¼¼°èÀÇ Á¤ÁöÀ§¼º ½ÃÀå
Geostationary Satellites
»óǰÄÚµå : 1757613
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 06¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 288 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,124,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,373,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ Á¤ÁöÀ§¼º ½ÃÀåÀº 2030³â±îÁö 73¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 62¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ Á¤ÁöÀ§¼º ½ÃÀåÀº 2024-2030³â¿¡ CAGR 2.7%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 73¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ Á¤ÁöÀ§¼º Åë½Å ½Ã½ºÅÛÀº CAGR 2.5%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 44¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Á¤ÁöÀ§¼º Àü·Â ½Ã½ºÅÛ ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ Áß CAGR 3.3%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 17¾ï ´Þ·¯, Áß±¹Àº CAGR 5.1%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ Á¤ÁöÀ§¼º ½ÃÀåÀº 2024³â¿¡ 17¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 14¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖÀ¸¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³âÀÇ CAGRÀº 5.1%ÀÔ´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 1.0%¿Í 2.1%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 1.5%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ "Á¤ÁöÀ§¼º" ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

¸Þ°¡ ÄÁ½ºÅÚ·¹ÀÌ¼Ç ½Ã´ë¿¡µµ Á¤ÁöÀ§¼ºÀº ¿Ö Áß¿äÇѰ¡?

Á¤Áö±Ëµµ À§¼ºÀº ÈçÈ÷ GEO À§¼ºÀ̶ó°í ºÒ¸®¸ç, ÃÖ±Ù Àú±Ëµµ(LEO) À§¼ºÀÇ ºÎ»ó¿¡µµ ºÒ±¸ÇÏ°í ¼¼°è ¿ìÁÖ °æÁ¦¿¡¼­ ÇʼöÀûÀÎ ÀÎÇÁ¶ó·Î ³²¾ÆÀÖ½À´Ï´Ù. Àûµµ »ó°ø ¾à 35,786km »ó°ø¿¡ À§Ä¡ÇÑ ÀÌ À§¼ºµéÀº µ¿ÀÏÇÑ ÀÚÀü ¼Óµµ·Î Áö±¸¸¦ °øÀüÇϰí ÀÖÀ¸¹Ç·Î Áö»ó¿¡¼­´Â Á¤ÁöÇØ ÀÖ´Â °Íó·³ º¸ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ µ¶Æ¯ÇÑ ±Ëµµ Ư¼ºÀ¸·Î ÀÎÇØ ƯÁ¤ Áö¿ªÀ» ²÷±è ¾øÀÌ Ä¿¹öÇÒ ¼ö ÀÖÀ¸¸ç, Åë½Å, ±â»ó ¿¹º¸, ¹æ¼Û ¼­ºñ½º, ±¹¹æ ¿ëµµ¿¡ ÀÌ»óÀûÀÎ À§¼ºÀ¸·Î LEO À§¼º ½Ã½ºÅÛÀº Áö¿¬°ú Àü Áö±¸¸¦ Ä¿¹öÇÏ´Â ÀåÁ¡ÀÌ ÀÖ´Â ¹Ý¸é, GEO À§¼ºÀº ¿©ÀüÈ÷ ÀÏÁ¤ Áö¿ª¿¡¼­ Àå½Ã°£ÀÇ ¾ÈÁ¤ÀûÀÎ Ä¿¹ö¸®Áö°¡ °¡Àå Áß¿äÇÑ ¿ëµµ¸¦ Áö¹èÇϰí ÀÖ½À´Ï´Ù. ¿©±â¿¡´Â ¿ø°ÝÁö¸¦ À§ÇÑ °í󸮷® À§¼º ÀÎÅͳÝ, ´ë·ú°£ ¹æ¼Û, ¼¼°è ¹× ³»ºñ°ÔÀÌ¼Ç ¿À¹ö·¹ÀÌ µîÀÌ Æ÷ÇԵ˴ϴÙ. Á¤ºÎ ±â°ü°ú ¹Î°£ ±â¾÷Àº ±ä ¼ö¸í(º¸Åë 15³â ÀÌ»ó), Å« ÆäÀÌ·Îµå ¿ë·®, º¹ÀâÇÑ Áö»ó ÃßÀû ½Ã½ºÅÛÀÇ Çʿ伺ÀÌ Àû±â ¶§¹®¿¡ GEO Ç÷§Æû¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô½À´Ï´Ù. ¶ÇÇÑ ½ÅÈï ½ÃÀåÀÌ Åë½Å ¹× ¹æ¼Û ÀÎÇÁ¶ó¸¦ È®ÀåÇÔ¿¡ µû¶ó Áö¿ª GEO ¼­ºñ½º¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, GEO À§¼ºÀº LEO ½Ã½ºÅÛÀ» ´ëüÇϱ⺸´Ù´Â ÇÏÀ̺긮µå ÄÁ½ºÅÚ·¹À̼ÇÀ¸·Î º¸¿ÏÇÏ´Â °æ¿ì°¡ ¸¹¾ÆÁö°í ÀÖ½À´Ï´Ù. ¼º´É°ú µµ´Þ°Å¸® ¸ðµÎ¸¦ ÃÖÀûÈ­Çϰí ÀÖ½À´Ï´Ù.

