¼¼°èÀÇ °ÔÀÌÆ® ÅÏ ¿ÀÇÁ »çÀ̸®½ºÅÍ ½ÃÀå
Gate Turn-Off Thyristor
»óǰÄÚµå : 1757758
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 06¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 282 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,225,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,675,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

°ÔÀÌÆ® ÅÏ ¿ÀÇÁ »çÀ̸®½ºÅÍ ¼¼°è ½ÃÀåÀº 2030³â±îÁö 15¾ï ´Þ·¯¿¡ À̸¦ Àü¸Á

2024³â¿¡ 10¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â °ÔÀÌÆ® ÅÏ ¿ÀÇÁ »çÀ̸®½ºÅÍ ¼¼°è ½ÃÀåÀº 2024-2030³â CAGR 6.1%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 15¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ºñ´ëĪ °ÔÀÌÆ® ÅÏ ¿ÀÇÁ »çÀ̸®½ºÅÍ´Â CAGR 7.3%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 9¾ï 3,880¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Symmetric °ÔÀÌÆ® ÅÏ ¿ÀÇÁ »çÀ̸®½ºÅÍ ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£Áß CAGR 4.1%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 2¾ï 7,870¸¸ ´Þ·¯, Áß±¹Àº CAGR 9.8%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ °ÔÀÌÆ® ÅÏ ¿ÀÇÁ »çÀ̸®½ºÅÍ ½ÃÀåÀº 2024³â¿¡ 2¾ï 7,870¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ 2024-2030³â CAGR 9.8%·Î ¼ºÀåÀ» Áö¼ÓÇÏ¿©, 2030³â¿¡´Â ¿¹Ãø ½ÃÀå ±Ô¸ð 3¾ï 70¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î¼­´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 2.9%¿Í 6.0%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 4.0%¸¦ º¸ÀÏ Àü¸ÁÀÔ´Ï´Ù.

¼¼°èÀÇ °ÔÀÌÆ® ÅÏ ¿ÀÇÁ »çÀ̸®½ºÅÍ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

