ ÃßÁøµÇ°í ÀÖ½À´Ï´Ù. Æ÷Àå »ê¾÷¿¡¼­´Â °¡º±°í ³»±¸¼ºÀÌ ¶Ù¾î³­ ¿ë±â¿¡ ´ëÇÑ ¿ä±¸°¡ °­µµ¿Í ±ÕÀϼºÀ» À¯ÁöÇϸ鼭 ¾ãÀº µÎ²²ÀÇ À¯¸®¸¦ »ç¿ëÇÒ ¼ö ÀÖ´Â ±ÝÇü¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¸¶Âù°¡Áö·Î, Á¦Ç° ¾ÈÀü°ú ¶óº§¸µ ±ÔÁ¤ Áؼö¸¦ º¸ÀåÇϱâ À§ÇØ ºÎÇǰ¡ °íµµ·Î Á¦¾îµÇ°í ¿Ïº®ÇÑ ¸¶°¨ ó¸®µÈ ¿ë±â¸¦ ÇÊ¿ä·Î ÇÏ´Â Á¦¾à ºÐ¾ß´Â Ç¥¸é ǰÁúÀÌ ¿ì¼öÇÏ°í ¿­ ¿Ö°îÀ» ÃÖ¼ÒÈ­ÇÏ´Â Á¤¹ÐÇÏ°Ô ¼³°èµÈ ±ÝÇü¿¡ ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ ºÐ¾ß¿¡¼­´Â À©µå½Çµå, Çìµå¾÷ µð½ºÇ÷¹ÀÌ, ÆÄ³ë¶ó¸¶ ·çÇÁ¿¡ »ç¿ëµÇ´Â °î¼±ÇüÀÇ º¹ÀâÇÑ À¯¸® ÆÐ³ÎÀÇ Ãß¼¼·Î ÀÎÇØ ³ÐÀº ¸éÀû¿¡¼­ ¾ö°ÝÇÑ Ä¡¼ö °øÂ÷¸¦ À¯ÁöÇÒ ¼ö ÀÖ´Â °í±Þ ±ÝÇü ¼³°è°¡ ¿ä±¸µË´Ï´Ù. ¹Î»ý¿ë ÀüÀÚ±â±â¿¡¼­´Â ½º¸¶Æ®Æù Ä¿¹ö, ½º¸¶Æ®¿öÄ¡ È­¸é µî ¼ÒÇüÈ­µÈ À¯¸® ºÎǰ¿¡ ¹ÌÅ©·Ð ´ÜÀ§ÀÇ Á¤¹Ðµµ¿Í ³·Àº ¸¶¸ðÀ²À» °®Ãá ÃÊÁ¤¹Ð ±ÝÇüÀÌ ÇÊ¿äÇÕ´Ï´Ù. ÀÌ·¯ÇÑ »ê¾÷ÀÌ ´õ¿í µðÀÚÀÎ Áß½ÉÀûÀÌ°í ¼º´É¿¡ ÁßÁ¡À» µÎ¸é¼­ ±ÝÇü Á¦Á¶¾÷ü´Â ƯÁ¤ Çü»ó, »ý»ê ±Ô¸ð ¹× Àç·á ¿ä±¸ »çÇ׿¡ ¸Â´Â ¸ÂÃãÇü ±ÝÇü ¼Ö·ç¼ÇÀ» Á¦°øÇØ¾ß ÇÕ´Ï´Ù. ¶ÇÇÑ, Á¦Ç° ¶óÀÌÇÁ»çÀÌŬÀÌ Âª¾ÆÁö°í ¼ÒºñÀç ¸ÂÃãÈ­°¡ ÁøÇàµÊ¿¡ µû¶ó, ½Å¼ÓÇÑ À籸¼º ¹× º¯°æÀÌ °¡´ÉÇÑ À¯¿¬ÇÑ ±ÝÇü ½Ã½ºÅÛ¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿ä±¸»çÇ×ÀÇ ÁøÈ­·Î ÀÎÇØ À¯¸® ±ÝÇü »ê¾÷Àº ÀçÆíµÇ°í ÀÖÀ¸¸ç, ´Ù¾çÇÑ ÃÖÁ¾ ¿ëµµÀÇ ¹Ì¹¦ÇÑ ¿ä±¸¸¦ ÃæÁ·½Ã۱â À§ÇØ ±â¼ú Çõ½Å, Àç·á °úÇÐ ¹× °øÁ¤ ÃÖÀûÈ­¿¡ ÁßÁ¡À» µÎ°í ÀÖ½À´Ï´Ù.

