¼¼°èÀÇ ÀçÅà ÇコÄÉ¾î ºÐ¾ß ÀΰøÁö´É(AI) ½ÃÀå
Artificial Intelligence in Home Healthcare
»óǰÄÚµå : 1744970
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 06¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 220 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,136,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,408,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ÀçÅà ÇコÄÉ¾î ºÐ¾ß ÀΰøÁö´É(AI) ½ÃÀåÀº 2030³â±îÁö 242¾ï ´Þ·¯¿¡ À̸¦ Àü¸Á

2024³â¿¡ 22¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ÀçÅà ÇコÄÉ¾î ºÐ¾ß ÀΰøÁö´É(AI) ¼¼°è ½ÃÀåÀº 2024-2030³â°£ CAGR 49.7%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 242¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ AI ¼ÒÇÁÆ®¿þ¾î´Â CAGR44.1%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á±îÁö 124¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. AI ¼­ºñ½º ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 57.8%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 5¾ï 6,530¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 47.3%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ÀçÅà ÇコÄÉ¾î ºÐ¾ß ÀΰøÁö´É(AI) ½ÃÀåÀº 2024³â¿¡´Â 5¾ï 6,530¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 36¾ï ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 47.3%·Î ÃßÁ¤µË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î¼­´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 44.4%¿Í 43.4%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 34.5%¸¦ º¸ÀÏ Àü¸ÁÀÔ´Ï´Ù.

¼¼°èÀÇ ÀçÅà ÇコÄÉ¾î ºÐ¾ß ÀΰøÁö´É(AI) ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

ÀΰøÁö´ÉÀÌ ÀçÅÃÄ¡·á ¼­ºñ½º ÁøÈ­ÀÇ ±â¹ÝÀÌ µÇ´Â ÀÌÀ¯´Â ¹«¾ùÀϱî?

ÀΰøÁö´É(AI)Àº ÀÓ»ó ¼öÁØÀÇ ¸ð´ÏÅ͸µ ¹× °³ÀÔ ´É·ÂÀ» ȯÀÚÀÇ °ÅÁÖÁö±îÁö È®ÀåÇÏ¿© »çÀü ¿¹¹æÀûÀÌ°í °³ÀÎÈ­µÈ ÀÚ¿ø È¿À²ÀûÀÎ ÄÉ¾î ¸ðµ¨À» °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á ÀçÅÃÄ¡·á¸¦ ºü¸£°Ô º¯È­½Ã۰í ÀÖ½À´Ï´Ù. Àα¸ °í·ÉÈ­, ¸¸¼ºÁúȯ Áõ°¡, ÀÇ·á ½Ã½ºÅÛ¿¡ ´ëÇÑ ¾Ð¹ÚÀÌ °¡ÁߵǴ »óȲ¿¡¼­ AI¸¦ Ȱ¿ëÇÑ È¨ÄÉ¾î ¼Ö·ç¼ÇÀº ÀÔ¿ø °¨¼Ò, ÀÇ·áºñ Àý°¨, »îÀÇ Áú Çâ»óÀ» À§ÇØ ¿ì¼±ÀûÀ¸·Î µµÀԵǰí ÀÖ½À´Ï´Ù. ¿ø°Ý Áø´Ü°ú º¹¾à ¼øÀÀµµºÎÅÍ ÀçȰ Áö¿ø°ú ¿¹Ãø ºÐ¼®¿¡ À̸£±â±îÁö AI´Â ºÐ»êÇü ÄÉ¾î »ýŰèÀÇ ±â¹Ý ±â¼úÀÌ µÇ°í ÀÖ½À´Ï´Ù.

