¼¼°èÀÇ ÆÄ»çµå °³½ºÅ¶ ½ÃÀå
Facade Gaskets
»óǰÄÚµå : 1757568
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 06¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 378 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,009,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,027,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ÆÄ»çµå °³½ºÅ¶ ½ÃÀåÀº 2030³â±îÁö 34¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 25¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ ÆÄ»çµå °³½ºÅ¶ ½ÃÀåÀº 2024-2030³â¿¡ CAGR 5.4%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 34¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ E-GasketsÀº CAGR 4.9%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 17¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¿þÁö °³½ºÅ¶ ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 4.5%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 6¾ï 8,070¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 8.4%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ÆÄ»çµå °³½ºÅ¶ ½ÃÀåÀº 2024³â¿¡ 6¾ï 8,070¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2024-2030³âÀÇ ºÐ¼® ±â°£¿¡ CAGR 8.4%¸¦ ´õµë¾î, 2030³â±îÁö 6¾ï 8,080¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 2.6%¿Í 5.3%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 3.4%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ÆÄ»çµå °³½ºÅ¶ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

Àç·á °øÇÐÀÇ Çõ½ÅÀº ¾î¶»°Ô ÆÄ»çµå °³½ºÅ¶À» ÀçÁ¤ÀÇÇϰí Àִ°¡?

ÆÄ»çµå °³½ºÅ¶Àº ³»±¸¼º, ź·Â¼º, ³»Èļº, ³»Èļº, ´Ü¿­¼ºÀ» Çâ»ó½ÃŰ´Â ÷´Ü ¼ÒÀç¿Í º¹ÇÕ ¿£Áö´Ï¾î¸µ ¼Ö·ç¼ÇÀÇ µµÀÔÀ¸·Î ºü¸£°Ô ÁøÈ­Çϰí ÀÖ½À´Ï´Ù. ±âÁ¸ EPDM(¿¡Æ¿·»-ÇÁ·ÎÆÄÀÏ·»-µð¿£ ¸ð³ë¸Ó) °í¹«´Â ºñ¿ë È¿À²¼º°ú Àڿܼ± ÀúÇ×¼ºÀ¸·Î ÀÎÇØ ÀÌ ºÎ¹®À» °è¼Ó Áö¹èÇϰí ÀÖÁö¸¸, ¿­°¡¼Ò¼º ¿¤¶ó½ºÅä¸Ó(TPE), ½Ç¸®ÄÜ ±â¹Ý °³½ºÅ¶, ÇÏÀ̺긮µå ºí·»µå¿Í °°Àº »õ·Î¿î ÁøÀÔÀÚµéÀÌ °í¼º´É °Ç¹° ¿Üº®¿¡¼­ ¼±È£µÇ°í ÀÖ½À´Ï´Ù. ¼±È£µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀ» ÅëÇØ °³½ºÅ¶Àº ƯÈ÷ ½ÉÇÑ ¿Âµµ º¯È­ ¹× µ¿Àû ±¸Á¶ ÇÏÁß¿¡ ³ëÃâµÈ °Ç¹°¿¡¼­ ±ä »ç¿ë ¼ö¸í µ¿¾È ´õ ³ªÀº ¹ÐºÀÀ» Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù.