°ÔÀÌÆ® ÅÏ ¿ÀÇÁ »çÀ̸®½ºÅͰ¡ °íÀü·Â ½ºÀ§Äª ¿ëµµ¿¡¼­ Áß¿äÇÑ ÀÌÀ¯

°ÔÀÌÆ® ÅÏ ¿ÀÇÁ »çÀ̸®½ºÅÍ(GTO)´Â È¿À²ÀûÀÎ Á¦¾î¿Í °­·ÂÇÑ ¼º´ÉÀÌ ¿ä±¸µÇ´Â °íÀü·Â ½ºÀ§Äª ¿ëµµ¿¡¼­ ÇʼöÀûÀÎ ºÎǰÀ¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù. °ÔÀÌÆ®¸¦ ÅëÇØ¼­¸¸ ÄÑÁö°í ¿ÜºÎ Á¤·ù ȸ·Î°¡ ÇÊ¿äÇÑ ±âÁ¸ »çÀ̸®½ºÅÍ¿Í ´Þ¸® GTO´Â °ÔÀÌÆ® ½ÅÈ£·Î ÄÑ°í ²ø ¼ö ÀÖ´Ù´Â ºÐ¸íÇÑ ÀÌÁ¡ÀÌ ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÀÌÁß Á¦¾î ±â´ÉÀ» ÅëÇØ Àü·Â È帧À» º¸´Ù À¯¿¬ÇÏ°Ô °ü¸®ÇÒ ¼ö Àֱ⠶§¹®¿¡ GTO´Â ±âÂ÷, HVDC(°í¾ÐÁ÷·ù¼ÛÀü), »ê¾÷¿ë ¸ðÅÍ µå¶óÀ̺ê, Àü·Â ÀιöÅÍ µî °íÀü¾Ð ¹× °íÀü·ù¸¦ ´Ù·ç´Â ¿ëµµ¿¡ ƯÈ÷ ÀûÇÕÇÕ´Ï´Ù. ºñ±³Àû ³·Àº ½ºÀ§Äª ¼Õ½Ç·Î ´ë¿ë·®ÀÇ Àü±â ¿¡³ÊÁö¸¦ ó¸®ÇÒ ¼ö Àֱ⠶§¹®¿¡ GTO´Â °íºÎÇÏ »ê¾÷ ½Ã½ºÅÛ¿¡¼­ ½Å·ÚÇÒ ¼ö ÀÖ´Â ¼Ö·ç¼ÇÀÔ´Ï´Ù. ¿î¼Û ºÐ¾ß¿¡¼­´Â GTO´Â ¸ðÅÍÀÇ ¼Óµµ¿Í ÅäÅ©¸¦ Á¤È®ÇÏ°Ô Á¦¾îÇÏ´Â °ÍÀÌ ÇʼöÀûÀÎ Àü±â ±â°üÂ÷ ¹× °í¼Ó ¿­Â÷ÀÇ °ßÀÎ ½Ã½ºÅÛ¿¡¼­ ÀϹÝÀûÀ¸·Î »ç¿ëµË´Ï´Ù. ¶ÇÇÑ, ¿¡³ÊÁö ¹èÀü ¹× Àç»ý¿¡³ÊÁöÀÇ ÅëÇÕ¿¡¼­ GTO´Â ±×¸®µåÀÇ ¾ÈÁ¤¼º°ú ¿¡³ÊÁö ¶ó¿ìÆÃÀ» °ü¸®ÇÏ´Â ÄÁ¹öÅÍ ½Ã½ºÅÛ¿¡¼­ È¿À²ÀûÀÎ ½ºÀ§ÄªÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ³ôÀº ¼­Áö Àü·ù ³»¼º ¹× Àü¾Ð °úµµÇö»ó¿¡ ´ëÇÑ °ß°í¼ºÀº °¡È¤ÇÏ°í º¯µ¿ÀÌ ½ÉÇÑ Àü±â ȯ°æ¿¡¼­µµ ¾ÈÁ¤ÀûÀÎ ÀÛµ¿À» º¸ÀåÇÕ´Ï´Ù. »ê¾÷°è°¡ º¸´Ù È¿À²ÀûÀ̰í È®Àå °¡´ÉÇÑ ÇÏÀÌÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º¸¦ Áö¼ÓÀûÀ¸·Î ¿ä±¸Çϰí ÀÖ´Â °¡¿îµ¥, GTO´Â ½Å·Ú¼º, Àü·Â ó¸® ¹× Á¦¾î¼º °£ÀÇ ±ÕÇü ÀâÈù ±ÕÇüÀ¸·Î ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º ¼³°èÀÇ ±âº» ±â¼ú·Î Æò°¡¹Þ°í ÀÖ½À´Ï´Ù.

»ê¾÷ ÀÀ¿ë ¹× ÀÎÇÁ¶ó ÇÁ·ÎÁ§Æ®°¡ GTO ¼ö¿ä¸¦ ÃËÁøÇÏ´Â ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

