¼¼°èÀÇ ÀΰøÁö´É(AI) ¼¾¼­ ½ÃÀå
Artificial Intelligence Sensors
»óǰÄÚµå : 1744973
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 06¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 216 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,136,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,408,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ÀΰøÁö´É(AI) ¼¾¼­ ½ÃÀåÀº 2030³â±îÁö 180¾ï ´Þ·¯¿¡ À̸¦ Àü¸Á

2024³â¿¡ 44¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ÀΰøÁö´É(AI) ¼¾¼­ ¼¼°è ½ÃÀåÀº 2024-2030³â°£ CAGR 26.4%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 180¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ¾Ð·Â ¼¾¼­´Â CAGR 26.8%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á±îÁö 46¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À§Ä¡ ¼¾¼­ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£Áß CAGR 23.3%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 12¾ï ´Þ·¯, Áß±¹Àº CAGR 25.0%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ÀΰøÁö´É(AI) ¼¾¼­ ½ÃÀåÀº 2024³â¿¡ 12¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 27¾ï ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 25.0%·Î ÃßÁ¤µË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î¼­´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 24.1%¿Í 22.8%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 18.2%¸¦ º¸ÀÏ Àü¸ÁÀÔ´Ï´Ù.

¼¼°èÀÇ ÀΰøÁö´É(AI) ¼¾¼­ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

AI ¼¾¼­°¡ µ¥ÀÌÅÍ ¼öÁý, ȯ°æ ÀνÄ, ÀÚÀ²Àû ÀÇ»ç°áÁ¤¿¡ Çõ¸íÀ» °¡Á®¿Ã ÀÌÀ¯´Â?

ÀΰøÁö´É(AI) ¼¾¼­´Â ¼¾¼­ ¾ÆÅ°ÅØÃ³¿¡ AI ±â´ÉÀ» Á÷Á¢ ÅëÇÕÇÑ »õ·Î¿î À¯ÇüÀÇ ½º¸¶Æ® ÄÄÆ÷³ÍÆ®ÀÔ´Ï´Ù. ±âÁ¸ ¼¾¼­°¡ ´Ù¿î½ºÆ®¸² 󸮸¦ À§ÇØ µ¥ÀÌÅ͸¦ ¼öÁýÇÏ´Â µ¥ ±×Ä¡´Â °Í°ú ´Þ¸®, AI ¼¾¼­´Â ½ÅÈ£ ¼öÁý ½ÃÁ¡¿¡ ½ÅÈ£¸¦ ºÐ¼® ¹× ÇØ¼®ÇÏ¿© Áï°¢ÀûÀÎ »óȲ ÀÎ½Ä ÀÀ´äÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¼¾¼­´Â ÀÚµ¿Â÷, ÇコÄɾî, Á¦Á¶, °¡Àü, ·Îº¿ µîÀÇ ¿ëµµ¿¡¼­ ±â°è°¡ ȯ°æÀ» ÀνÄÇÏ°í »óÈ£ ÀÛ¿ëÇÏ´Â ¹æ½ÄÀ» º¯È­½Ã۰í ÀÖ½À´Ï´Ù.

AI ¼¾¼­´Â ¼¾¼­ Çϵå¿þ¾î¿Í µð¹ÙÀ̽º »óÀÇ ¸Ó½Å·¯´× ¸ðµ¨À» °áÇÕÇÏ¿© ÆÐÅÏ ÀνÄ, ÀÌ»ó °¨Áö, ºÐ·ù, ¿¹Ãø ¸ð´ÏÅ͸µÀ» À§ÇÑ Ãß·ÐÀ» ½Ç½Ã°£À¸·Î ¼öÇàÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ÇöÁöÈ­µÈ ÀÎÅÚ¸®Àü½º¸¦ ÅëÇØ ´ë±â ½Ã°£À» ÁÙÀ̰í, µ¥ÀÌÅÍ Àü¼ÛÀÇ Çʿ伺À» Á¦ÇÑÇϸç, ¿î¿µÀÇ ÀÚÀ²¼ºÀ» °­È­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, AI°¡ žÀçµÈ À̹ÌÁö ¼¾¼­´Â °¨½Ã ½Ã½ºÅÛ¿¡¼­ ¹°Ã¼³ª Á¦½ºÃ³¸¦ ½Äº°ÇÒ ¼ö ÀÖ°í, NLP ¸ðµ¨ÀÌ Å¾ÀçµÈ À½Çâ ¼¾¼­´Â Ŭ¶ó¿ìµå¿¡ ÀÇÁ¸ÇÏÁö ¾Ê°íµµ ½º¸¶Æ® ±â±âÀÇ À½¼º ¸í·É ÀÀ´äÀ» Æ®¸®°ÅÇÒ ¼ö ÀÖ½À´Ï´Ù.