³ª³ë Àç·á¿Í Áö¼Ó°¡´ÉÇÑ Æú¸®¸ÓÀÇ ÅëÇÕ ¶ÇÇÑ °³½ºÅ¶ ±â¼úÀ» À籸¼ºÇϰí ÀÖ½À´Ï´Ù. ³ª³ë½Ç¸®Ä«, ź¼Ò³ª³ëÆ©ºê¿Í °°Àº ³ª³ë ÇÊ·¯°¡ °³½ºÅ¶ ¸ÅÆ®¸¯½º¿¡ µµÀԵǾî ÀÎÀå °­µµ¸¦ ³ôÀ̰í Åõ°ú¼ºÀ» ³·Ãß°í ÀÖ½À´Ï´Ù. µ¿½Ã¿¡ LEED ¹× BREEAM°ú °°Àº ģȯ°æ °ÇÃà ÀÎÁõ ±âÁØ¿¡ ºÎÇÕÇÏ´Â ÀçȰ¿ë °¡´ÉÇÑ Àú VOC °³½ºÅ¶ Àç·áÀÇ ¼³°èµµ ÃßÁøµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °³¹ßÀº ´Ü¼øÈ÷ ¿Ü°üÀ» °³¼±Çϰųª ¾à°£ÀÇ °³¼±¿¡ ±×Ä¡Áö ¾Ê°í, ¿¡³ÊÁö È¿À²ÀûÀÎ ÆÄ»çµåÀÇ ¼º´ÉÀ» º¸ÀåÇÏ´Â µ¥ ÇʼöÀûÀÎ ¿ä¼ÒÀÔ´Ï´Ù. Àç·á °úÇаú ¾ö°ÝÇÑ ±ÔÁ¦ÀÇ °áÇÕÀº ÆÄ»çµå ½Ç¸µ ½Ã½ºÅÛ¿¡¼­ ±â¼ú Çõ½ÅÀ» À§ÇÑ ºñ¿ÁÇÑ Åä¾çÀ» Á¶¼ºÇϰí ÀÖ½À´Ï´Ù.

½ÃÀå ´Ùº¯È­¸¦ ÃËÁøÇÏ´Â ÃÖÁ¾ ¿ëµµ´Â?

ÆÄ»çµå °³½ºÅ¶¿¡ ´ëÇÑ ¼ö¿ä´Â »ê¾÷°ú Áö¿ª¿¡ µû¶ó ÀÏ·üÀûÀÌÁö ¾Ê°í °ÇÃà ¿ä±¸»çÇ×, °ÇÃà¹ý, ±âÈÄ¿¡ µû¸¥ ´Ü¿­ ¿ä±¸»çÇ׿¡ µû¶ó Å©°Ô Á¿ìµË´Ï´Ù. µµ½ÉÀÇ »ó¾÷¿ë ¿ÀÇǽº ºôµù, µ¥ÀÌÅͼ¾ÅÍ, º¹ÇÕ °³¹ß¿¡¼­´Â ¾ö°ÝÇÑ ¿¡³ÊÁö ±ÔÁ¦¸¦ ÃæÁ·Çϱâ À§ÇØ °­·ÂÇÑ ¹æÀ½°ú ±â¹Ð¼ºÀ» Á¦°øÇÏ´Â °³½ºÅ¶ÀÌ ÇÊ¿äÇÕ´Ï´Ù. ¹Ý¸é, »ê¾÷½Ã¼³À̳ª ±³Åë Å͹̳ο¡¼­´Â ³»È­Çмº, ³­¿¬¼º, Áøµ¿ °¨¼è¼ºÀÌ ¿ì¼öÇÑ °³½ºÅ¶ ½Ã½ºÅÛÀ» ¼±È£ÇÕ´Ï´Ù. °íÃþ ºôµù°ú ÃʰíÃþ ºôµù¿¡¼­´Â À¯´ÖÈ­µÈ Ŀư¿ù°ú ±¸Á¶¿ë ±Û·¹ÀÌ¡ ½Ã½ºÅÛÀÇ ÀαⰡ ³ô¾ÆÁö¸é¼­ ´õ ³ôÀº dzÇÏÁß°ú ¿­±³¿¡ °ßµô ¼ö ÀÖ´Â Á¤¹ÐÇÏ°Ô ¼³°èµÈ °³½ºÅ¶¿¡ ´ëÇÑ ¼ö¿äµµ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