À¯¸® ±ÝÇüÀÇ È¿À²¼º°ú ¼ö¸íÀ» Çâ»ó½ÃŰ´Â ±â¼ú ¹ßÀüÀº ¹«¾ùÀΰ¡?

Àç·á°øÇÐ, Ç¥¸é ó¸®, µðÁöÅÐ Á¦Á¶ ºÐ¾ßÀÇ ±â¼ú ¹ßÀüÀº À¯¸® ±ÝÇüÀÇ ¼º´É, ³»±¸¼º, ºñ¿ë È¿À²¼ºÀ» Å©°Ô Çâ»ó½ÃÄ×½À´Ï´Ù. ±â¼ú Çõ½ÅÀÇ ÁÖ¿ä ºÐ¾ß Áß Çϳª´Â ¿ì¼öÇÑ ³»¿­ Ãæ°Ý¼º, À¯¸®¿ÍÀÇ ³·Àº Á¢Âø·Â, ±ä ¼ö¸íÀ» Á¦°øÇÏ´Â °í¼º´É ÇÕ±Ý ¹× º¹ÇÕÀç·áÀÇ °³¹ßÀÔ´Ï´Ù. ¿¹¸¦ µé¾î, Èæ¿¬°ú ÷´Ü ¼¼¶ó¹ÍÀº ºñÁ¡Âø¼º°ú È­ÇÐÀû ºÎ½Ä¿¡ ´ëÇÑ ³»¼ºÀ¸·Î ÀÎÇØ °í¿Â ÀÀ¿ë ºÐ¾ß ¹× Ư¼ö À¯¸® ¼ºÇü¿ë ±ÝÇü¿¡ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. Å©·Ò µµ±Ý, ´ÏÄÌ-ÀÎ, ¼¼¶ó¹Í ¿­ À庮°ú °°Àº Ç¥¸é ÄÚÆÃÀº ¸¶¸ð¸¦ ÁÙÀ̰í, ÀÌÇü¼ºÀ» Çâ»ó½Ã۸ç, ¹Ýº¹ÀûÀÎ °¡¿­ ¹× ³Ã°¢ »çÀÌŬ¿¡¼­µµ Ä¡¼ö ¾ÈÁ¤¼ºÀ» À¯ÁöÇϱâ À§ÇØ Àû¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀûÃþ °¡°ø°ú CNC °¡°ø ±â¼úÀº ±ÝÇü ÇÁ·ÎÅäŸÀÔ Á¦ÀÛ°ú »ý»ê¿¡ Çõ¸íÀ» °¡Á®¿ÔÀ¸¸ç, º¸´Ù º¹ÀâÇϰí Á¤¹ÐÇÑ ¼³°è¸¦ ªÀº ¸®µå ŸÀÓÀ¸·Î °¡´ÉÇÏ°Ô Çß½À´Ï´Ù. ÀÌ·¯ÇÑ µðÁöÅÐ µµ±¸´Â ±ÝÇü Çü»óÀÇ ºü¸¥ ¹Ýº¹À» °¡´ÉÇÏ°Ô Çϰí, °³¹ß ÇÁ·Î¼¼½º¸¦ °³¼±Çϸç, ÁÖ¹®Çü Ä¿½ºÅ͸¶ÀÌ¡À» ¿ëÀÌÇÏ°Ô ÇÕ´Ï´Ù. ¶ÇÇÑ, ¿¹Ãø ¸ðµ¨¸µ ¹× ½Ã¹Ä·¹ÀÌ¼Ç ¼ÒÇÁÆ®¿þ¾î¸¦ ÅëÇØ Á¦Á¶¾÷ü´Â ¼ºÇü °øÁ¤ Áß ¿­ È帧, Àç·á ÀÀ·Â ¹× À¯¸®ÀÇ °Åµ¿À» ºÐ¼®ÇÏ¿© ÁÙ¹«´Ì, ±âÆ÷, µÚƲ¸²°ú °°Àº °áÇÔÀ» ÃÖ¼ÒÈ­ÇÏ´Â ÃÖÀûÀÇ ±ÝÇü ¼³°è¸¦ ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÚµ¿ ¿¬¸¶ ¹× ÅØ½ºÃ³¸µ ½Ã½ºÅÛµµ ±¤ÇÐ À¯¸® ¹× Àå½Ä¿ë À¯¸®¿¡ Áß¿äÇÑ Ç¥¸é ±ÕÀϼºÀ» Çâ»ó½Ãŵ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº À¯¸® ±ÝÇüÀÇ ±â´É ¼ö¸í°ú Àϰü¼ºÀ» Çâ»ó½Ãų »Ó¸¸ ¾Æ´Ï¶ó, °íÁ¤¹Ð À¯¸® Á¦Á¶ÀÇ Àü¹ÝÀûÀÎ »ý»ê È¿À²°ú Á¦Ç° ǰÁú Çâ»ó¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.