»ê¾÷ ¹× ÀÚµ¿Â÷ ºÐ¾ß¿¡¼­ AI ¼¾¼­´Â Áö¼ÓÀûÀÎ ÀûÀÀÇü ¸ð´ÏÅ͸µÀ» ÅëÇØ °íÀåÀ» ½Äº°Çϰí, ¸¶¸ð ÆÐÅÏÀ» °¨ÁöÇϰí, °íÀåÀ» ¿¹ÃøÇÔÀ¸·Î½á ½Ã½ºÅÛÀÇ ½Å·Ú¼º°ú ¾ÈÀü¼ºÀ» Çâ»ó½ÃŰ´Â µ¥ ±â¿©ÇÕ´Ï´Ù. ½º¸¶Æ® ÀÎÇÁ¶ó¿Í ¿¡³ÊÁö ½Ã½ºÅÛ¿¡¼­ AI·Î °­È­µÈ ȯ°æ ¼¾¼­´Â Á¤È®ÇÑ °ø±âÁú, Áøµ¿, ¿Âµµ ºÐ¼®À» Á¦°øÇÏ¿© ÀÚµ¿È­, ¿¡³ÊÁö ÃÖÀûÈ­, ¿¹Áöº¸ÀüÀ» Áö¿øÇÕ´Ï´Ù. Ä¿³ØÆ¼µå µð¹ÙÀ̽º°¡ Áõ°¡ÇÔ¿¡ µû¶ó AI ¼¾¼­´Â Àνİú ÇൿÀ» ¿¬°áÇÏ´Â È®Àå °¡´ÉÇÑ ½Ç½Ã°£ Áö´ÉÇü ½Ã½ºÅÛÀÇ ±âº» ¿ä¼Ò·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù.

¿§Áö AI, ¸ÖƼ¸ð´Þ À¶ÇÕ, ´º·Î¸ðÇÈ ¿£Áö´Ï¾î¸µÀº ¾î¶»°Ô ¼¾¼­ÀÇ Áö´ÉÀ» Çâ»ó½Ãų ¼ö ÀÖÀ»±î?

¿§Áö AI´Â AI ¼¾¼­ÀÇ ÇÙ½É ±¸Çö ¿ä¼Ò·Î, ¼¾¼­ À¯´Ö¿¡ ³»ÀåµÈ ¸¶ÀÌÅ©·ÎÄÁÆ®·Ñ·¯, FPGA, ´º·Î¸ðÇÈ Ä¨¿¡¼­ Á÷Á¢ ¸Ó½Å·¯´× ¸ðµ¨À» ½ÇÇàÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. ÀÌ ±â´ÉÀº ÇØ¼®À» À§ÇØ ¿ø½Ã µ¥ÀÌÅ͸¦ ¿ÜºÎ ÇÁ·Î¼¼¼­³ª Ŭ¶ó¿ìµå Ç÷§ÆûÀ¸·Î ¿ÀÇÁ·ÎµåÇÒ Çʿ䰡 ¾øÀ¸¹Ç·Î Àü·Â ¼Òºñ¸¦ Å©°Ô ÁÙÀÌ°í µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã¸¦ °­È­ÇÕ´Ï´Ù. ¿§Áö ¹èÄ¡¿¡ ÃÖÀûÈ­µÈ AI ¼¾¼­´Â ¿þ¾î·¯ºí ±â±âÀÇ Á¦½ºÃ³ ÀνÄ, ¸ð¹ÙÀÏ ±â±âÀÇ ¾ó±¼ ÀνÄ, ÀÚÀ²ÁÖÇàÂ÷ÀÇ Àå¾Ö¹° °¨Áö µîÀÇ ÀÌ¿ë »ç·Ê¸¦ Áö¿øÇÕ´Ï´Ù.

½Ã°¢, ·¹ÀÌ´õ, LiDAR, À½¼º, ¿­ µî ¿©·¯ ¼¾¼­ÀÇ µ¥ÀÌÅ͸¦ °áÇÕÇÏ´Â ¸ÖƼ¸ð´Þ ¼¾¼­ À¶ÇÕÀº AI ½Ã½ºÅÛÀÇ ¸Æ¶ô Àνİú Á¤È®µµ¸¦ Çâ»ó½Ã۰í, AI ¾Ë°í¸®ÁòÀº ÀÌ·¯ÇÑ ´Ù¾çÇÑ µ¥ÀÌÅÍ ½ºÆ®¸²À» µ¿½Ã¿¡ ÇØ¼®ÇÏ¿© ÀϰüµÈ »óȲ À̹ÌÁö¸¦ Çü¼ºÇÕ´Ï´Ù. ¿¹¸¦ µé¾î, ÷´Ü¿îÀüÀÚº¸Á¶½Ã½ºÅÛ(ADAS)¿¡¼­´Â AI°¡ Ä«¸Þ¶ó¿Í ·¹ÀÌ´õÀÇ ÀÔ·ÂÀ» À¶ÇÕÇÏ¿© ³¯¾¾¿Í Á¶¸í Á¶°ÇÀÌ º¯È­ÇÏ´Â »óȲ¿¡¼­ ¹°Ã¼ °¨ÁöÀÇ ½Å·Ú¼ºÀ» ³ôÀÔ´Ï´Ù.