¾î¶² ±â¼ú Çõ½ÅÀÌ ÃֽŠGEO À§¼ºÀÇ ´É·ÂÀ» À籸¼ºÇϰí Àִ°¡?

Á¤Áö±Ëµµ À§¼º ºÎ¹®Àº À¯¿¬¼º Çâ»ó, ¹ß»ç ºñ¿ë Àý°¨, ÀÀ¿ë °¡´É¼º È®´ë¸¦ ¸ñÇ¥·Î ÇÑ ±â¼ú Çõ½ÅÀÇ ¹°°á¿¡ ÀÇÇØ º¯È­Çϰí ÀÖ½À´Ï´Ù. °¡Àå Áß¿äÇÑ ¹ßÀü Áß Çϳª´Â À§¼º ¿î¿µÀÚ°¡ Á֯ļö, Àü·Â ºÐ¹è, Ä¿¹ö¸®Áö ¿µ¿ªÀ» ¿ø°ÝÀ¸·Î À籸¼ºÇÒ ¼ö ÀÖ´Â ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ÆäÀ̷εå(software-defined payload)·ÎÀÇ ÀüȯÀÔ´Ï´Ù. ÀÌ ±â´ÉÀº º¯È­ÇÏ´Â ½ÃÀå ¼ö¿ä, Àç³­ ´ëÀÀ ¹× ÁøÈ­ÇÏ´Â ±º ÀÓ¹«¿¡ ´ëÇÑ ÀûÀÀ¼ºÀ» ³ôÀÔ´Ï´Ù. ÃֽŠGEO Ç÷§Æû¿¡¼­´Â Àü±â ÃßÁø ½Ã½ºÅÛÀÌ Ç¥ÁØÀÌ µÇ¾î ¹ß»ç Áú·®À» Å©°Ô ÁÙÀÌ°í ¿¬·á È¿À²À» Çâ»ó½ÃŰ´Â Àü±â ÃßÁø ½Ã½ºÅÛµµ Ç¥ÁØÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ½ºÆÌ ºö ±â¼úÀ» Ȱ¿ëÇÑ °í󸮷® À§¼º(HTS)Àº µ¥ÀÌÅÍ Àü¼Û ¿ë·®À» ȹ±âÀûÀ¸·Î Áõ°¡½ÃÄÑ GEO Ç÷§ÆûÀÌ ±¤´ë¿ª ÀÎÅÍ³Ý ¹× ±â¾÷ ¿¬°á°ú °°Àº µ¥ÀÌÅÍ Áý¾àÇü ¿ëµµ¿¡ ´ëÀÀÇÒ ¼ö ÀÖµµ·Ï Çϰí ÀÖ½À´Ï´Ù. ¾çÀÚ¾Ïȣȭ ±â¼ú ¹× AI¸¦ Ȱ¿ëÇÑ À§¼º žÀç ÇÁ·Î¼¼½ÌÀº ƯÈ÷ ±¹¹æ ¹× º¸¾È Åë½ÅÀ» À§ÇÑ »õ·Î¿î ±â´ÉÀÔ´Ï´Ù. ¶ÇÇÑ ¸ðµâ½Ä À§¼º ¹ö½º¿Í 3D ÇÁ¸°ÅÍ·Î Á¦Á¶µÈ ºÎǰÀº Á¦Á¶ Áֱ⸦ ´ÜÃàÇÏ°í ´ë±Ô¸ð Ä¿½ºÅ͸¶ÀÌ¡À» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ¹ß»ç Ãø¸é¿¡¼­´Â ƯÈ÷ SpaceX¿Í Blue Origin°ú °°Àº Àç»ç¿ë °¡´ÉÇÑ ·ÎÄÏÀÇ µîÀåÀ¸·Î ¹èÄ¡ ºñ¿ëÀÌ Àý°¨µÇ¾î GEO À§¼º ÀÓ¹«°¡ ¼Ò±Ô¸ð ±¹°¡¿Í ¹Î°£ ±â¾÷¿¡°Ô º¸´Ù °æÁ¦ÀûÀ¸·Î ½ÇÇà °¡´ÉÇÑ °ÍÀ¸·Î ³ªÅ¸³µ½À´Ï´Ù. ÀÌ·¯ÇÑ Çõ½ÅÀº GEO À§¼ºÀÌ ·¹°Å½Ã ÀÎÇÁ¶ó¿¡¼­ Â÷¼¼´ë ¿ìÁÖ ±â¹Ý ¼­ºñ½º¸¦ À§ÇÑ ÀûÀÀÇü °í¼º´É ½Ã½ºÅÛÀ¸·Î ÁøÈ­Çϰí ÀÖ´Â °¡¿îµ¥ GEO À§¼ºÀÇ °ü·Ã¼ºÀ» ÀçÈ®ÀνÃÄÑÁÝ´Ï´Ù.