À¯¸® ±ÝÇü »ê¾÷ÀÇ ¼¼°è È®ÀåÀ» ÁÖµµÇÏ´Â ½ÃÀå ¼¼·ÂÀº ¹«¾ùÀΰ¡?

¼¼°è À¯¸® ±ÝÇü ½ÃÀåÀº À¯¸® Á¦Ç°¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, ÁøÈ­ÇÏ´Â µðÀÚÀÎ Æ®·»µå, ÀÚµ¿È­ ¹× °í¼º´É ¼ÒÀç¿¡ ´ëÇÑ ÅõÀÚ·Î ÀÎÇØ ²ÙÁØÈ÷ ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. Áö¼Ó°¡´ÉÇϰí ÀçȰ¿ë °¡´ÉÇÑ Àç·á¸¦ ¼±È£ÇÏ´Â ¼ÒºñÀÚÀÇ ¼±È£¿¡ ÈûÀÔ¾î À¯¸® Æ÷ÀåÀÇ ºÎȰÀº ½Äǰ, À½·á, È­Àåǰ µîÀÇ ºÐ¾ß¿¡¼­ º´°ú Ç׾Ƹ® Á¦Á¶¿¡ »ç¿ëµÇ´Â ±ÝÇü¿¡ ´ëÇÑ ¼ö¿ä¸¦ Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù. ½ÅÈï±¹ ½ÃÀåÀÇ µµ½ÃÈ­¿Í ÀÎÇÁ¶ó °³¹ßÀº Àå½Ä ÆÐ³Î, Ä­¸·ÀÌ, Á¶¸í±â±¸¸¦ Æ÷ÇÔÇÑ °ÇÃà¿ë À¯¸® Á¦Ç°¿¡ ´ëÇÑ ¼ö¿ä¸¦ Áõ°¡½Ã۰í ÀÖÀ¸¸ç, ÀÌ·¯ÇÑ Á¦Ç°µéÀº ¸ðµÎ ±ÝÇü¿¡ ÀÇÁ¸ÇÏ¿© ¸ð¾ç°ú ¸¶¹«¸®°¡ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ »ê¾÷°ú Ç×°ø¿ìÁÖ »ê¾÷ÀÇ ¼ºÀåµµ Å« ÃËÁø¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖÀ¸¸ç, °î¸é, °æ·®, ±¤ÇÐÀûÀ¸·Î Á¤¹ÐÇÑ À¯¸® ºÎǰÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÔ¿¡ µû¶ó °í±Þ ±ÝÇüÀÌ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. ÀüÀÚ »ê¾÷¿¡¼­´Â ½º¸¶Æ®Æù, ÅÂºí¸´, ¿þ¾î·¯ºí ±â±â µîÀ» À§ÇØ ³»±¸¼ºÀÌ ¶Ù¾î³ª°í ½ºÅ©·¡Ä¡¿¡ °­ÇÑ À¯¸®°¡ ¿ä±¸µÇ°í ÀÖÀ¸¸ç, ¸¶ÀÌÅ©·Î ½ºÄÉÀÏ Á¤¹Ð ¼ºÇü¿¡ ´ëÇÑ ÅõÀÚ°¡ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. ¼¼°è Áö¼Ó°¡´É¼º ¸ñÇ¥¿Í ±ÔÁ¦´Â ƯÈ÷ Æ÷Àå ¹× ½Äǰ ¼­ºñ½º ºÐ¾ß¿¡¼­ ÇÃ¶ó½ºÆ½¿¡¼­ À¯¸®·ÎÀÇ ÀüȯÀ» ÃËÁøÇϰí ÀÖÀ¸¸ç, ÀÌ´Â ¾ÈÁ¤ÀûÀÎ ±ÝÇü »ý»ê·®À» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. ±ÝÇü ¼³°èÀÇ ±â¼úÀû Áøº¸, »çÀÌŬ ½Ã°£ ´ÜÃà, ¿­ °ü¸® °³¼±Àº Á¦Á¶¾÷ü°¡ ´õ ³ôÀº 󸮷®¿¡ ´ëÇÑ ±â´ëÄ¡¸¦ ÃæÁ·½ÃŰ¸é¼­ ¿î¿µ ºñ¿ëÀ» ³·Ãß´Â µ¥ µµ¿òÀÌ µÇ°í ÀÖ½À´Ï´Ù. ±ÝÇü Á¦Á¶¾÷ü, À¯¸® Á¦Á¶¾÷ü ¹× ¼³°è »ç¹«¼Ò °£ÀÇ Àü·«Àû ÆÄÆ®³Ê½Êµµ ±â¼ú Çõ½Å ÆÄÀÌÇÁ¶óÀÎÀ» °­È­ÇÏ°í ¸ÂÃãÈ­ ´É·ÂÀ» È®ÀåÇϰí ÀÖ½À´Ï´Ù. »ê¾÷°è°¡ ǰÁú, È¿À²¼º, µðÀÚÀÎ À¯¿¬¼ºÀ» Áö¼ÓÀûÀ¸·Î ¿ì¼±½ÃÇÏ´Â °¡¿îµ¥, À¯¸® ±ÝÇü ½ÃÀåÀº Çö´ë À¯¸® Á¦Ç°ÀÇ ±â´ÉÀû, ¹ÌÀû Ãø¸éÀ» Çü¼ºÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϱ⠶§¹®¿¡ ´õ¿í È®´ëµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ºÎ¹®

