¼¼°èÀÇ 3D ¸¶ÀÌÅ©·ÎÇ÷çÀ̵ñ½º ¼¼Æ÷¹è¾ç ½ÃÀå
3D Microfluidic Cell Culture
»óǰÄÚµå : 1753032
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 06¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 396 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,020,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,062,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

3D ¸¶ÀÌÅ©·ÎÇ÷çÀ̵ñ½º ¼¼Æ÷¹è¾ç ¼¼°è ½ÃÀåÀº 2030³â±îÁö 2¾ï 5,640¸¸ ´Þ·¯¿¡ À̸¦ Àü¸Á

2024³â¿¡ 1¾ï 1,810¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â 3D ¸¶ÀÌÅ©·ÎÇ÷çÀ̵ñ½º ¼¼Æ÷¹è¾ç ¼¼°è ½ÃÀåÀº 2024-2030³âÀÇ ºÐ¼® ±â°£¿¡ CAGR 13.8%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 2¾ï 5,640¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ µð¹ÙÀ̽º ÄÄÆ÷³ÍÆ®´Â CAGR13.5%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 1¾ï 2,180¸¸ ´Þ·¯¿¡ À̸¦ Àü¸ÁÀÔ´Ï´Ù. ¹Ìµð¾î ÄÄÆ÷³ÍÆ® ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£Áß CAGR 12.6%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 3,220¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR18.3%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ 3D ¸¶ÀÌÅ©·ÎÇ÷çÀ̵ñ½º ¼¼Æ÷¹è¾ç ½ÃÀåÀº 2024³â¿¡ 3,220¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ 2024-2030³â CAGR18.3%·Î ¼ºÀåÀ» Áö¼ÓÇÏ¿©, 2030³â¿¡´Â ¿¹Ãø ½ÃÀå ±Ô¸ð 5,450¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î¼­´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 10.2%¿Í 12.3%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 10.9%·Î ÃßÁ¤µË´Ï´Ù.

¼¼°èÀÇ 3D ¸¶ÀÌÅ©·ÎÇ÷çÀ̵ñ½º ¼¼Æ÷¹è¾ç ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

3D ¸¶ÀÌÅ©·ÎÇ÷çÀ̵ñ½º ¼¼Æ÷¹è¾çÀÌ Ã¼¿Ü»ý¹°ÇÐ, ¾à¹°°Ë»ç, ¸ÂÃãÇü ÀǷḦ ÀçÁ¤ÀÇÇÏ´Â ÀÌÀ¯´Â?

3D ¸¶ÀÌÅ©·ÎÇ÷çÀ̵ñ½º ¼¼Æ÷ ¹è¾ç Ç÷§ÆûÀº ¼¼Æ÷ÀÇ ¹Ì¼¼ ȯ°æÀ» Àü·Ê ¾øÀÌ Á¦¾îÇÒ ¼ö ÀÖ´Â »ý¹°ÇÐ ¿¬±¸ÀÇ Çõ½ÅÀûÀÎ µµ±¸·Î ºü¸£°Ô ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº Á¶Á÷°ú °ü·ÃµÈ ¼¼Æ÷¿Ü ¸ÅÆ®¸¯½º, ±â°èÀû ½ÅÈ£, Á¤¹ÐÇÑ À¯Ã¼¿ªÇÐÀ» ¼ÒÇü À¯Ã¼ ä³Î¿¡ ÅëÇÕÇÏ¿© »ýü ³»¿Í À¯»çÇÑ Á¶°ÇÀ» ÀçÇöÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ´É·ÂÀº ±âÁ¸ÀÇ 2Â÷¿ø ¹è¾çÀ¸·Î´Â ÀçÇöÇÒ ¼ö ¾ø¾ú´ø ´Ù¼¼Æ÷ ¾ÆÅ°ÅØÃ³¿Í Àå±â ¼öÁØÀÇ ±â´É¼ºÀ» ¹è¾çÇÒ ¼ö ÀÖ¾î º¸´Ù »ý¸®Àû °ü·Ã¼ºÀÌ ³ôÀº µ¥ÀÌÅ͸¦ ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