»ó¾÷, ±º, ¹Î°£ ºÎ¹®Àº ¾î¶»°Ô Áö¿ª °£ ¼ö¿ä¸¦ °ßÀÎÇϰí Àִ°¡?

Á¤Áö±Ëµµ À§¼º¿¡ ´ëÇÑ ¼ö¿ä´Â »ó¾÷, ±º ¹× ¹Î°£ ºÎ¹®ÀÇ ´Ù¾çÇÑ ÃÖÁ¾»ç¿ëÀÚ¿¡ ÀÇÇØ ÃËÁøµÇ°í ÀÖ½À´Ï´Ù. »ó¾÷ ºÐ¾ß¿¡¼­´Â Åë½Å »ç¾÷ÀÚ¿Í ¹æ¼Û »ç¾÷ÀÚµéÀÌ DTH(Direct-to-Home) TV, VSAT ¼­ºñ½º, ´ë·ú°£ µ¥ÀÌÅÍ ¹éȦÀ» À§ÇØ GEO À§¼ºÀ» Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¿ø°ÝÁö³ª ¼­ºñ½º°¡ Àß Á¦°øµÇÁö ¾Ê´Â Áö¿ª¿¡¼­ »ç¾÷À» ¿î¿µÇÏ´Â ±â¾÷µµ ¿¬°á °ÝÂ÷¸¦ ÇØ¼ÒÇϱâ À§ÇØ GEO ±â¹Ý ÀÎÅÍ³Ý ¼­ºñ½º¿¡ ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. ±¹¹æ ¹× Á¤º¸ ºÐ¾ß¿¡¼­ Á¤Áö±Ëµµ À§¼ºÀº ƯÈ÷ ÁöÁ¤ÇÐÀûÀ¸·Î ¹Î°¨ÇÑ Áö¿ª¿¡¼­ ¾ÈÀüÇÑ Åë½Å, °¨½Ã ¹× Á¶±â °æº¸ ½Ã½ºÅÛ¿¡ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. Ç×»ó À̵¿ÇÏ´Â LEO Àڻ꿡 ºñÇØ Áß¿äÇÑ ÀåÁ¡ÀÎ µ¿Àû ÃßÀûÀÌ ÇÊ¿äÇÏÁö ¾Ê°í, Áß¿äÇÑ Áö¿ªÀ» Áö¼ÓÀûÀ¸·Î Ä¿¹öÇÔÀ¸·Î½á Àü·«Àû °¡Ä¡¸¦ Á¦°øÇÕ´Ï´Ù. ±â»ó ±â°üµéÀº GOES(¹Ì±¹), ÇØ¹Ù¶ó±â(ÀϺ»), Meteosat(À¯·´) µîÀÇ GEO Ç÷§ÆûÀ» ±â»ó ½Ã½ºÅÛÀÇ Áö¼ÓÀûÀÎ ¸ð´ÏÅ͸µ, ÆøÇ³¿ì ÃßÀû, ±âÈÄ ¿¬±¸¿¡ Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. ±¤¹üÀ§ÇÑ Áö¿ª¿¡ ½Ç½Ã°£À¸·Î À̹ÌÁö¸¦ Á¦°øÇÏ´Â ´É·ÂÀº Àç³­ °ü¸® ¹× ȯ°æ °èȹ¿¡ ÇʼöÀûÀÔ´Ï´Ù. ¾ÆÇÁ¸®Ä«, ¾Æ½Ã¾ÆÅÂÆò¾ç, ¶óƾ¾Æ¸Þ¸®Ä«ÀÇ ½ÅÈï ¿ìÁÖ°³¹ß ±¹°¡µéÀº ÁÖ±ÇÀû Åë½Å ¿ª·®À» ±¸ÃàÇÏ°í ¿Ü±¹ ³×Æ®¿öÅ©¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙÀ̱â À§ÇØ ±¹°¡ GEO Ç÷§Æû¿¡ ´ëÇÑ ÅõÀÚ¸¦ ´Ã¸®°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ Àü ¼¼°è Á¶Á÷°ú ´ÙÀÚ°£ ±â°üµéÀº GEOÀÇ ÀÎÇÁ¶ó¸¦ Ȱ¿ëÇÏ¿© ¿ø°ÝÁö¿¡¼­ÀÇ À§¼ºÀ» ÀÌ¿ëÇÑ ±³À°, ÀÇ·á, ÀüÀÚ ÇàÁ¤ÀÇ ³ë·ÂÀ» Áö¿øÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ´Ù¾çÇÑ ¼ö¿ä·Î ÀÎÇØ GEO À§¼º ½ÃÀåÀº Áö¼ÓÀûÀ¸·Î °ß°íÇÑ ¼ºÀå¼¼¸¦ º¸À̰í ÀÖÀ¸¸ç, »õ·Î¿î ÆÄÆ®³Ê½Ê°ú Á¤ºÎ ÇÁ·Î±×·¥À» ÅëÇØ ±âÁ¸ ½ÃÀå°ú ½ÅÈï ½ÃÀå ¸ðµÎ¿¡¼­ Á¢±Ù¼ºÀÌ È®´ëµÇ°í, ¹èÆ÷ Àü·«ÀÌ ´Ù¾çÇØÁö°í ÀÖ½À´Ï´Ù.

¼¼°è GEO À§¼º ½ÃÀåÀ» °¡¼ÓÈ­ÇÏ´Â ÁÖ¿ä ¿äÀÎÀº?