´º·Î¸ðÇÈ ¼¾¼­ÀÇ °³¹ßµµ Ȱ¹ßÈ÷ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. »ýü ½Ã½ºÅÛ¿¡¼­ ¿µ°¨À» ¾òÀº ÀÌ ¼¾¼­µéÀº ½Å°æ ¾ÆÅ°ÅØÃ³¸¦ ¸ð¹æÇϰí À̺¥Æ® ±â¹Ý ¹æ½ÄÀ¸·Î ½ºÆÄÀÌÅ© ½ÅÈ£¸¦ ó¸®ÇÏ¿© ¿¡³ÊÁö »ç¿ë·®À» Å©°Ô ÁÙÀÌ°í ½Ç½Ã°£ ÇнÀÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ½Ã°¢ ¹× Ã˰¢ ´º·Î¸ðÇÈ ¼¾¼­´Â º¸Ã¶, ·Îº¿ °øÇÐ, º¸¾È ½Ã½ºÅÛ µî ±âÁ¸ ¼¾¼­°¡ ´ë±â½Ã°£°ú ÀûÀÀ¼º¿¡ ¾î·Á¿òÀ» °Þ¾ú´ø ºÐ¾ß¿¡¼­ ¿¬±¸µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀº ¹ÝÀÀ¼º»Ó¸¸ ¾Æ´Ï¶ó ÀåÄ¡¿¡¼­ ÇнÀÀ» ÅëÇØ ÁøÈ­ÇÒ ¼ö ÀÖ´Â Â÷¼¼´ë ¼¾½Ì ½Ã½ºÅÛÀÇ ±â¹ÝÀ» ¸¶·ÃÇϰí ÀÖ½À´Ï´Ù.

AI ³»Àå ¼¾¼­ ¼ö¿ä¸¦ °¡¼ÓÈ­Çϰí ÀÖ´Â »ê¾÷º° ¹× ¼¼°è ½ÃÀåÀº?

ÀÚµ¿Â÷´Â ÀÚÀ²ÁÖÇà, ¿îÀüÀÚ ¸ð´ÏÅ͸µ ½Ã½ºÅÛ, Áö´ÉÇü ÀÎÆ÷Å×ÀÎ¸ÕÆ®¿¡ ÇʼöÀûÀÎ AI ¼¾¼­°¡ Áö¹èÇÏ´Â »ê¾÷À¸·Î, AI°¡ ³»ÀåµÈ Ä«¸Þ¶ó, LiDAR, ·¹ÀÌ´õ, ÃÊÀ½ÆÄ ¼¾¼­´Â ½Ã°¢ ¹× °ø°£ µ¥ÀÌÅ͸¦ ó¸®ÇÏ¿© ¹°Ã¼ ÃßÀû, Â÷¼± ÀÌÅ» °æ°í, º¸ÇàÀÚ °¨Áö, ÀûÀÀÇü Å©·çÁî ÄÁÆ®·ÑÀ» Áö¿øÇÕ´Ï´Ù. º¸ÇàÀÚ °¨Áö, ¾î´ðƼºê Å©·çÁî ÄÁÆ®·ÑÀ» Áö¿øÇÕ´Ï´Ù. ¾ÈÀüÀÌ Áß¿äÇÑ È¯°æ¿¡¼­´Â ¼¾¼­ÀÇ ÀÌÁßÈ­ ¹× ½Ç½Ã°£ ÀÇ»ç°áÁ¤ÀÌ ÇÊ¿äÇϱ⠶§¹®¿¡ OEM ¹× Tier-1 °ø±Þ¾÷üµéÀº AI Áö¿ø ¼¾¼­ ±â¼ú¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù.

ÇコÄÉ¾î ºÐ¾ß¿¡¼­ AI ¹ÙÀÌ¿À¼¾¼­´Â ½ÉÀüµµ, Ç÷´ç, Ç÷Áß »ê¼Ò ³óµµ µî »ý¸®Àû ÆÄ¶ó¹ÌÅ͸¦ ½Ç½Ã°£À¸·Î ¸ð´ÏÅ͸µÇϱâ À§ÇØ µµÀԵǰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼¾¼­´Â ±â±â¿¡¼­ »ýü ½ÅÈ£¸¦ ºÐ¼®ÇÏ¿© Ŭ¶ó¿ìµå ÇÁ·Î¼¼½Ì¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙÀÌ°í ¿þ¾î·¯ºí ¹× ¿ø°Ý ȯÀÚ ¸ð´ÏÅ͸µ ½Ã½ºÅÛ¿¡¼­ Áö¼ÓÀûÀÎ °Ç°­ ÃßÀûÀ» °¡´ÉÇÏ°Ô Çϸç, AI´Â À̹ÌÁö ¼¾¼­¿¡µµ ÅëÇÕµÇ¾î Æ¯È÷ ÀÚ¿øÀÌ ºÎÁ·ÇÑ ÀÇ·á ¹× ¸ð¹ÙÀÏ ÀÇ·á ÇöÀå¿¡¼­ Áø´ÜÀ» °­È­Çϰí ÀÌ»ó ¡Èĸ¦ Á¶±â¿¡ ¹ß°ßÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. Á¶±â ¹ß°ß¿¡ µµ¿òÀ» ÁÖ°í ÀÖ½À´Ï´Ù.