°ÔÀÌÆ® ÅÏ ¿ÀÇÁ »çÀ̸®½ºÅÍ¿¡ ´ëÇÑ ¼¼°è ¼ö¿ä´Â °íÁ¤¹Ð, °íÃâ·Â ÀüÀÚ Á¦¾î°¡ ÇÊ¿äÇÑ ´ë±Ô¸ð »ê¾÷ ÀÀ¿ë ºÐ¾ß ¹× ÀÎÇÁ¶ó °³¹ß ÇÁ·ÎÁ§Æ®¿¡ ÀÇÇØ Å©°Ô ÁÖµµµÇ°í ÀÖÀ¸¸ç, GTO¸¦ »ç¿ëÇÏ´Â °¡Àå µÎµå·¯Áø ºÐ¾ß Áß Çϳª´Â öµµ ¹× ÁöÇÏö ¿î¼Û »ê¾÷ÀÔ´Ï´Ù. °ßÀÎ ÀιöÅÍ ¹× Á¦µ¿ ½Ã½ºÅÛ¿¡ »ç¿ëµÇ¾î °íºÎÇÏ ¿îÀü ½Ã Àü±â ¸ðÅÍÀÇ ¼Óµµ¿Í ¹æÇâÀ» Á¶Á¤Çϰí, HVDC ¼ÛÀü ½Ã½ºÅÛ¿¡¼­ GTO´Â ±³·ù(AC)¸¦ Á÷·ù(DC)·Î ¶Ç´Â ±× ¹Ý´ë·Î º¯È¯ÇÏ´Â ÄÁ¹öÅÍ ½ºÅ×À̼ǿ¡ »ç¿ëµÇ¾î ¼Õ½ÇÀ» ÃÖ¼ÒÈ­Çϸ鼭 È¿À²ÀûÀÎ Àå°Å¸® ¼ÛÀüÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. Àå°Å¸® ¼ÛÀüÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. Á¦Ã¶¼Ò, ½Ã¸àÆ® °øÀå, È­ÇРó¸® ½Ã¼³ µî Á¦Á¶¾÷¿¡¼­´Â °¡µ¿ ½Ã°£°ú »ý»ê È¿À²À» À¯ÁöÇϱâ À§ÇØ °í½Å·Ú¼º°ú °í¼Ó ½ºÀ§ÄªÀÌ Áß¿äÇÑ ´ëÇü ±â°èÀÇ ¸ðÅÍ Á¦¾î ½Ã½ºÅÛ¿¡ GTO°¡ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. Àü·Âȸ»ç´Â ƯÈ÷ Àü±â ÀÎÇÁ¶ó°¡ ³ëÈÄÈ­µÈ Áö¿ªÀ̳ª Àç»ý¿¡³ÊÁö ÀÔ·ÂÀÌ º¯µ¿ÇÏ´Â Áö¿ª¿¡¼­ ºÎÇÏ ºÐ»ê ¹× ¼ÛÀü¸Á ¾ÈÁ¤È­¸¦ À§ÇØ GTO ±â¹Ý ½Ã½ºÅÛ¿¡ ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Àç»ý¿¡³ÊÁö¿øÀÇ °£ÇæÀûÀÎ °íÀü¾Ð ÀÔ·ÂÀ» ó¸®ÇÒ Çʿ伺ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó dz·Â Åͺó°ú ž籤 ÀιöÅÍ¿¡ GTO¸¦ ÅëÇÕÇÏ´Â »ç·Êµµ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ±¹¹æ ¹× Ç×°ø¿ìÁÖ ºÐ¾ß¿¡¼­´Â ³ôÀº °ß°í¼º°ú ½Å·Ú¼ºÀÌ ¿ä±¸µÇ´Â ·¹ÀÌ´õ ½Ã½ºÅÛ, ¹Ì»çÀÏ À¯µµ, ¼±¹Ú ÃßÁø ½Ã½ºÅÛÀÇ Àü·Â Á¦¾î ÀåÄ¡¿¡ GTO°¡ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. Àü ¼¼°èÀûÀ¸·Î Àü±âÈ­ ¹× ¿¡³ÊÁö Çö´ëÈ­°¡ °¡¼ÓÈ­µÊ¿¡ µû¶ó GTOÀÇ ´Ù¸ñÀû¼º ¹× °íÃâ·Â ±â´ÉÀº ÀüÅë »ê¾÷°ú ½ÅÈï »ê¾÷ ¸ðµÎ¿¡¼­ ¹Ì¼Ç Å©¸®Æ¼ÄÃÇÑ ÀÛ¾÷À» Áö¿øÇÏ´Â µ¥ Á¡Á¡ ´õ Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù.

GTOÀÇ ¼º´É°ú ½Å·Ú¼ºÀ» ³ôÀÌ´Â ±â¼ú Çõ½ÅÀ̶õ?