±ÝÇü À¯Çü(ÇÕ±Ý ÁÖö ±ÝÇü, º¸Åë ÁÖö ±ÝÇü, ±âŸ ±ÝÇü À¯Çü), ÃÖÁ¾ ¿ëµµ(È­ÇÐ, ½Äǰ ¹× À½·á, ÇコÄɾî, ±âŸ ÃÖÁ¾ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê(ÃÑ 36°³»ç)

AI ÅëÇÕ

¿ì¸®´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM ¹× »ê¾÷º° SLM Äõ¸®¸¦ µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Glass Mold Market to Reach US$1.1 Billion by 2030

The global market for Glass Mold estimated at US$911.6 Million in the year 2024, is expected to reach US$1.1 Billion by 2030, growing at a CAGR of 3.0% over the analysis period 2024-2030. Alloy Cast Iron Mold, one of the segments analyzed in the report, is expected to record a 3.3% CAGR and reach US$699.4 Million by the end of the analysis period. Growth in the Ordinary Cast Iron Mold segment is estimated at 2.1% CAGR over the analysis period.

The U.S. Market is Estimated at US$248.4 Million While China is Forecast to Grow at 5.7% CAGR

The Glass Mold market in the U.S. is estimated at US$248.4 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$213.0 Million by the year 2030 trailing a CAGR of 5.7% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 1.1% and 2.3% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 1.7% CAGR.

Global Glass Mold Market - Key Trends & Drivers Summarized

Why Are Glass Molds Fundamental to Precision Glass Forming in Industrial and Consumer Applications?

Glass molds are essential tools in the formation of precision glass components across a broad spectrum of industries, providing the shape, surface texture, and dimensional accuracy necessary to manufacture both functional and decorative glass products. These molds, typically made from cast iron, graphite, ceramic, or high-grade steel, are used in processes such as pressing, blowing, casting, and molding to create everything from bottles and tableware to optical lenses, lighting fixtures, and automotive glass parts. The mold acts as the intermediary between molten glass and the final product, influencing surface quality, consistency, and structural integrity. In container glass manufacturing, for example, the mold ensures uniform thickness and volume, which is critical for both aesthetic value and functionality-particularly in food, beverage, and pharmaceutical packaging. In the automotive and lighting industries, glass molds allow for complex geometries and optical precision, vital for components like headlights, displays, and instrument panels. Additionally, the art and interior decor sectors rely on molds to create unique textures and finishes for architectural elements and decorative objects. The durability and thermal conductivity of mold materials directly affect cycle times and product quality, making mold engineering a critical factor in productivity. As industries continue to push for tighter tolerances, higher throughput, and innovative glass shapes, the role of advanced, precision-engineered glass molds becomes ever more central in the global manufacturing value chain.