ÀÌ ±â¼úÀº ´õ ³ôÀº ¿¹Ãø Á¤È®µµ¸¦ Áö¿øÇϰí, µ¿¹° ½ÇÇè¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³·Ã߸ç, ÀüÀÓ»ó ÆÄÀÌÇÁ¶óÀÎÀ» °¡¼ÓÈ­Çϱâ À§ÇØ ½Å¾à °³¹ß, µ¶¼ºÇÐ ½ºÅ©¸®´×, Áúº´ ¸ðµ¨¸µ¿¡¼­ Àü·«Àû °ßÀηÂÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù. ¸ÂÃãÇü ÀÇ·á´Â ¶Ç ´Ù¸¥ °³Ã´ ºÐ¾ß·Î, ¸¶ÀÌÅ©·ÎÇ÷çÀ̵ñ½º ½Ã½ºÅÛÀ» ÅëÇØ ȯÀÚ À¯·¡ ¼¼Æ÷¸¦ ¹è¾çÇÏ°í Æ¯Á¤ ¾à¹° ¿ä¹ý¿¡ ´ëÇØ Å×½ºÆ®ÇÏ¿© ¸ÂÃãÇü Ä¡·á Àü·«À» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. »ý¹° ÀÇÇÐ ¿¬±¸ °³¹ßÀÌ Àΰ£°ú °ü·ÃÀÌ ÀÖ°í, È®Àå °¡´ÉÇϸç, À±¸®ÀûÀ¸·Î Ã¥ÀÓ°¨ ÀÖ´Â ¸ðµ¨·Î ÀüȯµÊ¿¡ µû¶ó 3D ¸¶ÀÌÅ©·ÎÇ÷çÀ̵ñ½º Ç÷§ÆûÀº ¹ø¿ª »ý¹°ÇÐ ³ë·ÂÀÇ Áß½ÉÀÌ µÇ°í ÀÖ½À´Ï´Ù.

Àç·á Çõ½Å, ¼¾¼­ ÅëÇÕ, ÀÚµ¿È­°¡ 3D ¸¶ÀÌÅ©·ÎÇ÷çÀ̵ñ½º ½Ã½ºÅÛÀÇ ¼º´ÉÀ» ¾î¶»°Ô Çâ»ó½Ã۰í Àִ°¡?

°íºÐÀÚ ±âÆÇ, ÇÏÀ̵å·Î°Ö ¸ÅÆ®¸¯½º, »ýüÀûÇÕ¼º ¿¤¶ó½ºÅä¸ÓÀÇ Çõ½ÅÀº ¸¶ÀÌÅ©·ÎÇ÷çÀ̵ñ½º ÀåÄ¡ÀÇ ±¸Á¶Àû ¹«°á¼º°ú ±â´ÉÀû ´Ù¾ç¼ºÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Àç·á´Â º¹ÀâÇÑ Çü»ó, Åõ¸íÇÑ À̹Ì¡, Àå±âÀûÀÎ ¼¼Æ÷ »ýÁ¸À» Áö¿øÇÏ¸ç º¹ÀâÇÑ Á¶Á÷ ¹Ì¼¼ ȯ°æ ½Ã¹Ä·¹À̼ǿ¡ ÇʼöÀûÀÔ´Ï´Ù. ¶ÇÇÑ, ¼ÒÇÁÆ® ¸®¼Ò±×·¡ÇÇ¿Í 3D ÇÁ¸°ÆÃ ¾ÆÅ°ÅØÃ³ÀÇ ¹ßÀüÀ¸·Î ƯÁ¤ »ý¹°ÇÐÀû ¿ëµµ¿¡ ¸Â´Â ¸ÂÃãÇü, ÀçÇö¼º, ºñ¿ë È¿À²ÀûÀÎ ÀåÄ¡ ±¸Á¶¸¦ Á¦ÀÛÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.

pH, »ê¼Ò, Æ÷µµ´ç, ´ë»ç»ê¹° ¸ð´ÏÅ͸µÀ» À§ÇÑ ½Ç½Ã°£ ¹ÙÀÌ¿À¼¾¼­ÀÇ ÅëÇÕÀº ¼¼Æ÷ ¹è¾ç ºÐ¼®ÀÇ ºÐ¼® ±íÀ̸¦ Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â´ÉÀº ¸¶ÀÌÅ©·Î ¹ëºê ±â¹Ý À¯Ã¼ Á¦¾î ¹× AI ±â¹Ý À̹ÌÁö ºÐ¼®°ú °áÇÕÇÏ¿© ¼¼Æ÷ ¹ÝÀÀ ¹× ´ë»ç º¯È­¿¡ ´ëÇÑ Áö¼ÓÀûÀÎ ÅëÂû·ÂÀ» Á¦°øÇÕ´Ï´Ù. ÀÚµ¿È­¸¦ ÅëÇØ ¼³Á¤, Á¶ÀÛ ¹× µ¥ÀÌÅÍ ¼öÁý ÇÁ·Î¼¼½º¸¦ ´õ¿í °£¼ÒÈ­ÇÏ¿© ³ôÀº 󸮷® ½ÇÇèÀ» Áö¿øÇÏ°í ¼öÀÛ¾÷À¸·Î ÀÎÇÑ º¯µ¿À» ÁÙÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ±â´ÉÀÇ °áÇÕÀ¸·Î 3D ¸¶ÀÌÅ©·ÎÇ÷çÀ̵ñ½º Ç÷§ÆûÀº ½ÇÇè µµ±¸¿¡¼­ »ê¾÷ µî±ÞÀÇ ¿¬±¸ ¹× Áø´Ü ½Ã½ºÅÛÀ¸·Î ÀüȯµÇ°í ÀÖ½À´Ï´Ù.