°¡Àü ¹× ½º¸¶Æ®È¨ ½ÃÀå¿¡¼­´Â Á¦½ºÃ³, Á¸Àç°¨, ȯ°æ °¨Áö¸¦ ÅëÇØ ¿øÈ°ÇÑ »ç¿ëÀÚ °æÇèÀ» Á¦°øÇϱâ À§ÇØ AI ¼¾¼­°¡ äÅõǰí ÀÖ½À´Ï´Ù. ½º¸¶Æ® ½ºÇÇÄ¿, Ä«¸Þ¶ó, ¿Âµµ Á¶Àý±â, °¡ÀüÁ¦Ç°Àº À½¼º, ¸ð¼Ç ¶Ç´Â ÁÖº¯ ÀÔ·ÂÀ» ÇØ¼®ÇÏ°í °³ÀÎÈ­µÈ Á¦¾î¸¦ À§ÇØ ±â±â¿¡ AI¸¦ ÅëÇÕÇϰí ÀÖ½À´Ï´Ù. Áö¿ªº°·Î´Â ºÏ¹Ì¿Í ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ ³ôÀº ¼ÒºñÀÚ ¼ö¿ä, ÷´Ü ¹ÝµµÃ¼ »ýŰè, ½º¸¶Æ® ÀÎÇÁ¶ó¿¡ ´ëÇÑ Á¤ºÎÀÇ Àû±ØÀûÀÎ Áö¿øÀ¸·Î AI äÅÃÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. À¯·´Àº µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã¿Í Áö¼Ó °¡´ÉÇÑ IoT ¼³°è¿¡ ÁßÁ¡À» µÎ°í ÀÖÀ¸¸ç, ½ÅÈï ½ÃÀåÀº °ø°ø ¾ÈÀü, ±³Åë, ÀÇ·á ¼­ºñ½º Á¦°øÀ» À§ÇØ AI ¼¾¼­¸¦ ´ë±Ô¸ð·Î Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù.

»óÈ£¿î¿ë¼º, Àü·ÂÈ¿À², ±ÔÁ¦ ±âÁØÀº ¾î¶»°Ô ½ÃÀå ¹ßÀüÀ» Çü¼ºÇϰí Àִ°¡?

AI ¼¾¼­°¡ ´Ù¾çÇÑ Çϵå¿þ¾î »ýŰè¿Í Åë½Å ÇÁ·ÎÅäÄÝÀ» ÅëÇØ ¹èÆ÷µÇ´Â »óȲ¿¡¼­ »óÈ£¿î¿ë¼ºÀº Áß¿äÇÑ °úÁ¦À̸ç, AI ÇÁ·¹ÀÓ¿öÅ©, ¿§Áö Ç÷§Æû, Ŭ¶ó¿ìµå ½Ã½ºÅÛ°úÀÇ Ç÷¯±× ¾Ø Ç÷¹ÀÌ È£È¯¼ºÀ» ÃËÁøÇϱâ À§ÇØ ¼¾¼­ ÀÎÅÍÆäÀ̽º, µ¥ÀÌÅÍ Çü½Ä, ÅëÇÕ ÇÁ·ÎÅäÄÝÀ» Ç¥ÁØÈ­Çϱâ À§ÇÑ ³ë·ÂÀÌ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. ÇÁ·ÎÅäÄÝÀ» ÅëÀÏÇϴ ǥÁØÈ­ ÀÛ¾÷ÀÌ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. º¥´õµéÀº AI ¼¾¼­ SDK¿Í ¹Ìµé¿þ¾î¸¦ Á¦°øÇÏ¿© ¹èÆ÷¸¦ °£¼ÒÈ­Çϰí, ´ë±Ô¸ð ÀçÇÁ·Î±×·¡¹Ö ¾øÀ̵µ ¿ëµµº° Ä¿½ºÅ͸¶ÀÌ¡ÀÌ °¡´ÉÇϵµ·Ï Áö¿øÇϰí ÀÖ½À´Ï´Ù.

Àü·Â È¿À²Àº ƯÈ÷ ¸ð¹ÙÀÏ, ¿þ¾î·¯ºí, ¿ø°Ý ¿ëµµ¿¡¼­ AI ¼¾¼­ÀÇ Ã¤ÅÃÀ» °áÁ¤ÇÏ´Â ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. °³¹ßÀÚµéÀº ¼º´É ÀúÇÏ ¾øÀÌ ¹èÅ͸® ¼ö¸íÀ» ¿¬ÀåÇϱâ À§ÇØ ÃÊÀúÀü·Â ¼³°è, µàƼ »çÀÌŬ, À̺¥Æ® Æ®¸®°Å¸µ 󸮿¡ ÁýÁßÇϰí ÀÖÀ¸¸ç, AI ¸ðµ¨Àº ¾çÀÚÈ­, Æ®¸®¹Ö, ¾ÐÃàµÇ¾î ÀÓº£µðµå ¸¶ÀÌÅ©·ÎÄÁÆ®·Ñ·¯ÀÇ ÇÑÁ¤µÈ ÄÄÇ»ÆÃ ¹× ¸Þ¸ð¸® ¸®¼Ò½º¿¡ ÀûÇÕÇϵµ·Ï ¼³°èµÇ°í ÀÖ½À´Ï´Ù. Å©±â¿Í Àü·Â ¼Òºñ¿¡ Á¦¾àÀÌ Àִ ȯ°æ¿¡¼­µµ °íµµÀÇ ¼¾½Ì ±â´ÉÀ» ±¸ÇöÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.