¹ÝµµÃ¼ Àç·á, ¼ÒÀÚ ¾ÆÅ°ÅØÃ³ ¹× ¿­ °ü¸® ºÐ¾ßÀÇ ±â¼ú ¹ßÀüÀº °ÔÀÌÆ® ÅÏ ¿ÀÇÁ »çÀ̸®½ºÅÍÀÇ ¼º´É, ½Å·Ú¼º ¹× È¿À²À» Å©°Ô Çâ»ó½ÃÄ×½À´Ï´Ù. °¡Àå ÁÖ¸ñÇÒ ¸¸ÇÑ ±â¼ú Çõ½Å Áß Çϳª´Â ½Ç¸®ÄÜ ¿þÀÌÆÛ °¡°ø ¹× µµÇÎ ±â¼úÀÇ °³¼±À¸·Î ´õ ³ôÀº Àü¾Ð Â÷´Ü ´É·Â, ´õ ºü¸¥ ½ºÀ§Äª ¼Óµµ, ´õ ³·Àº Àüµµ ¼Õ½ÇÀ» °¡Áø GTO¸¦ ½ÇÇöÇß½À´Ï´Ù. ºÐÇÒµÈ °ÔÀÌÆ® ±¸Á¶¿Í ÃÖÀûÈ­µÈ ij¼Òµå ¼³°èÀÇ µµÀÔÀº ÅÏ¿ÀÇÁ ½Ã°£À» ´ÜÃàÇϰí ÀÛµ¿ Áß ¿¡³ÊÁö ¼Õ½ÇÀ» ÃÖ¼ÒÈ­ÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ¶ÇÇÑ, GTO µ¿ÀÛ¿¡ µû¸¥ Àü·ù ¹× Àü¾Ð °úµµ Çö»óÀ» ´õ Àß °ü¸®Çϰí, Àüü µð¹ÙÀ̽ºÀÇ ¾ÈÁ¤¼ºÀ» Çâ»ó½Ã۰í, µ¿ÀÛ ¼ö¸íÀ» ¿¬ÀåÇϱâ À§ÇØ »õ·Î¿î °ÔÀÌÆ® µå¶óÀ̹ö ȸ·Î¿Í ½º³Ê¹ö ³×Æ®¿öÅ©°¡ °³¹ßµÇ¾ú½À´Ï´Ù. ƯÈ÷ ¿­ ¹æÃâÀÌ Áß¿äÇÑ °í¹Ðµµ ½Ã½ºÅÛ¿¡¼­ ¿­ ¼º´ÉÀ» Çâ»ó½Ã۱â À§ÇØ ÇÁ·¹½º ÆÑ ¸ðµâ ¹× ÅëÇÕ ³Ã°¢ ä³Î°ú °°Àº °í±Þ ÆÐŰ¡ ¼Ö·ç¼ÇÀÌ µµÀԵǰí ÀÖ½À´Ï´Ù. ¿¬±¸ÀÚµéÀº ¶ÇÇÑ ±âÁ¸ÀÇ ½Ç¸®ÄÜ GTO¸¦ ´ëüÇϰųª º¸¿ÏÇÒ ¼ö ÀÖ´Â Àç·á·Î ½Ç¸®ÄÜ Ä«¹ÙÀ̵å(SiC)¿Í °°Àº ¿ÍÀÌµå ¹êµå°¸ Àç·á¸¦ »ç¿ëÇÏ¿© Àü·Â ¹Ðµµ¿Í ³»¿­¼ºÀ» ´õ¿í Çâ»ó½Ãų ¼ö ÀÖ´Â ¹æ¹ýÀ» ¸ð»öÇϰí ÀÖ½À´Ï´Ù. µðÁöÅÐ ½Ã¹Ä·¹ÀÌ¼Ç Åø°ú ¿¹Ãø ¸ðµ¨¸µÀ» ÅëÇØ Á¦Á¶¾÷ü´Â ƯÁ¤ ¿ëµµ ȯ°æ¿¡ ¸Â´Â ¸ÂÃãÇü GTO ¸ðµâÀ» ¼³°èÇÒ ¼ö ÀÖ°Ô µÇ¾î ´õ ³ôÀº ¼º´É°ú ´õ ºü¸¥ ¹èÆ÷ Áֱ⸦ ´Þ¼ºÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀ¸·Î GTO´Â IGBT(Àý¿¬ °ÔÀÌÆ® ¹ÙÀÌÆú¶ó Æ®·£Áö½ºÅÍ) ¹× IGCT(°ÔÀÌÆ® ÀÏüÇü »çÀ̸®½ºÅÍ)¿Í °°Àº ½Å±â¼ú°úÀÇ °æÀï¿¡¼­ ¿ìÀ§¸¦ Á¡Çϸ鼭µµ ÃʰíÃâ·Â ¹× °ß°íÇÑ ¿ëµµ ¿µ¿ª¿¡¼­ Æ´»õ ½ÃÀå¿¡¼­ÀÇ ¿ìÀ§¸¦ À¯ÁöÇϰí ÀÖ½À´Ï´Ù.