3D ¸¶ÀÌÅ©·ÎÇ÷çÀ̵ñ½º ¼¼Æ÷ ¹è¾ç ½ÃÀåÀÇ ±Ëµµ¸¦ Çü¼ºÇÏ´Â ¿ëµµ, »ç¿ëÀÚ ºÎ¹® ¹× Áö¿ªÀº ¹«¾ùÀΰ¡?

ÁÖ¿ä ÀÀ¿ë ºÐ¾ß´Â Á¾¾çÇÐ, ½Å°æÇÐ, ½ÉÇ÷°ü ¿¬±¸, ¸é¿ªÇÐ, Àü¿°º´ ¿¬±¸ µî ´Ù¾çÇÕ´Ï´Ù. Á¾¾ç ¿ÂĨ ¹× Àå±â ¿ÂĨ ¸ðµ¨Àº Ç×¾ÏÁ¦ ½ºÅ©¸®´× ¹× Á¾¾ç, °£Áú »óÈ£ÀÛ¿ë ¸ÞÄ¿´ÏÁò ¿¬±¸¿¡ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. Çмú ¿¬±¸±â°ü, CRO(ÀÓ»ó½ÃÇè¼öʱâ°ü), ¹ÙÀÌ¿À Á¦¾à»ç, ±ÔÁ¦ ´ç±¹ÀÌ 1Â÷ ¿¬±¸¸¦ ¼öÇàÇϰí ÀÖÀ¸¸ç, °¢ ±â°üÀº ƯÁ¤ ¿öÅ©Ç÷οìÀÇ ¿ä±¸¸¦ ÃæÁ·½Ã۱â À§ÇØ ¸¶ÀÌÅ©·ÎÀ¯Ã¼ Ç÷§ÆûÀ» Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù.

ºÏ¹Ì¿¡¼­´Â °­·ÂÇÑ ÀÚ±Ý Á¶´Þ »ýŰè, È®¸³µÈ ¹ÙÀÌ¿À Ŭ·¯½ºÅÍ, ºñµ¿¹°½ÇÇè¹ý¿¡ ´ëÇÑ ±ÔÁ¦ ´ç±¹ÀÇ °ü½ÉÀ¸·Î ÀÎÇØ äÅÃÀÌ ¿ì¼¼ÇÕ´Ï´Ù. À¯·´Àº 3R(´ëü, °¨¼Ò, °³¼±) ÀÌ´Ï¼ÅÆ¼ºê¿Í ÷´Ü ¹ÙÀÌ¿À¸ÞµðÄà ¿£Áö´Ï¾î¸µ ÇÁ·Î±×·¥¿¡ ÈûÀÔ¾î ±Ù¼ÒÇÑ Â÷ÀÌ·Î ±× µÚ¸¦ ÀÕ°í ÀÖ½À´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾çÀº ƯÈ÷ Áß±¹, ÀϺ», Çѱ¹¿¡¼­ ¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö¿¡ ´ëÇÑ ÅõÀÚ¿Í »êÇÐÇù·ÂÀÇ È®´ë°¡ ±â¼ú µµÀÔ¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ¿ë »ç·Ê´Â ¿¬±¸ °³¹ß»Ó¸¸ ¾Æ´Ï¶ó ÀÓ»ó Áø´Ü, ÇöÀå Àû¿ë, ¹ÙÀÌ¿À Á¦Á¶±îÁö È®´ëµÇ°í ÀÖ½À´Ï´Ù.