Á¤Áö±Ëµµ À§¼º ½ÃÀåÀÇ ¼ºÀåÀº ±â¼ú ¼º¼÷, ÁöÁ¤ÇÐÀû ¿ì¼±¼øÀ§, »ó¾÷Àû ÅõÀÚ, Áö¿ª °³¹ßÀÇ Çʿ伺°ú Á÷Á¢ÀûÀ¸·Î °ü·ÃµÈ ¸î °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ÁÖ¿ä ÃËÁø¿äÀÎ Áß Çϳª´Â À§¼ºÀ» ÀÌ¿ëÇÑ ÀÎÅÍ³Ý ¹× ±¤´ë¿ª ¿¬°á¿¡ ´ëÇÑ Àü ¼¼°èÀûÀÎ ¼ö¿ä Áõ°¡À̸ç, ƯÈ÷ ¿ø°ÝÁö, ÇØ»ó ¹× Áö»ó ÀÎÇÁ¶ó°¡ ¹ÌºñÇÑ Áö¹æ¿¡¼­ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ³ÐÀº Ä¿¹ö¸®Áö¿Í ³ôÀº ó¸® ´É·ÂÀ» °¡Áø GEO À§¼ºÀº Áö»ó ³×Æ®¿öÅ©¸¦ º¸¿ÏÇÏ°í µðÁöÅÐ °ÝÂ÷¸¦ ÇØ¼ÒÇϱâ À§ÇØ Á¡Á¡ ´õ ¸¹ÀÌ È°¿ëµÇ°í ÀÖ½À´Ï´Ù. µÑ°, ±¹°¡ ¾Èº¸ Á¤Ã¥¿¡¼­ ¿ìÁÖÀÇ Àü·«Àû Á߿伺ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó °¢±¹ Á¤ºÎ´Â ¾ÈÀüÇϰí ÁÖ±ÇÀûÀÎ GEO Åë½Å ¹× °¨½Ã Àڻ꿡 ´ëÇÑ ÅõÀÚ¸¦ Àå·ÁÇϰí ÀÖ½À´Ï´Ù. ¼Â°, Àü±â ÃßÁø, À籸¼º °¡´ÉÇÑ ÆäÀ̷εå, AI žÀç ½Ã½ºÅÛ µî ±â¼ú °­È­·Î ÀÎÇØ GEO À§¼ºÀÇ ¼ö¸íÁֱ⠺ñ¿ëÀÌ Àý°¨µÇ°í ÀûÀÀ¼º°ú È¿À²¼ºÀÌ Çâ»óµÇ°í ÀÖ½À´Ï´Ù. ƯÈ÷ ºñµð¿À ¹æ¼Û, ±ä±Þ Åë½Å, ±â¾÷ ³×Æ®¿öÅ© µî À§¼º ¼­ºñ½ºÀÇ »ó¾÷Àû °¡´É¼ºÀº OTT ¹Ìµð¾î ¹× ¸ð¹ÙÀÏ ¹éȦ¿¡ ´ëÇÑ ¿ä±¸»çÇ×ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó È®´ëµÇ°í ÀÖ½À´Ï´Ù. ³Ý°, Àç»ç¿ë °¡´ÉÇÑ ·ÎÄÏÀ¸·Î ÀÎÇÑ ¹ß»ç ºñ¿ëÀÇ °¨¼Ò·Î GEO ¹Ì¼ÇÀÇ °¡°ÝÀÌ Àú·ÅÇØÁ® ¼Ò±Ô¸ð ¿ìÁÖ ±â°ü°ú ¹Î°£ ¾÷üµéÀÌ ½ÃÀå¿¡ ÁøÀÔÇÒ ¼ö ÀÖ´Â ±æÀÌ ¿­¸®°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ Àεµ, Áß±¹, ºê¶óÁú, ¾Æ¶ø¿¡¹Ì¸®Æ® µîÀÇ ±¹°¡¿¡¼­´Â Á¤ºÎ ÁÖµµÀÇ ¿ìÁÖ ÇÁ·Î±×·¥ ¹× ¹Î°ü ÆÄÆ®³Ê½ÊÀ» ÅëÇØ ±¹³» À§¼º Á¦Á¶ ¹× ¹èÄ¡¸¦ Àû±ØÀûÀ¸·Î Áö¿øÇϰí ÀÖ½À´Ï´Ù. ¸¶Áö¸·À¸·Î ITU¿Í °°Àº Á¶Á÷À» ÅëÇÑ ±¹Á¦ÀûÀÎ ±ÔÁ¦ ¹× Á¶Á¤ ³ë·ÂÀº Á֯ļö ´ë¿ª°ú ±Ëµµ ½½·Ô ÇÒ´çÀ» °£¼ÒÈ­ÇÏ¿© GEO ÀÚ»êÀÇ ¿øÈ°ÇÑ ¿î¿µ°ú Àå±âÀûÀÎ Áö¼Ó°¡´É¼ºÀ» º¸ÀåÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿ä¼ÒµéÀÌ º¹ÇÕÀûÀ¸·Î ÀÛ¿ëÇÏ¿© ¼¼°è Á¤Áö±Ëµµ À§¼º ½ÃÀåÀº Áö¼ÓÀûÀÎ ½ÃÀå È®´ë¿Í ±â¼ú Çõ½ÅÀ» ½ÇÇöÇϰí ÀÖ½À´Ï´Ù.