ƯÈ÷ À¯·´°ú ¹Ì±¹¿¡¼­ °³½ºÅ¶ »ç¿ëÀÌ ±ÞÁõÇϰí ÀÖ´Â ºÐ¾ß´Â ÆÄ»çµå °³º¸¼ö ¹× º¹¿ø ºÐ¾ßÀÔ´Ï´Ù. ¿¡³ÊÁö È¿À²À» ³ôÀ̱â À§ÇØ ¾÷±×·¹À̵åµÇ´Â ¿À·¡µÈ °Ç¹°¿¡¼­´Â ³ëÈÄÈ­µÈ °³½ºÅ¶À» ±âÁ¸ ½Ã½ºÅÛ°ú ¿øÈ°ÇÏ°Ô ÅëÇÕÇÒ ¼ö ÀÖ´Â ÃֽŠ´ëüǰÀ¸·Î ±³Ã¼ÇØ¾ß ÇÏ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. ¶ÇÇÑ ¹Ú¹°°ü, °æ±âÀå, ±³À° Ä·ÆÛ½º µî Ư¼ö °ÇÃà ÇÁ·ÎÁ§Æ®¿¡¼­´Â À¯¸®, ±Ý¼Ó º¹ÇÕÀç, Å×¶óÄÚŸ ÆÐ³Î°ú °°Àº µ¶Æ¯ÇÑ ¿Ü°ü ¸ð¾ç°ú Àç·á¿¡ ¸Â´Â ¸ÂÃãÇü ÇÁ·ÎÆÄÀÏ °³½ºÅ¶À» äÅÃÇϰí ÀÖ½À´Ï´Ù. ´Ù¾çÇÑ ÃÖÁ¾ ¿ëµµÀÇ ¸ÂÃãÈ­´Â ¼³°è ÇüÅÂ, ¾ÐÃâ ±â¼ú ¹× Á¢ÂøÁ¦ ¼Ö·ç¼ÇÀÇ Çõ½ÅÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

°í°´ÀÇ ±â´ë¿Í ½ÃÀå ¿ªÇÐÀº ¾î¶»°Ô º¯È­Çϰí Àִ°¡?

ÆÄ»çµå °³½ºÅ¶¿¡ ´ëÇÑ ÃÖÁ¾»ç¿ëÀÚÀÇ ±â´ë´Â ±âº»ÀûÀÎ ½Ç¿ë¼º¿¡¼­ ¼ö¸íÁֱ⠳»±¸¼º, ½º¸¶Æ®ÇÑ ÅëÇÕ, À¯Áöº¸¼ö ¿ëÀ̼º µî ¼º´É Áß½ÉÀÇ ¼Ó¼ºÀ¸·Î º¯È­Çϰí ÀÖ½À´Ï´Ù. °ÇÃà°¡¿Í °Ç¼³¾÷ü´Â Àå±âÀûÀÎ ½Å·Ú¼º, ³·Àº ¼öÃà·ü, È­Çй°Áú ħÃâ ¹× Àڿܼ± ¿­È­¿¡ ´ëÇÑ ³»¼ºÀ» Á¦°øÇÏ´Â °³½ºÅ¶À» Á¡Á¡ ´õ ¸¹ÀÌ ¿ä±¸Çϰí ÀÖ½À´Ï´Ù. ÀÌ´Â °³½ºÅ¶ Á¦Á¶¾÷ü°¡ ¼³°è µµ¸é ´Ü°è¿¡¼­ ÆÄ»çµå ½Ã½ºÅÛ ¼³°èÀÚ¿Í Á÷Á¢ Çù·ÂÇÏ¿© ¸ÂÃãÇü ¼³°è ¹× °£¼ÒÈ­µÈ ½Ã°ø ¿öÅ©Ç÷ο츦 °¡´ÉÇÏ°Ô ÇÏ´Â OEM ÆÄÆ®³Ê½ÊÀÇ ÃâÇöÀ¸·Î À̾îÁö°í ÀÖ½À´Ï´Ù.