¸¶ÀÌÅ©·ÎÇ÷çÀ̵ñ½º°øÇÐÀÌ ´ÜÀÏ ¼¼Æ÷ ºÐ¼®, Áٱ⼼Æ÷ ¿¬±¸, °è»ê»ý¹°ÇаúÀÇ À¶ÇÕÀ» ÅëÇØ »õ·Î¿î °³Ã´ÀÇ ÁöÆòÀ» ¿­¾î°¡°í ÀÖ½À´Ï´Ù. ¸ðµâ½Ä ÀåÄ¡ ¼³°è, Ŭ¶ó¿ìµå ¿¬°á µ¥ÀÌÅÍ Ç÷§Æû, ·Îº¿ ½ÇÇè½Ç ½Ã½ºÅÛ°úÀÇ È£È¯¼ºÀº »ý¸í°úÇÐ ¹ë·ùüÀÎ Àü¹Ý¿¡ °ÉÃÄ ÀÌ·¯ÇÑ ½Ã½ºÅÛÀÇ ´ÙÁß »çÀÌÆ®, ±³Â÷ ±â´ÉÀû ÅëÇÕÀ» Áö¿øÇÕ´Ï´Ù.

¹Ì·¡ÀÇ ¹ÙÀÌ¿À ÀÇÇÐ ¿¬±¸ ¹× Ä¡·áÁ¦ °³¹ß¿¡¼­ 3D ¸¶ÀÌÅ©·ÎÇ÷çÀ̵ñ½º ¼¼Æ÷¹è¾çÀÌ Â÷ÁöÇÏ´Â Áß¿äÇÑ ¿ªÇÒÀº ¹«¾ùÀΰ¡?

3D ¸¶ÀÌÅ©·ÎÇ÷çÀ̵ñ½º ¼¼Æ÷¹è¾çÀÇ Àü·«Àû Á߿伺Àº in vitroÀÇ ´Ü¼øÇÔ°ú in vivoÀÇ º¹À⼺ »çÀÌÀÇ °£±ØÀ» ¸Þ¿ì´Â ´É·Â¿¡ ÀÖ½À´Ï´Ù. ¹ÙÀÌ¿À ÀǾàǰ ÆÄÀÌÇÁ¶óÀÎÀÌ º¸´Ù Ç¥ÀûÈ­µÇ°í º¹ÀâÇÏ¸ç ½ÇÆÐ À§ÇèÀÌ ³ôÀº Ä¡·á¹ýÀ¸·Î ÁøÈ­ÇÔ¿¡ µû¶ó, ÀÌ·¯ÇÑ Ç÷§ÆûÀº ½ºÅ©¸®´×, °ËÁõ ¹× ¸ÞÄ¿´ÏÁò ¿¬±¸¸¦ À§ÇÑ °íÇØ»óµµ, Á¦¾î °¡´ÉÇϰí À±¸®ÀûÀ¸·Î È®Àå °¡´ÉÇÑ ´ë¾ÈÀ» Á¦°øÇÕ´Ï´Ù.

ÁÖ¿ä ¼ºÀå ÃËÁø¿äÀÎÀ¸·Î´Â ÀÓ»ó½ÃÇè °¨¼Ò¿¡ ´ëÇÑ ¾ïÁ¦ ¾Ð·Â Áõ°¡, ·¦¿Â¾îĨ ±â¼ú Çõ½Å¿¡ ´ëÇÑ ÅõÀÚ È®´ë, »õ·Î¿î °Ë»ç ÆÐ·¯´ÙÀÓ¿¡ ´ëÇÑ ±ÔÁ¦ ´ç±¹ÀÇ °³¹æ¼º Áõ°¡ µîÀ» ²ÅÀ» ¼ö ÀÖ½À´Ï´Ù. ¸¶ÀÌÅ©·Î ¿£Áö´Ï¾î¸µ°ú ÇÕ¼º»ý¹°Çп¡¼­ Àç»ýÀÇÇп¡ À̸£±â±îÁö ´Ù¾çÇÑ ºÐ¾ßÀÇ ÅëÇÕÀÌ ÀÌ·ç¾îÁö°í ÀÖ´Â °Íµµ ÀÌ ºÐ¾ß¿¡ Ȱ·ÂÀ» ºÒ¾î³Ö°í ÀÖ½À´Ï´Ù. ¿¬±¸ÀÚµéÀÌ º¸´Ù ¿¹Ãø °¡´ÉÇϰí, ȯÀÚ °ü·Ã¼ºÀÌ ³ôÀ¸¸ç, ÀÚµ¿È­¿¡ ÀûÇÕÇÑ ½Ã½ºÅÛÀ» ã°í ÀÖ´Â °¡¿îµ¥, 3D ¸¶ÀÌÅ©·ÎÇ÷çÀ̵ñ½º ¼¼Æ÷¹è¾çÀº ÇʼöÀûÀÎ µµ±¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù.