°ÔÀÌÆ® ÅÏ ¿ÀÇÁ »çÀ̸®½ºÅÍ ¼¼°è ½ÃÀå È®´ë¸¦ ÁÖµµÇÏ´Â ½ÃÀå ¼¼·ÂÀº ¹«¾ùÀΰ¡?

¼¼°è °ÔÀÌÆ® ÅÏ ¿ÀÇÁ »çÀ̸®½ºÅÍ ½ÃÀåÀº ¼¼°è ¿¡³ÊÁö Àüȯ, »ê¾÷ Àü±âÈ­, ÀÎÇÁ¶ó Çõ½Å, °íÈ¿À² Àü·Â º¯È¯ ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡ µî ´Ù¾çÇÑ ¿äÀÎÀÌ º¹ÇÕÀûÀ¸·Î ÀÛ¿ëÇÏ¿© ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. Àç»ý ¿¡³ÊÁö ¼³ºñ, ƯÈ÷ dz·Â ¹ßÀü¼Ò ¹× ž籤 ¹ßÀü¼ÒÀÇ ±Þ¼ÓÇÑ È®ÀåÀº º¯µ¿ÇÏ´Â Àü¾Ð¿¡ ´ëÀÀÇÏ°í ±¹°¡ Àü·Â¸Á¿¡ ¿¡³ÊÁö¸¦ ÅëÇÕÇϱâ À§ÇØ °ß°íÇÏ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º°¡ ÇÊ¿äÇϸç, GTO ±â¹Ý ÄÁ¹öÅÍ ½Ã½ºÅÛÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ±âÂ÷, ÁöÇÏö, °æÀüö°ú °°Àº ´ëÁß±³Åë ½Ã½ºÅÛÀÇ Àü±âÈ­µµ °­·ÂÇÑ ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖÀ¸¸ç, ƯÈ÷ Áö¼Ó °¡´ÉÇÑ µµ½Ã ¸ðºô¸®Æ¼ ¼Ö·ç¼Ç¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ´Â Áö¿ª¿¡¼­´Â ´õ¿í ±×·¯ÇÕ´Ï´Ù. ½ÅÈï ½ÃÀå¿¡¼­ÀÇ »ê¾÷ ÀÚµ¿È­ ¹× ·¹°Å½Ã ¼³ºñÀÇ Çö´ëÈ­´Â GTOÀÇ °ËÁõµÈ ³»±¸¼º°ú ¼º´ÉÀ» Á¦°øÇÏ´Â °íÃâ·Â ¸ðÅÍ µå¶óÀÌºê ¹× Àü·Â Á¦¾î ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Àü·Â¸Á °³¼±°ú ¿ø°ÝÁö ¹× ¼Ò¿ÜµÈ Áö¿ªÀÇ Àü·Â Á¢±Ù¼º È®´ë¿¡ ÁßÁ¡À» µÐ Á¤ºÎÀÇ ÀÌ´Ï¼ÅÆ¼ºê´Â HVDC ÀÎÇÁ¶ó¿Í °ü·Ã GTOÀÇ »õ·Î¿î ±âȸ¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ½ÃÀå °æÀï°ú Àü·ÂÀüÀÚ Á¦Á¶¾÷üÀÇ ´Ù¾çÈ­·Î ÀÎÇØ GTO ¸ðµâÀÌ º¸´Ù Àú·ÅÇÏ°í ¿ëµµ¿¡ ƯȭµÈ Á¦Ç°À¸·Î Ãâ½ÃµÇ°í ÀÖÀ¸¸ç, À̴ äÅÃÀÇ ÆøÀ» ´õ¿í ³ÐÇôÁÖ°í ÀÖ½À´Ï´Ù. Áö¼Ó°¡´É¼º°ú ¿¡³ÊÁö º¹¿ø·ÂÀÌ °ø°ø ¹× ¹Î°£ ºÎ¹® ¸ðµÎ¿¡¼­ Áß¿äÇÑ ¿ì¼±¼øÀ§°¡ µÇ¸é¼­ GTO¿Í °°Àº È®Àå °¡´ÉÇϰí È¿À²ÀûÀÎ Àü·Â °ü¸® µµ±¸ÀÇ Çʿ伺ÀÌ Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, GTO´Â »õ·Î¿î ´ë¾ÈÀÌ µîÀåÇϰí ÀÖÀ½¿¡µµ ºÒ±¸Çϰí Ãʰí¾Ð ¹× °íÀü·ù ¿ëµµ¿¡¼­ °æÀï·ÂÀ» À¯ÁöÇÒ °ÍÀÔ´Ï´Ù. ¿¡¼­ °æÀï·ÂÀ» À¯ÁöÇϰí ÀÖÀ¸¸ç, ¼¼°è ÆÄ¿öÀÏ·ºÆ®·Î´Ð½º ½Ã½ºÅÛ ÁøÈ­¿¡ ÇʼöÀûÀÎ ±¸¼º ¿ä¼Ò·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