µðÁöÅÐ Á¶´Þ Ç÷§Æû, BIM(ºôµù Á¤º¸ ¸ðµ¨¸µ) ȣȯ¼º ¹× 3D ÇÁ·ÎÅäŸÀÌÇÎ ÅøÀº ´ë±Ô¸ð ÇÁ·ÎÁ§Æ® ½Ã¿îÀü Àü¿¡ °³½ºÅ¶ÀÇ ¼º´ÉÀ» °¡»óÀ¸·Î °ËÁõÇϱâ À§ÇØ ±¸¸ÅÀÚ¿Í »ç¾ç °áÁ¤±ÇÀÚ°¡ Á¡Á¡ ´õ ¸¹ÀÌ »ç¿ëÇϰí ÀÖ½À´Ï´Ù. »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ °Ç¼³ »ýŰèÀÇ ±¸¸ÅÀÚ´Â ÃßÀû °¡´É¼º°ú ±ÔÁ¤ Áؼö¸¦ Áß½ÃÇϰí EN 12365, ASTM C864 ¹× ±âŸ °ü·Ã Ç¥ÁØÀ» ÁؼöÇÏ´Â °³½ºÅ¶À» ¿ä±¸Çϰí ÀÖ½À´Ï´Ù. Á¤ºÎ°¡ ³Ý Á¦·Î ºôµùÀ» ¿ì¼±½ÃÇÏ´Â °¡¿îµ¥, °è¾àÀÚµéÀº °øÁ¶ ºÎÇϸ¦ ÁÙÀÌ°í ¿Ü°üÀÇ ¹«°á¼ºÀ» À¯ÁöÇϸ鼭 Àå±âÀûÀ¸·Î ÀÌÀÍÀ» ¾òÀ» ¼ö ÀÖ´Â °í»ç¾ç °³½ºÅ¶¿¡ ÅõÀÚÇÒ ÀÇÇâÀÌ ÀÖ½À´Ï´Ù. ¼ÒºñÀÚ ¼±È£µµ´Â ÇöÀç ȯ°æ º¸È£, ¼ö¸íÁֱ⠺ñ¿ë ÃÖÀûÈ­, ½Ã°ø ½Ç¼ö °¨¼Ò¿Í ¹ÐÁ¢ÇÑ °ü·ÃÀÌ ÀÖ½À´Ï´Ù.

ÆÄ»çµå °³½ºÅ¶ ¼¼°è ½ÃÀåÀÇ ÁÖ¿ä ¼ºÀå ÃËÁø¿äÀÎÀº ¹«¾ùÀΰ¡?

ÆÄ»çµå °³½ºÅ¶ ½ÃÀåÀÇ ¼ºÀåÀº °Å½Ã °æÁ¦ÀÇ ¸ð¸àÅÒ°ú »ê¾÷ °íÀ¯ÀÇ ¿ªÇÐÀ» ¹Ý¿µÇÏ´Â ¸î °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ƯÈ÷ ¾Æ½Ã¾ÆÅÂÆò¾ç ¹× Áßµ¿¿¡¼­´Â °íÃþ ºôµù°ú º¹ÀâÇÑ °ÇÃà ¼³°è°¡ ÁÖ·ù¸¦ ÀÌ·ç°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÇÁ·ÎÁ§Æ®¿¡´Â ±î´Ù·Î¿î ¾ÈÀü, À½Çâ ¹× ¿¡³ÊÁö ¼º´É ±âÁØÀ» ÃæÁ·ÇÏ´Â °í¼º´É °³½ºÅ¶ÀÌ ÇÊ¿äÇÕ´Ï´Ù. µ¿½Ã¿¡, °Ç¹° ¹èÃâÀ» ¸ñÇ¥·Î ÇÏ´Â ±ÔÁ¦ °³ÇõÀº °ÇÃà¾÷Àڵ鿡°Ô ÆÄ»çµå ½Ç¸µ ½Ã½ºÅÛÀ» ¾÷±×·¹À̵åÇÒ ¼ö ÀÖ´Â Àμ¾Æ¼ºê¸¦ Á¦°øÇÏ¿© ´Ü¿­ ¹× Àú´©¼³ °³½ºÅ¶ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