Á¤¹ÐÀÇ·á°¡ Ç¥ÁØÀÌ µÇ°í »ý¹°ÇÐÀû Ä¡·á°¡ º¹ÀâÇØÁü¿¡ µû¶ó 3D ¸¶ÀÌÅ©·ÎÇ÷çÀ̵ñ½º Ç÷§ÆûÀÌ Â÷¼¼´ë »ý¹° ÀÇÇÐ Çõ½ÅÀ» ±¸ÃàÇÏ´Â µ¥ ÇʼöÀûÀÎ ¹ßÆÇÀÌ µÉ ¼ö ÀÖÀ»±î?

ºÎ¹®

±¸¼º ¿ä¼Ò(±â±â ±¸¼º ¿ä¼Ò, ¹Ìµð¾î ±¸¼º ¿ä¼Ò, ½Ã¾à ±¸¼º ¿ä¼Ò, ¼Ò¸ðǰ ±¸¼º ¿ä¼Ò); ¾ÖÇø®ÄÉÀ̼Ç(½Å¾à ¹ß°ß ¹× °³¹ß ¾ÖÇø®ÄÉÀ̼Ç, Á¶Á÷ °øÇÐ ¾ÖÇø®ÄÉÀ̼Ç, Àç»ý ÀÇÇÐ ¾ÖÇø®ÄÉÀ̼Ç, ¾Ï ¿¬±¸ ¾ÖÇø®ÄÉÀ̼Ç, Áٱ⼼Æ÷ ¿¬±¸ ¾ÖÇø®ÄÉÀ̼Ç, µ¶¼ºÇÐ Å×½ºÆ® ¾ÖÇø®ÄÉÀ̼Ç, Áúº´ ¸ðµ¨¸µ ¾ÖÇø®ÄÉÀ̼Ç, ±âŸ ¾ÖÇø®ÄÉÀ̼Ç); ÃÖÁ¾ ¿ëµµ(Á¦¾à ¹× ¹ÙÀÌ¿ÀÅ×Å© ±â¾÷ ÃÖÁ¾ ¿ëµµ, Çмú ¹× ¿¬±¸ ±â°ü ÃÖÁ¾ ¿ëµµ, º´¿ø ¹× Áø´Ü ¼¾ÅÍ ÃÖÁ¾ ¿ëµµ, °è¾à ¿¬±¸ ±â°ü ÃÖÁ¾ ¿ëµµ, ±âŸ ÃÖÁ¾ ¿ëµµ).

Á¶»ç ´ë»ó ±â¾÷ ¿¹(ÃÑ 39°³»ç)

AI ÅëÇÕ

¿ì¸®´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ¼­, ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾ç ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global 3D Microfluidic Cell Culture Market to Reach US$256.4 Million by 2030

The global market for 3D Microfluidic Cell Culture estimated at US$118.1 Million in the year 2024, is expected to reach US$256.4 Million by 2030, growing at a CAGR of 13.8% over the analysis period 2024-2030. Devices Component, one of the segments analyzed in the report, is expected to record a 13.5% CAGR and reach US$121.8 Million by the end of the analysis period. Growth in the Media Component segment is estimated at 12.6% CAGR over the analysis period.

The U.S. Market is Estimated at US$32.2 Million While China is Forecast to Grow at 18.3% CAGR

The 3D Microfluidic Cell Culture market in the U.S. is estimated at US$32.2 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$54.5 Million by the year 2030 trailing a CAGR of 18.3% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 10.2% and 12.3% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 10.9% CAGR.

Global 3D Microfluidic Cell Culture Market - Key Trends & Drivers Summarized

Why Is 3D Microfluidic Cell Culture Redefining In Vitro Biology, Drug Testing, and Personalized Medicine?

3D microfluidic cell culture platforms are rapidly emerging as transformative tools in biological research, offering unprecedented control over the cellular microenvironment. These systems replicate in vivo-like conditions by integrating tissue-relevant extracellular matrices, mechanical cues, and precise fluid dynamics into miniature channels. This capability enables the cultivation of multicellular architectures and organ-level functionalities that traditional 2D cultures cannot reproduce, leading to more physiologically relevant data.