ºÎ¹®

À¯Çü(ºñ´ëĪ °ÔÀÌÆ® ÅÏ ¿ÀÇÁ »çÀ̸®½ºÅÍ, ´ëĪ °ÔÀÌÆ® ÅÏ ¿ÀÇÁ »çÀ̸®½ºÅÍ), ¿ëµµ(Àü·Â º¯Àü¼Ò, ÀÚµ¿Â÷, ¼®À¯ ¹× °¡½º, ±¤¾÷, ±âŸ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ ¿¹(ÃÑ 42°³»ç)

AI ÅëÇÕ

¿ì¸®´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ¼­, ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇÕ´Ï´Ù.

Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Gate Turn-Off Thyristor Market to Reach US$1.5 Billion by 2030

The global market for Gate Turn-Off Thyristor estimated at US$1.0 Billion in the year 2024, is expected to reach US$1.5 Billion by 2030, growing at a CAGR of 6.1% over the analysis period 2024-2030. Asymmetric Gate Turn-Off Thyristor, one of the segments analyzed in the report, is expected to record a 7.3% CAGR and reach US$938.8 Million by the end of the analysis period. Growth in the Symmetric Gate Turn-Off Thyristor segment is estimated at 4.1% CAGR over the analysis period.

The U.S. Market is Estimated at US$278.7 Million While China is Forecast to Grow at 9.8% CAGR

The Gate Turn-Off Thyristor market in the U.S. is estimated at US$278.7 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$300.7 Million by the year 2030 trailing a CAGR of 9.8% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 2.9% and 6.0% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 4.0% CAGR.

Global Gate Turn-Off Thyristor Market - Key Trends & Drivers Summarized

Why Are Gate Turn-Off Thyristors Critical in High-Power Switching Applications?

Gate Turn-Off Thyristors (GTOs) have established themselves as indispensable components in high-power switching applications where both efficient control and robust performance are required. Unlike conventional thyristors, which can only be turned on via the gate and require external commutation circuits to turn off, GTOs offer the distinct advantage of being both turned on and off by a gate signal. This dual control capability provides greater flexibility in managing power flow, making GTOs particularly suitable for applications involving high voltage and current, such as electric trains, HVDC (High Voltage Direct Current) transmission, industrial motor drives, and power inverters. Their ability to handle large amounts of electrical energy with relatively low switching losses has made them a reliable solution in heavy-duty industrial systems. In transportation, GTOs are commonly used in the traction systems of electric locomotives and high-speed trains, where precise control over motor speed and torque is essential. Additionally, in energy distribution and renewable power integration, GTOs enable efficient switching in converter systems that manage grid stability and energy routing. Their high surge current capability and ruggedness against voltage transients ensure reliable operation in harsh and fluctuating electrical environments. As industries continue to demand more efficient and scalable high-power electronics, GTOs remain a cornerstone technology in power electronics design, valued for their balance of reliability, power handling, and controllability.

How Are Industrial Applications and Infrastructure Projects Fueling the Demand for GTOs?