AI¿Í ¼¾¼­ ±â¼úÀ» °ü¸®ÇÏ´Â ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©´Â ƯÈ÷ °Ç°­ µ¥ÀÌÅÍ, ¾ó±¼ ÀνÄ, °ø°ø °¨½Ã¿Í °ü·ÃµÈ ºÐ¾ß¿¡¼­ µÎµå·¯Áö°Ô ³ªÅ¸³ª°í ÀÖÀ¸¸ç, GDPR(EU °³ÀÎÁ¤º¸º¸È£±ÔÁ¤), HIPAA ¹× »õ·Î¿î AI ¹ý±Ô Áؼö´Â ÇÁ¶óÀ̹ö½Ã¸¦ º¸È£ÇÏ´Â AI ¼¾¼­ ¼Ö·ç¼Ç ¼³°è¿¡ ´ëÇÑ ÁöħÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¿Âµð¹ÙÀ̽º ¾Ïȣȭ, µ¥ÀÌÅÍ À͸íÈ­, »ç¿ëÀÚ µ¿ÀÇ ÀÎÅÍÆäÀ̽º¿Í °°Àº ±â´ÉÀº Ã¥ÀÓ°¨ ÀÖ´Â ¹èÆ÷¸¦ º¸ÀåÇϱâ À§ÇØ ÅëÇյǰí ÀÖ½À´Ï´Ù. À±¸®¿Í ¾ÈÀü¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁü¿¡ µû¶ó AI ¼¾¼­ °ø±Þ¾÷ü´Â ½ÃÀå ¸ð¸àÅÒÀ» À¯ÁöÇϱâ À§ÇØ ¼º´É Çõ½Å°ú ½Å·Ú ±¸Ãà Á¶Ä¡¸¦ Á¶È­½ÃÄÑ¾ß ÇÕ´Ï´Ù.

AI ¼¾¼­ ½ÃÀå ¼ºÀåÀÇ ¿øµ¿·ÂÀº?

AI ¼¾¼­ ½ÃÀåÀº ¿§Áö ÄÄÇ»ÆÃ, ¼ÒÇüÈ­, ½Ç½Ã°£ »óȲ ÀÎ½Ä ÀÎÅÚ¸®Àü½º¿¡ ´ëÇÑ ¼ö¿äÀÇ À¶ÇÕÀ¸·Î ÀÎÇØ ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ ºü¸£°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼¾¼­´Â ¿ø½Ã µ¥ÀÌÅÍ ¼öÁý°ú Áö´ÉÇü µ¿ÀÛ »çÀÌÀÇ °£±ØÀ» ¸Þ¿ö Áß¾Ó ÁýÁß½Ä Ã³¸®ÀÇ ´ë±â ½Ã°£À̳ª ¿À¹öÇìµå ¾øÀÌ º¸´Ù ½º¸¶Æ®ÇÑ ±â°è, ȯ°æ, »ç¿ëÀÚ °æÇèÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.

AI ¼¾¼­´Â ÀÚÀ² ½Ã½ºÅÛ, IoTÀÇ È®»ê, °³ÀÎÈ­µÈ ÇコÄɾî, ¾Úºñ¾ðÆ® ÄÄÇ»ÆÃÀÇ ¼ºÀå¿¡ ÈûÀÔ¾î ¼ÒÇü ÆûÆÑÅÍ, ºü¸¥ Ãß·Ð ±â´É, ·ÎÄà ÀÇ»ç°áÁ¤À» ÇϳªÀÇ ÀåÄ¡¿¡ ÅëÇÕÇÏ¿© Â÷º°È­µÈ °¡Ä¡¸¦ Á¦°øÇϸç, ÀÚµ¿Â÷, °¡Àü, »ê¾÷ ÀÚµ¿È­ µî ´Ù¾çÇÑ »ê¾÷¿¡¼­ Çõ½ÅÀÇ ¿­¼è¸¦ Áã°í ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷, ÇコÄɾî, °¡Àü, »ê¾÷ÀÚµ¿È­¿¡ À̸£±â±îÁö ´Ù¾çÇÑ »ê¾÷¿¡¼­ Çõ½ÅÀÇ ¿­¼è¸¦ Áã°í ÀÖ½À´Ï´Ù.

ÇâÈÄ AI ¼¾¼­ ½ÃÀåÀÌ ¾î¶² ±Ëµµ¸¦ ±×¸± °ÍÀÎÁö´Â Á¦Á¶¾÷ü°¡ ÅëÇÕÀÇ º¹À⼺, ¿¡³ÊÁö Á¦¾à, µ¥ÀÌÅÍ °Å¹ö³Í½º ¿ä°Ç¿¡ ¾ó¸¶³ª È¿°úÀûÀ¸·Î ´ëÀÀÇÒ ¼ö ÀÖ´ÂÁö¿¡ ´Þ·Á ÀÖ½À´Ï´Ù. ¼¾½ÌÀÇ Áö´ÉÈ­¿Í À¯ºñÄõÅͽºÈ­°¡ ÁøÇàµÊ¿¡ µû¶ó AI¸¦ žÀçÇÑ ¼¾¼­°¡ Â÷¼¼´ë ÀÚÀ², ÀûÀÀÇü, Àΰ£ ÀÎ½Ä ±â¼úÀÇ ÇÙ½É ÀÎÇÁ¶ó¸¦ Çü¼ºÇÒ ¼ö ÀÖÀ»±î?

ºÎ¹®

¼¾¼­ À¯Çü(¾Ð·Â ¼¾¼­, À§Ä¡ ¼¾¼­, ¿Âµµ ¼¾¼­, ±¤ÇÐ ¼¾¼­, ÃÊÀ½ÆÄ ¼¾¼­, ¸ð¼Ç ¼¾¼­, ³»ºñ°ÔÀÌ¼Ç ¼¾¼­), À¯Çü(½Å°æ¸Á, ÄÉÀ̽º ±â¹Ý Ãß·Ð, À¯µµ ÇнÀ, ȯ°æ Áö´É), Å×Å©³î·¯Áö(ÀÚ¿¬¾ð¾îó¸®, ¸Ó½Å·¯´×, ÄÄÇ»ÅÍ ºñÀü, »óȲÀÎ½Ä ÄÄÇ»ÆÃ), ¿ëµµ(ÀÚµ¿Â÷, °¡Àü, Á¦Á¶, Ç×°ø¿ìÁÖ ¹× ¹æÀ§, ·Îº¿, ½º¸¶Æ®È¨ ÀÚµ¿È­, ³ó¾÷)