The technology is gaining strategic traction across drug discovery, toxicology screening, and disease modeling as it supports higher predictive accuracy, reduces reliance on animal testing, and accelerates the preclinical pipeline. Personalized medicine is another frontier where microfluidic systems allow patient-derived cells to be cultured and tested against specific drug regimens, enabling tailored treatment strategies. As biomedical R&D shifts toward human-relevant, scalable, and ethically responsible models, 3D microfluidic platforms are becoming central to translational biology efforts.

How Are Material Innovation, Sensor Integration, and Automation Enhancing the Performance of 3D Microfluidic Systems?

Innovations in polymer substrates, hydrogel matrices, and biocompatible elastomers are enhancing the structural integrity and functional versatility of microfluidic devices. These materials support intricate geometries, transparent imaging, and long-term cell viability, critical for simulating complex tissue microenvironments. Advances in soft lithography and 3D printing are also enabling customizable, reproducible, and cost-efficient fabrication of device architectures tailored to specific biological applications.

The integration of real-time biosensors for pH, oxygen, glucose, and metabolite monitoring is elevating the analytical depth of cell culture assays. Coupled with microvalve-based fluid control and AI-driven imaging analytics, these features provide continuous insight into cellular responses and metabolic shifts. Automation is further streamlining the setup, operation, and data acquisition processes, supporting high-throughput experimentation and reducing manual variability. Together, these capabilities are moving 3D microfluidic platforms from experimental tools to industrial-grade research and diagnostic systems.

Which Applications, User Segments, and Geographies Are Shaping the 3D Microfluidic Cell Culture Market Trajectory?

Key application areas span oncology, neurology, cardiovascular studies, immunology, and infectious disease research. Tumor-on-a-chip and organ-on-a-chip models are gaining widespread use for anti-cancer drug screening and mechanistic studies of tumor-stroma interactions. Academic labs, contract research organizations (CROs), biopharma companies, and regulatory agencies are the primary adopters, each leveraging microfluidic platforms to address specific workflow needs.

North America dominates adoption due to strong funding ecosystems, established biotech clusters, and regulatory interest in non-animal testing methods. Europe follows closely, supported by initiatives in 3Rs (Replacement, Reduction, Refinement) and advanced biomedical engineering programs. Asia-Pacific is gaining momentum, especially in China, Japan, and South Korea, where growing biotech investments and university-industry collaborations are spurring technology uptake. Use cases are expanding beyond R&D to include clinical diagnostics, point-of-care applications, and even biomanufacturing.

The convergence of microfluidics with single-cell analysis, stem cell research, and computational biology is opening new deployment frontiers. Modular device design, cloud-linked data platforms, and compatibility with robotic lab systems are supporting multi-site, cross-functional integration of these systems across life sciences value chains.

What Is Fueling the Critical Role of 3D Microfluidic Cell Culture in the Future of Biomedical Research and Therapeutics Development?

The strategic importance of 3D microfluidic cell culture lies in its ability to bridge the gap between in vitro simplicity and in vivo complexity. As biopharma pipelines evolve toward more targeted, complex, and high-failure-risk therapies, these platforms provide a high-resolution, controllable, and ethically scalable alternative for screening, validation, and mechanistic investigation.

Key growth drivers include rising pressure to reduce clinical trial attrition, expanding investment in lab-on-a-chip innovation, and growing regulatory openness to new testing paradigms. Increasing cross-disciplinary integration-from microengineering and synthetic biology to regenerative medicine-is also propelling the field. As researchers seek more predictive, patient-relevant, and automation-compatible systems, 3D microfluidic cell cultures are emerging as indispensable tools.

As precision medicine becomes the norm and biologic therapies grow in complexity, could 3D microfluidic platforms become the essential scaffolding upon which the next generation of biomedical breakthroughs is built?

SCOPE OF STUDY:

The report analyzes the 3D Microfluidic Cell Culture market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Component (Devices Component, Media Component, Reagents Component, Consumables Component); Application (Drug Discovery & Development Application, Tissue Engineering Application, Regenerative Medicine Application, Cancer Research Application, Stem Cell Research Application, Toxicology Testing Application, Disease Modeling Application, Other Applications); End-Use (Pharma & Biotech Companies End-Use, Academic & Research Institutes End-Use, Hospitals & Diagnostic Centers End-Use, Contract Research Organizations End-Use, Other End-Uses)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 39 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â