How Are Application Requirements and Industry Demands Shaping Innovations in Glass Mold Design?

The evolution of glass mold technology is being driven by industry-specific requirements for enhanced product quality, faster cycle times, and increased operational efficiency. In the packaging industry, the need for lightweight yet durable containers has spurred demand for molds that enable thinner wall glass without compromising strength or uniformity. Similarly, the pharmaceutical sector, which requires containers with highly controlled volumes and flawless finishes to ensure product safety and labeling compliance, depends on precision-engineered molds with superior surface quality and minimal thermal distortion. In automotive applications, the trend toward curved and complex glass panels-used in windshields, heads-up displays, and panoramic roofs-requires advanced mold designs capable of maintaining tight dimensional tolerances over large surface areas. For consumer electronics, miniaturized glass components such as smartphone covers and smart watch screens necessitate ultra-precise molds with micron-level accuracy and low wear rates. As these industries become more design-driven and performance-conscious, mold manufacturers are being pushed to offer bespoke tooling solutions that cater to specific geometries, production scales, and material requirements. Additionally, shorter product life cycles and increased customization in consumer goods are placing greater emphasis on flexible mold systems that can be rapidly retooled or modified. These evolving demands are reshaping the glass mold industry, emphasizing innovation, material science, and process optimization to meet the nuanced needs of diverse end-use applications.

What Technological Advancements Are Enhancing the Efficiency and Lifespan of Glass Molds?

Technological advancements in materials engineering, surface treatment, and digital manufacturing are significantly improving the performance, durability, and cost-efficiency of glass molds. One major area of innovation is the development of high-performance alloys and composite materials that offer superior thermal shock resistance, low adhesion to glass, and extended operational life. Graphite and advanced ceramics, for example, are being used in molds for high-temperature applications and specialty glass forming due to their non-stick properties and resistance to chemical corrosion. Surface coatings such as chromium plating, nickel-phosphorus, and ceramic thermal barriers are being applied to reduce wear, improve mold release, and maintain dimensional stability over repeated heating and cooling cycles. Additive manufacturing and CNC machining technologies have revolutionized mold prototyping and production, enabling more complex and precise designs at reduced lead times. These digital tools allow for the rapid iteration of mold geometries, improving the development process and facilitating on-demand customization. Furthermore, predictive modeling and simulation software now enable manufacturers to analyze heat flow, material stress, and glass behavior during the molding process, leading to optimized mold designs that minimize defects such as striations, air bubbles, and warping. Automated polishing and texturing systems are also enhancing surface uniformity, which is critical for optical and decorative glass. Collectively, these innovations are not only increasing the functional lifespan and consistency of glass molds but also contributing to overall production efficiency and product quality across high-precision glass manufacturing.

What Market Forces Are Driving the Global Expansion of the Glass Mold Industry?

The global glass mold market is experiencing steady growth fueled by rising demand for glass products, evolving design trends, and investment in automation and high-performance materials. The resurgence of glass packaging-driven by consumer preferences for sustainable, recyclable materials-is creating heightened demand for molds used in bottle and jar production across food, beverage, and cosmetics sectors. Urbanization and infrastructure development in emerging markets are boosting demand for architectural glass products, including decorative panels, partitions, and lighting fixtures, all of which rely on molds for shape and finish. The growing automotive and aerospace sectors are also significant drivers, with increased adoption of curved, lightweight, and optically precise glass components necessitating sophisticated mold tooling. In the electronics industry, the demand for durable, scratch-resistant glass for smartphones, tablets, and wearable tech is prompting further investments in micro-scale precision molding. Global sustainability goals and regulations are encouraging the shift from plastic to glass, especially in packaging and foodservice applications, which in turn supports steady mold production volumes. Technological advances in mold design, reduced cycle times, and improved heat management are helping manufacturers lower operating costs while meeting higher throughput expectations. Strategic partnerships between mold fabricators, glass producers, and design firms are also enhancing innovation pipelines and expanding customization capabilities. As industries continue to prioritize quality, efficiency, and design flexibility, the glass mold market is expected to expand further, underscored by its vital role in shaping both the functional and aesthetic aspects of modern glass products.

SCOPE OF STUDY:

The report analyzes the Glass Mold market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Mold Type (Alloy Cast Iron Mold, Ordinary Cast Iron Mold, Other Mold Types); End-Use (Chemical, Food & Beverages, Healthcare, Other End-Uses)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 36 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â