Á¶»ç ´ë»ó ±â¾÷ ¿¹(ÃÑ 32°³»ç)

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»±¹, Á¦Á¶±âÁö, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖÀ¸¸ç, ´ç»çÀÇ »õ·Î¿î ¸±¸®½º´Â Áö¸®Àû ½ÃÀå¿¡ ´ëÇÑ °ü¼¼ÀÇ ¿µÇâÀ» ÅëÇÕÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ÀÎÀ§ÀûÀÎ ÆÇ¸Å ºñ¿ë Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á À籸¼º µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»ç¿¡ ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

Global Industry Analysts´Â ¼¼°è ÁÖ¿ä ¼ö¼® ÀÌÄÚ³ë¹Ì½ºÆ®(1,4,949¸í), ½ÌÅ©ÅÊÅ©(62°³ ±â°ü), ¹«¿ª ¹× »ê¾÷ ´Üü(171°³ ±â°ü)ÀÇ Àü¹®°¡µéÀÇ ÀǰßÀ» ¸é¹ÐÈ÷ °ËÅäÇÏ¿© »ýŰ迡 ¹ÌÄ¡´Â ¿µÇâÀ» Æò°¡ÇÏ°í »õ·Î¿î ½ÃÀå Çö½Ç¿¡ ´ëÀÀÇϰí ÀÖ½À´Ï´Ù. ¸ðµç ÁÖ¿ä ±¹°¡ÀÇ Àü¹®°¡¿Í °æÁ¦ÇÐÀÚµéÀÌ °ü¼¼¿Í ±×°ÍÀÌ ÀÚ±¹¿¡ ¹ÌÄ¡´Â ¿µÇâ¿¡ ´ëÇÑ ÀǰßÀ» ÃßÀû Á¶»çÇß½À´Ï´Ù.

Global Industry Analysts´Â ÀÌ·¯ÇÑ È¥¶õÀÌ ÇâÈÄ 2-3°³¿ù ³»¿¡ ¸¶¹«¸®µÇ°í »õ·Î¿î ¼¼°è Áú¼­°¡ º¸´Ù ¸íÈ®ÇÏ°Ô È®¸³µÉ °ÍÀ¸·Î ¿¹»óÇϰí ÀÖÀ¸¸ç, Global Industry Analysts´Â ÀÌ·¯ÇÑ »óȲÀ» ½Ç½Ã°£À¸·Î ÃßÀûÇϰí ÀÖ½À´Ï´Ù.

2025³â 4¿ù: Çù»ó ´Ü°è

À̹ø 4¿ù º¸°í¼­¿¡¼­´Â °ü¼¼°¡ ¼¼°è ½ÃÀå Àüü¿¡ ¹ÌÄ¡´Â ¿µÇâ°ú Áö¿ªº° ½ÃÀå Á¶Á¤¿¡ ´ëÇØ ¼Ò°³ÇÕ´Ï´Ù. ´ç»çÀÇ ¿¹ÃøÀº °ú°Å µ¥ÀÌÅÍ¿Í ÁøÈ­ÇÏ´Â ½ÃÀå ¿µÇâ¿äÀÎÀ» ±â¹ÝÀ¸·Î ÇÕ´Ï´Ù.

2025³â 7¿ù: ÃÖÁ¾ °ü¼¼ Àç¼³Á¤

°í°´´Ôµé²²´Â °¢ ±¹°¡º° ÃÖÁ¾ ¸®¼ÂÀÌ ¹ßÇ¥µÈ ÈÄ 7¿ù¿¡ ¹«·á ¾÷µ¥ÀÌÆ® ¹öÀüÀ» Á¦°øÇØ µå¸³´Ï´Ù. ÃÖÁ¾ ¾÷µ¥ÀÌÆ® ¹öÀü¿¡´Â ¸íÈ®ÇÏ°Ô Á¤ÀÇµÈ °ü¼¼ ¿µÇ⠺м®ÀÌ Æ÷ÇԵǾî ÀÖ½À´Ï´Ù.

»óÈ£ ¹× ¾çÀÚ °£ ¹«¿ª°ú °ü¼¼ÀÇ ¿µÇ⠺м® :

¹Ì±¹ <>& Áß±¹ <>& ¸ß½ÃÄÚ <>& ij³ª´Ù <>&EU <>& ÀϺ» <>& Àεµ <>& ±âŸ 176°³±¹

¾÷°è ÃÖ°íÀÇ ÀÌÄÚ³ë¹Ì½ºÆ®: Global Industry AnalystsÀÇ Áö½Ä ±â¹ÝÀº ±¹°¡, ½ÌÅ©ÅÊÅ©, ¹«¿ª ¹× »ê¾÷ ´Üü, ´ë±â¾÷, ±×¸®°í ¼¼°è °è·® °æÁ¦ »óȲÀÇ Àü·Ê ¾ø´Â ÆÐ·¯´ÙÀÓ ÀüȯÀÇ ¿µÇâÀ» °øÀ¯ÇÏ´Â ºÐ¾ßº° Àü¹®°¡ µî °¡Àå ¿µÇâ·Â ÀÖ´Â ¼ö¼® ÀÌÄÚ³ë¹Ì½ºÆ®¸¦ Æ÷ÇÔÇÑ 14,949¸íÀÇ ÀÌÄÚ³ë¹Ì½ºÆ®¸¦ ÃßÀûÇϰí ÀÖ½À´Ï´Ù. 16,491°³ ÀÌ»óÀÇ º¸°í¼­ ´ëºÎºÐ¿¡ ¸¶ÀϽºÅæ¿¡ ±â¹ÝÇÑ 2´Ü°è Ãâ½Ã ÀÏÁ¤ÀÌ Àû¿ëµÇ¾î ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Artificial Intelligence Sensors Market to Reach US$18.0 Billion by 2030