The global demand for Gate Turn-Off Thyristors is being significantly driven by large-scale industrial applications and infrastructure development projects that require precise, high-power electronic control. One of the most prominent sectors using GTOs is the railway and metro transportation industry, where they serve in traction inverters and braking systems to regulate the speed and direction of electric motors under heavy operational loads. In HVDC transmission systems, GTOs are used in converter stations that transform alternating current (AC) to direct current (DC) and vice versa, enabling efficient long-distance power transmission with minimal loss. Manufacturing sectors such as steel mills, cement plants, and chemical processing facilities utilize GTOs in motor control systems for large machinery, where high reliability and fast switching are crucial for maintaining uptime and production efficiency. Power utilities rely on GTO-based systems for load balancing and grid stabilization, especially in regions with aging electrical infrastructure or fluctuating renewable energy input. The integration of GTOs into wind turbines and solar inverters is also growing as the need to handle intermittent high-voltage inputs from renewable sources becomes more critical. Furthermore, defense and aerospace sectors utilize GTOs in power control units for radar systems, missile guidance, and ship propulsion systems, where high robustness and reliability are non-negotiable. As the global push for electrification and energy modernization accelerates, the versatility and high-power capabilities of GTOs are becoming increasingly essential to supporting mission-critical operations across both traditional and emerging industries.

What Technological Innovations Are Enhancing the Performance and Reliability of GTOs?

Technological advancements in semiconductor materials, device architecture, and thermal management are significantly enhancing the performance, reliability, and efficiency of Gate Turn-Off Thyristors. One of the most notable innovations is the refinement of silicon wafer processing and doping techniques, which has led to GTOs with higher voltage blocking capabilities, faster switching speeds, and lower conduction losses. The introduction of segmented gate structures and optimized cathode designs is helping reduce turn-off times and minimize energy dissipation during operation. In addition, new gate driver circuits and snubber networks are being developed to better manage the current and voltage transients associated with GTO operation, improving overall device stability and extending operational life. Advanced packaging solutions, such as press-pack modules and integrated cooling channels, are being deployed to enhance thermal performance, particularly in high-density systems where heat dissipation is a major concern. Researchers are also exploring the use of wide-bandgap materials like silicon carbide (SiC) as potential alternatives or complements to traditional silicon GTOs, offering even greater power density and thermal resistance. Digital simulation tools and predictive modeling are enabling manufacturers to design custom GTO modules tailored to specific application environments, ensuring higher performance and faster deployment cycles. These innovations are making GTOs more competitive with newer technologies like IGBTs (Insulated Gate Bipolar Transistors) and IGCTs (Integrated Gate-Commutated Thyristors), while preserving their niche advantages in ultra-high power and rugged application domains.

What Market Forces Are Driving the Global Expansion of Gate Turn-Off Thyristors?

The global Gate Turn-Off Thyristor market is expanding due to a confluence of factors including the global energy transition, industrial electrification, infrastructure renewal, and the increasing demand for high-efficiency power conversion technologies. The rapid expansion of renewable energy installations, particularly wind and solar farms, requires robust and reliable power electronics to handle fluctuating voltages and integrate energy into national grids-driving adoption of GTO-based converter systems. The electrification of public transportation systems, including trains, subways, and light rail, is another strong market driver, particularly in regions investing heavily in sustainable urban mobility solutions. Industrial automation and the modernization of legacy facilities in emerging markets are contributing to increased demand for high-power motor drives and power control systems, where GTOs offer proven durability and performance. Additionally, government initiatives focused on upgrading electrical grids and expanding access to electricity in remote or underserved areas are creating new opportunities for HVDC infrastructure and associated GTO deployment. Market competition and the diversification of power electronics manufacturers have also led to more affordable and application-specific GTO modules, further broadening their adoption. As sustainability and energy resilience become key priorities for both public and private sectors, the need for scalable and efficient power management tools like GTOs is expected to grow. Despite emerging alternatives, GTOs continue to hold a competitive edge in ultra-high voltage, high-current applications, positioning them as a vital component in the ongoing evolution of global power electronics systems.

SCOPE OF STUDY:

The report analyzes the Gate Turn-Off Thyristor market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Type (Asymmetric Gate Turn-Off Thyristor, Symmetric Gate Turn-Off Thyristor); Application (Power Substations, Automobile, Oil & Gas, Mining, Other Applications)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 42 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â