ºÎ¹®

ÄÄÆ÷³ÍÆ®(Á¤ÁöÀ§¼º Åë½Å ½Ã½ºÅÛ, Á¤ÁöÀ§¼º Àü·Â ½Ã½ºÅÛ, Á¤ÁöÀ§¼º ÃßÁø ½Ã½ºÅÛ), ¾ÖÇø®ÄÉÀ̼Ç(Åë½Å ¾ÖÇø®ÄÉÀ̼Ç, ¿ìÁÖ Å½»ç ¾ÖÇø®ÄÉÀ̼Ç, ³»ºñ°ÔÀÌ¼Ç ¾ÖÇø®ÄÉÀ̼Ç, Áö±¸ °üÃø ¾ÖÇø®ÄÉÀ̼Ç)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹(ÇÕ°è 48»ç)

AI ÅëÇÕ

¿ì¸®´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI Åø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM ¹× ¾÷°è °íÀ¯ SLMÀ» Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹üÀ» µû¸£´Â ´ë½Å¿¡ ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾ç ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÔ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Geostationary Satellites Market to Reach US$7.3 Billion by 2030

The global market for Geostationary Satellites estimated at US$6.2 Billion in the year 2024, is expected to reach US$7.3 Billion by 2030, growing at a CAGR of 2.7% over the analysis period 2024-2030. Geostationary Satellite Communication System, one of the segments analyzed in the report, is expected to record a 2.5% CAGR and reach US$4.4 Billion by the end of the analysis period. Growth in the Geostationary Satellite Power System segment is estimated at 3.3% CAGR over the analysis period.

The U.S. Market is Estimated at US$1.7 Billion While China is Forecast to Grow at 5.1% CAGR

The Geostationary Satellites market in the U.S. is estimated at US$1.7 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$1.4 Billion by the year 2030 trailing a CAGR of 5.1% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 1.0% and 2.1% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 1.5% CAGR.

Global "Geostationary Satellites" Market - Key Trends & Drivers Summarized

Why Are Geostationary Satellites Still Vital in an Age of Mega Constellations?

Geostationary satellites, often referred to as GEO satellites, remain essential infrastructure in the global space economy despite the recent rise of low Earth orbit (LEO) constellations. Positioned at approximately 35,786 kilometers above the equator, these satellites orbit the Earth at the same rotational speed, making them appear stationary from the ground. This unique orbital characteristic allows them to provide uninterrupted coverage over specific regions, making them ideal for telecommunications, weather forecasting, broadcast services, and defense applications. While LEO systems offer advantages in latency and global coverage, GEO satellites still dominate applications where consistent, long-duration coverage over a fixed area is paramount. This includes high-throughput satellite internet for remote regions, transcontinental broadcasting, and global navigation overlays. Government agencies and commercial players continue to rely heavily on GEO platforms due to their long lifespan (typically 15+ years), larger payload capacity, and reduced need for complex ground tracking systems. Additionally, as emerging markets expand their telecommunications and broadcasting infrastructure, the demand for regional GEO services is rising. Rather than being replaced by LEO systems, GEO satellites are increasingly being complemented by them in hybrid constellations, optimizing both performance and reach in the rapidly evolving global satellite market.

What Innovations Are Reshaping the Capabilities of Modern GEO Satellites?