¶Ç ´Ù¸¥ ÁÖ¿ä ¿øµ¿·ÂÀº ±ØÇÑÀÇ ±â»ó Çö»ó°ú ±âÈÄ º¯È­ÀÇ ¹ß»ý·ü Áõ°¡·Î ÀÎÇØ °³¹ßÀÚµéÀº ½À±â ħÅõ, °ø±â ħÅõ ¹× ±¸Á¶Àû º¯À§¿¡ ´ëÇÑ ÀúÇ×·ÂÀ» º¸ÀåÇÒ ¼ö ÀÖ´Â ÆÄ»çµå ½Ã½ºÅÛÀ» äÅÃÇØ¾ß ÇÕ´Ï´Ù. ¾ÐÃâ Á¤¹Ðµµ, °ø¼ºÇü, ½º¸¶Æ® Àç·á ÅëÇÕÀÇ ±â¼ú ¹ßÀüÀº Á¦Ç°ÀÇ ÇѰ踦 ´õ¿í ³ÐÇô°¡°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ½º¸¶Æ® ½ÃƼ ¹× °ø°ø ÀÎÇÁ¶ó ÇÁ·ÎÁ§Æ®¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡ÇÔ¿¡ µû¶ó ±³Åë Çãºê, ÇコÄÉ¾î ºôµù, ÁöÀÚü º¹Çսü³¿¡¼­ ÆÄ»çµå °³½ºÅ¶¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÆÄ»çµå °Ç¼³¾÷ü, Àç·á °úÇÐÀÚ, ½Ã½ºÅÛ ÅëÇÕ»ç¾÷ÀÚ°¡ Àü·«ÀûÀ¸·Î Çù·ÂÇÏ¿© ¿©·¯ ¼º´É ±âÁØÀ» ÃæÁ·ÇÏ´Â Á¾ÇÕÀûÀÎ °³½ºÅ¶ ¼Ö·ç¼ÇÀÌ ½ÇÇöµÇ°í ÀÖ½À´Ï´Ù. Áö¼Ó°¡´É¼º, ¸ðµâ¼º, ½Å·Ú¼ºÀÌ ÃÖÀü¼±¿¡ ÀÖ´Â ÀÌ ½ÃÀåÀº Àü ¼¼°è ´Ù¾çÇÑ Áö¿ª¿¡¼­ Çõ½Å ÁÖµµÀÇ °­·ÂÇÑ ¼ºÀåÀ» ÀÌ·ê Áغñ°¡ µÇ¾î ÀÖ½À´Ï´Ù.

ºÎ¹®

°³½ºÅ¶ À¯Çü(E-Gaskets, ¿þÁö °³½ºÅ¶, ¹öºí °³½ºÅ¶, ±âŸ °³½ºÅ¶ À¯Çü), Àç·á(½Ç¸®ÄÜ Àç·á, °í¹« Àç·á, ±âŸ Àç·á), ¿ëµµ(ÁÖÅÿ뵵, »ó¾÷ ¿ëµµ, ±âŸ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹(ÁÖ¸ñ ÃÑ 42»ç)

AI ÅëÇÕ

¿ì¸®´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI Åø¿¡ ÀÇÇØ ½ÃÀå°ú °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾ç ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÔ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Facade Gaskets Market to Reach US$3.4 Billion by 2030

The global market for Facade Gaskets estimated at US$2.5 Billion in the year 2024, is expected to reach US$3.4 Billion by 2030, growing at a CAGR of 5.4% over the analysis period 2024-2030. E-Gaskets, one of the segments analyzed in the report, is expected to record a 4.9% CAGR and reach US$1.7 Billion by the end of the analysis period. Growth in the Wedge Gaskets segment is estimated at 4.5% CAGR over the analysis period.

The U.S. Market is Estimated at US$680.7 Million While China is Forecast to Grow at 8.4% CAGR

The Facade Gaskets market in the U.S. is estimated at US$680.7 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$680.8 Million by the year 2030 trailing a CAGR of 8.4% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 2.6% and 5.3% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 3.4% CAGR.

Global Facade Gaskets Market - Key Trends & Drivers Summarized

How Are Innovations in Materials Engineering Redefining Facade Gaskets?

Facade gaskets are evolving rapidly due to the infusion of advanced materials and composite engineering solutions that enhance durability, elasticity, weather resistance, and thermal insulation. Traditional EPDM (ethylene propylene diene monomer) rubbers continue to dominate the segment due to their cost-effectiveness and UV resistance, but newer entrants like thermoplastic elastomers (TPE), silicone-based gaskets, and hybrid blends are gaining preference in high-performance building envelopes. These innovations allow gaskets to provide better sealing integrity over long operational lifespans, especially in buildings subjected to intense temperature fluctuations and dynamic structural loads.