The global market for Artificial Intelligence Sensors estimated at US$4.4 Billion in the year 2024, is expected to reach US$18.0 Billion by 2030, growing at a CAGR of 26.4% over the analysis period 2024-2030. Pressure Sensors, one of the segments analyzed in the report, is expected to record a 26.8% CAGR and reach US$4.6 Billion by the end of the analysis period. Growth in the Position Sensors segment is estimated at 23.3% CAGR over the analysis period.

The U.S. Market is Estimated at US$1.2 Billion While China is Forecast to Grow at 25.0% CAGR

The Artificial Intelligence Sensors market in the U.S. is estimated at US$1.2 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$2.7 Billion by the year 2030 trailing a CAGR of 25.0% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 24.1% and 22.8% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 18.2% CAGR.

Global Artificial Intelligence Sensors Market - Key Trends & Drivers Summarized

Why Are AI Sensors Revolutionizing Data Acquisition, Environmental Awareness, and Autonomous Decision-Making?

Artificial Intelligence (AI) sensors represent a new class of smart components that integrate embedded AI capabilities directly into the sensor architecture. Unlike traditional sensors that merely collect data for downstream processing, AI sensors analyze and interpret signals at the point of acquisition-enabling immediate, context-aware responses. These sensors are transforming how machines perceive and interact with their environments across applications in automotive, healthcare, manufacturing, consumer electronics, and robotics.

By fusing sensor hardware with on-device machine learning models, AI sensors perform real-time inference for pattern recognition, anomaly detection, classification, and predictive monitoring. This localized intelligence reduces latency, limits data transmission needs, and enhances operational autonomy-particularly critical in edge environments with constrained bandwidth or response-time requirements. For example, AI-powered image sensors can identify objects or gestures in surveillance systems, while acoustic sensors equipped with NLP models can trigger voice-command responses in smart devices without cloud dependence.

In industrial and automotive domains, AI sensors contribute to higher system reliability and safety by identifying faults, detecting wear patterns, and anticipating failures through continuous, adaptive monitoring. In smart infrastructure and energy systems, AI-enhanced environmental sensors provide precise air quality, vibration, or temperature analytics-supporting automation, energy optimization, and predictive maintenance. As the number of connected devices grows, AI sensors are emerging as foundational elements of scalable, real-time intelligent systems that bridge perception and action.

How Are Edge AI, Multimodal Fusion, and Neuromorphic Engineering Enhancing Sensor Intelligence?

Edge AI is a key enabler for AI sensors, allowing machine learning models to be executed directly on microcontrollers, FPGAs, or neuromorphic chips embedded within the sensor unit. This capability eliminates the need to offload raw data to external processors or cloud platforms for interpretation, significantly reducing power consumption and enhancing data privacy. AI sensors optimized for edge deployment support use cases such as gesture recognition in wearables, facial authentication in mobile devices, and obstacle detection in autonomous vehicles.

Multimodal sensor fusion-combining data from multiple sensor types such as vision, radar, LiDAR, audio, and thermal-augments the contextual awareness and accuracy of AI systems. AI algorithms interpret these diverse data streams simultaneously to form a coherent situational picture, which is particularly useful in dynamic, unstructured environments. For instance, in advanced driver-assistance systems (ADAS), AI fuses camera and radar inputs to enhance object detection reliability under varying weather or lighting conditions.

Neuromorphic sensor development is also gaining momentum. Inspired by biological systems, these sensors mimic neural architectures and process spiking signals in an event-driven fashion, drastically reducing energy usage and enabling real-time learning. Visual and tactile neuromorphic sensors are being explored in applications like prosthetics, robotics, and security systems where traditional sensors struggle with latency and adaptability. These advances are setting the stage for next-generation sensing systems that are not only responsive but also capable of evolving through on-device learning.

Which Application Verticals and Global Markets Are Accelerating Demand for AI-Integrated Sensors?

Automotive is a dominant vertical, where AI sensors are crucial to autonomous driving, driver monitoring systems, and intelligent infotainment. Cameras, LiDAR, radar, and ultrasonic sensors with embedded AI process visual and spatial data to support object tracking, lane departure alerts, pedestrian detection, and adaptive cruise control. The demand for sensor redundancy and real-time decision-making in safety-critical environments is driving OEM and Tier-1 supplier investments in AI-enabled sensor technologies.

In healthcare, AI biosensors are being deployed for real-time monitoring of physiological parameters such as ECG, glucose, and blood oxygen levels. These sensors analyze biometric signals on-device, reducing reliance on cloud processing and enabling continuous health tracking in wearables and remote patient monitoring systems. AI is also being integrated into imaging sensors for enhanced diagnostics and early anomaly detection, particularly in low-resource or mobile healthcare settings.