The geostationary satellite sector is being transformed by a wave of technological innovation aimed at increasing flexibility, reducing launch costs, and expanding application potential. One of the most significant advances is the shift toward software-defined payloads, which allow satellite operators to reconfigure frequency, power distribution, and coverage areas remotely. This capability enhances adaptability to changing market demands, disaster response, and evolving military missions. Electric propulsion systems are also becoming standard in modern GEO platforms, drastically reducing launch mass and increasing fuel efficiency, which translates into longer operational lifespans and lower mission costs. Additionally, high-throughput satellites (HTS) leveraging spot beam technology are dramatically increasing data transmission capacity, enabling GEO platforms to serve data-intensive applications like broadband internet and enterprise connectivity. Quantum encryption technologies and AI-driven onboard processing are emerging features, especially for defense and secure communication purposes. Furthermore, modular satellite buses and 3D-printed components are accelerating the production cycle and enabling customization at scale. On the launch side, the rise of reusable rockets, particularly from companies like SpaceX and Blue Origin, is reducing deployment costs, making GEO satellite missions more economically viable for smaller nations and private sector entities. These innovations collectively reaffirm the relevance of GEO satellites as they evolve from legacy infrastructure into adaptive, high-performance systems for the next generation of space-based services.

How Are Commercial, Military, and Civilian Sectors Driving Demand Across Regions?

The demand for geostationary satellites is being fueled by a wide array of end-users across the commercial, military, and civilian sectors-each with unique application requirements that GEO platforms are well suited to fulfill. In the commercial sector, telecom operators and broadcasters rely on GEO satellites for direct-to-home (DTH) television, VSAT services, and transcontinental data backhaul. Enterprises operating in remote or underserved regions also depend on GEO-based internet services to bridge connectivity gaps. In the defense and intelligence sector, geostationary satellites are crucial for secure communications, surveillance, and early warning systems, particularly in geopolitically sensitive areas. They offer strategic value by maintaining persistent coverage over critical zones without the need for dynamic tracking, a key advantage over constantly moving LEO assets. Meteorological agencies leverage GEO platforms like GOES (U.S.), Himawari (Japan), and Meteosat (Europe) for continuous monitoring of weather systems, storm tracking, and climate research. Their ability to deliver real-time imagery over large geographic areas is vital for disaster management and environmental planning. Emerging space nations in Africa, Asia-Pacific, and Latin America are increasingly investing in national GEO platforms to build sovereign communication capabilities and reduce reliance on foreign networks. Furthermore, global organizations and multilateral institutions are supporting satellite-based education, healthcare, and e-governance initiatives in remote regions using GEO infrastructure. These multi-sectoral demands are ensuring that the GEO satellite market remains robust, with new partnerships and government programs expanding access and diversifying deployment strategies across both established and emerging markets.

What Are the Primary Forces Accelerating the Global GEO Satellite Market?

The growth in the geostationary satellites market is driven by several factors directly linked to technology maturation, geopolitical priorities, commercial investments, and regional development needs. One of the key drivers is the rising global demand for satellite-based internet and broadband connectivity, particularly in remote, maritime, and underserved rural areas where terrestrial infrastructure is lacking. GEO satellites, with their wide coverage and high throughput capacity, are increasingly being used to complement terrestrial networks and close the digital divide. Secondly, the increasing strategic importance of space in national security doctrines is prompting governments to invest in secure, sovereign GEO communication and surveillance assets. Third, technological enhancements, such as all-electric propulsion, reconfigurable payloads, and AI-powered systems, are reducing lifecycle costs and making GEO satellites more adaptive and efficient. The commercial viability of satellite services-especially for video broadcasting, emergency communication, and enterprise networks-is expanding with the growth of OTT media and mobile backhaul requirements. Fourth, the lower launch costs enabled by reusable rockets are making GEO missions more affordable, thereby opening market access to smaller space agencies and private players. Additionally, government-led space programs and public-private partnerships in countries like India, China, Brazil, and UAE are actively supporting domestic satellite manufacturing and deployment. Finally, international regulatory and coordination efforts through organizations like the ITU are streamlining spectrum and orbital slot allocations, ensuring smoother operation and long-term sustainability of GEO assets. Together, these factors are ensuring sustained market expansion and technological renewal in the global geostationary satellite landscape.

SCOPE OF STUDY:

The report analyzes the Geostationary Satellites market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Component (Geostationary Satellite Communication System, Geostationary Satellite Power System, Geostationary Satellite Propulsion System); Application (Communications Application, Space Exploration Application, Navigation Application, Earth Observation Application)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 48 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â