The integration of nanomaterials and sustainable polymers is also reshaping gasket technology. Nanofillers such as nano-silica and carbon nanotubes are being introduced into gasket matrices to increase tensile strength and lower permeability. Concurrently, there is a push to design recyclable and low-VOC gasket materials that comply with green building certification standards such as LEED and BREEAM. These developments are not merely cosmetic or marginal enhancements but are critical for performance assurance in energy-efficient facades. The confluence of materials science and regulatory stringency is creating a fertile ground for innovation in facade sealing systems.

Which End-Use Applications Are Driving Market Diversification?

The demand for facade gaskets is not uniform across industries or geographies; it is shaped heavily by architectural demands, building codes, and climate-specific insulation needs. Commercial office buildings, data centers, and mixed-use developments in urban zones require gaskets that provide strong acoustic insulation and air-tightness to meet stringent energy codes. In contrast, industrial facilities and transportation terminals favor chemically resistant, flame-retardant, and vibration-damping gasket systems. The growing popularity of unitized curtain walls and structural glazing systems in high-rises and skyscrapers is also amplifying the demand for precision-engineered gaskets capable of withstanding higher wind loads and thermal bridging.

Facade retrofitting and restoration is another area fueling gasket usage, especially in Europe and North America. Older buildings being upgraded for energy efficiency often require the replacement of degraded gaskets with modern alternatives that can integrate seamlessly with legacy systems. Additionally, specialty architectural projects-such as museums, stadiums, and educational campuses-are adopting custom-profile gaskets that align with unique facade geometries and materials like glass, metal composites, or terracotta panels. The wide range of end-use customization is fostering innovation in design formats, extrusion techniques, and adhesive solutions.

How Are Customer Expectations and Market Dynamics Shifting?

End-user expectations for facade gaskets have shifted from basic utility to performance-led attributes such as lifecycle durability, smart integration, and maintenance ease. Architects and builders are increasingly seeking gaskets that offer long-term reliability, low shrinkage rates, and resistance to chemical leaching or UV degradation. This has led to the emergence of OEM partnerships where gasket manufacturers collaborate directly with facade system designers at the blueprint stage, allowing for tailored designs and streamlined installation workflows.

Digital procurement platforms, BIM (Building Information Modeling) compatibility, and 3D prototyping tools are increasingly used by buyers and specifiers to validate gasket performance virtually before commissioning large-scale projects. Furthermore, buyers in the construction ecosystem are placing greater emphasis on traceability and compliance, seeking gaskets that meet EN 12365, ASTM C864, and other relevant standards. With governments prioritizing net-zero buildings, contractors are showing increased willingness to invest in high-spec gaskets that offer long-term gains in HVAC load reduction and facade integrity. Consumer preference is now closely aligned with environmental stewardship, lifecycle cost optimization, and reduced installation errors.

What Are the Key Growth Drivers in the Global Facade Gaskets Market?

The growth in the facade gaskets market is driven by several factors that reflect both macroeconomic momentum and industry-specific dynamics. One of the most significant drivers is the accelerating pace of urban construction, especially in Asia-Pacific and the Middle East, where high-rise buildings and complex architectural designs are becoming the norm. These projects necessitate high-performance gaskets that meet demanding safety, acoustic, and energy performance criteria. Simultaneously, regulatory reforms targeting building emissions are incentivizing builders to upgrade their facade sealing systems, fostering demand for thermally insulating and low-leakage gasket solutions.

Another key driver is the rising incidence of extreme weather events and climate volatility, which is compelling developers to adopt facade systems that can ensure resilience under moisture intrusion, air infiltration, and structural displacement. Technological advances in extrusion precision, co-molding, and smart material integration are further pushing product boundaries. Additionally, rising investments in smart cities and public infrastructure projects are boosting demand for facade gaskets in transport hubs, healthcare buildings, and municipal complexes. Strategic collaborations between facade contractors, material scientists, and system integrators are enabling holistic gasket solutions that meet multi-performance benchmarks. With sustainability, modularity, and reliability at the forefront, the market is poised for robust, innovation-led growth across diverse global geographies.

SCOPE OF STUDY:

The report analyzes the Facade Gaskets market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Gasket Type (E-Gaskets, Wedge Gaskets, Bubble Gaskets, Other Gasket Types); Material (Silicone Material, Rubber Material, Other Materials); Application (Residential Application, Commercial Application, Other Applications)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 42 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â