Consumer electronics and smart home markets are adopting AI sensors to deliver seamless user experiences through gesture, presence, and environmental sensing. Smart speakers, cameras, thermostats, and appliances are integrating on-device AI to interpret audio, motion, or ambient inputs for personalized control. Regionally, North America and Asia-Pacific are leading adoption due to high consumer demand, advanced semiconductor ecosystems, and active government support for smart infrastructure. Europe is emphasizing data privacy and sustainable IoT design, while emerging markets are leveraging AI sensors for public safety, transportation, and healthcare delivery at scale.

How Are Interoperability, Power Efficiency, and Regulatory Standards Shaping Market Deployment?

Interoperability is a critical challenge as AI sensors are deployed across diverse hardware ecosystems and communication protocols. Standardization efforts are underway to align sensor interfaces, data formats, and integration protocols-facilitating plug-and-play compatibility with AI frameworks, edge platforms, and cloud systems. Vendors are increasingly offering AI sensor SDKs and middleware to simplify deployment and enable application-specific customization without extensive reprogramming.

Power efficiency remains a defining factor in AI sensor adoption, especially in mobile, wearable, and remote applications. Developers are focusing on ultra-low-power design, duty cycling, and event-triggered processing to extend battery life without sacrificing performance. AI models are being quantized, pruned, and compressed to fit within the limited compute and memory resources of embedded microcontrollers-enabling advanced sensing capabilities in size- and power-constrained environments.

Regulatory frameworks governing AI and sensor technologies are becoming more prominent, particularly in sectors involving health data, facial recognition, and public surveillance. Compliance with GDPR, HIPAA, and emerging AI legislation is guiding the design of privacy-preserving AI sensor solutions. Features such as on-device encryption, data anonymization, and user consent interfaces are being integrated to ensure responsible deployment. As ethical and safety considerations intensify, AI sensor vendors must align performance innovation with trust-building measures to sustain market momentum.

What Are the Factors Driving Growth in the AI Sensors Market?

The AI sensors market is experiencing rapid growth, driven by the convergence of edge computing, miniaturization, and demand for real-time, context-aware intelligence across sectors. These sensors are bridging the gap between raw data capture and intelligent action-enabling smarter machines, environments, and user experiences without the latency and overhead of centralized processing.

Growth is supported by trends in autonomous systems, IoT proliferation, personalized healthcare, and ambient computing. AI sensors deliver differentiated value by combining compact form factors, rapid inference capabilities, and local decision-making into a single unit-unlocking innovation in industries ranging from automotive and healthcare to consumer electronics and industrial automation.

Looking ahead, the trajectory of the AI sensors market will depend on how effectively manufacturers address integration complexity, energy constraints, and data governance requirements. As sensing becomes increasingly intelligent and ubiquitous, could AI-powered sensors form the core infrastructure of the next generation of autonomous, adaptive, and human-aware technologies?

SCOPE OF STUDY:

The report analyzes the Artificial Intelligence Sensors market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Sensor Type (Pressure Sensors, Position Sensors, Temperature Sensors, Optical Sensors, Ultrasonic Sensors, Motion Sensors, Navigation Sensors); Type (Neural Networks, Case-based Reasoning, Inductive Learning, Ambient-Intelligence); Technology (Natural Language Processing, Machine Learning, Computer Vision, Context-Aware Computing); Application (Automotive, Consumer Electronics, Manufacturing, Aerospace & Defense, Robotics, Smart Home Automation, Agriculture)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 32 Featured) -

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by artificially increasing the COGS, reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

We are diligently following expert opinions of leading Chief Economists (14,949), Think Tanks (62), Trade & Industry bodies (171) worldwide, as they assess impact and address new market realities for their ecosystems. Experts and economists from every major country are tracked for their opinions on tariffs and how they will impact their countries.

We expect this chaos to play out over the next 2-3 months and a new world order is established with more clarity. We are tracking these developments on a real time basis.

As we release this report, U.S. Trade Representatives are pushing their counterparts in 183 countries for an early closure to bilateral tariff negotiations. Most of the major trading partners also have initiated trade agreements with other key trading nations, outside of those in the works with the United States. We are tracking such secondary fallouts as supply chains shift.

To our valued clients, we say, we have your back. We will present a simplified market reassessment by incorporating these changes!

APRIL 2025: NEGOTIATION PHASE

Our April release addresses the impact of tariffs on the overall global market and presents market adjustments by geography. Our trajectories are based on historic data and evolving market impacting factors.

JULY 2025 FINAL TARIFF RESET

Complimentary Update: Our clients will also receive a complimentary update in July after a final reset is announced between nations. The final updated version incorporates clearly defined Tariff Impact Analyses.

Reciprocal and Bilateral Trade & Tariff Impact Analyses:

USA <> CHINA <> MEXICO <> CANADA <> EU <> JAPAN <> INDIA <> 176 OTHER COUNTRIES.

Leading Economists - Our knowledge base tracks 14,949 economists including a select group of most influential Chief Economists of nations, think tanks, trade and industry bodies, big enterprises, and domain experts who are sharing views on the fallout of this unprecedented paradigm shift in the global econometric landscape. Most of our 16,491+ reports have incorporated this two-stage release schedule based on milestones.

COMPLIMENTARY PREVIEW

Contact your sales agent to request an online 300+ page complimentary preview of this research project. Our preview will present full stack sources, and validated domain expert data transcripts. Deep dive into our interactive data-driven online platform.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â