°¡Àå ´«¿¡ ¶ç´Â ¿ëµµ Áß Çϳª´Â AI¸¦ Ȱ¿ëÇÑ ¿ø°Ý ȯÀÚ ¸ð´ÏÅ͸µ(RPM)À¸·Î, ¿þ¾î·¯ºí ±â±â ¹× ÁÖº¯ ¼¾¼­°¡ ¹ÙÀÌÅ», À̵¿, ¼ö¸é, º¹¾à ¼øÀÀµµ¿¡ ´ëÇÑ µ¥ÀÌÅ͸¦ Áö¼ÓÀûÀ¸·Î ¼öÁýÇϰí, AI ¾Ë°í¸®ÁòÀÌ ÀÌ µ¥ÀÌÅ͸¦ ½Ç½Ã°£À¸·Î ºÐ¼®ÇÏ¿© ÀÌ»ó ¡ÈÄ °¨Áö, ¾ÇÈ­ ¿¹Ãø, Ä¡·áÆÀ ¹× °£º´Àο¡°Ô °æº¸¸¦ ¹ß·ÉÇÏ´Â °ÍÀÔ´Ï´Ù. ¿¹ÃøÇϰí, ÄɾîÆÀ°ú °£º´Àο¡°Ô °æº¸¸¦ ¹ßµ¿ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ´ç´¢º´, ½ÉºÎÀü, COPD, ¼ö¼ú ÈÄ È¸º¹°ú °°Àº »óŸ¦ °ü¸®ÇÏ´Â µ¥ µµ¿òÀÌ µÇ¸ç, Á¶±â °³ÀÔÀ» °¡´ÉÇÏ°Ô ÇÏ°í ºÒÇÊ¿äÇÑ ÀÓ»ó ¹æ¹®°ú ÀÀ±Þ »óȲÀÇ È®ÀåÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù.

¶ÇÇÑ, AI ±â¹Ý °¡»ó ºñ¼­ ¹× 꺿Àº ȯÀÚÀÇ Âü¿©¸¦ ³ôÀ̰í, ¸¸¼º ÁúȯÀÇ ÀÚ°¡ °ü¸®¸¦ Áö¿øÇϸç, Á¤½Å °Ç°­ Áöµµ¸¦ Á¦°øÇÏ´Â µî ´Ù¾çÇÑ ±â´ÉÀ» Á¦°øÇÕ´Ï´Ù. ÀÚ¿¬¾î ó¸®(NLP)¸¦ ÅëÇØ ÀÌ·¯ÇÑ ÀÎÅÍÆäÀ̽º´Â ȯÀÚÀÇ Áú¹®À» ÀÌÇØÇϰí, ¾à¹° º¹¿ë ¾Ë¸²À» Á¦°øÇϰí, ´ëÈ­ µ¥ÀÌÅ͸¦ »ç¿ëÇÏ¿© ¿ì¿ïÁõ°ú ºÒ¾È Áõ»óÀ» ¼±º°ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀçÅÃÄ¡·á°¡ ȯÀÚ Áß½ÉÀÇ ±â¼ú Áö¿ø ¸ðµ¨·Î ÀüȯµÊ¿¡ µû¶ó AI´Â ÀÓ»óÀû °¨µ¶°ú µ¶¸³ÀûÀÎ »ýȰ »çÀÌÀÇ °£±ØÀ» ¸Þ¿ì´Â µ¥ µµ¿òÀ» ÁÖ°í ÀÖ½À´Ï´Ù.

¿¹Ãø ¸ðµ¨, ¿§Áö AI, À½¼º ÀÎÅÍÆäÀ̽º´Â ȨÄɾîÀÇ ±â´ÉÀû ´É·ÂÀ» ¾î¶»°Ô È®ÀåÇϰí Àִ°¡?

AI ¿¹Ãø ºÐ¼®À» ÅëÇØ ÀÇ·áÁøÀº ÀçÅà ȯ°æ¿¡¼­ ȯÀÚÀÇ À§ÇèÀ» °èÃþÈ­Çϰí, ÇÕº´ÁõÀ» ¿¹ÃøÇϰí, Ä¡·á °æ·Î¸¦ ¸ÂÃãÈ­ÇÒ ¼ö ÀÖÀ¸¸ç, EHR, ¼¾¼­ µ¥ÀÌÅÍ, °ú°Å °á°ú¸¦ ±â¹ÝÀ¸·Î ÇнÀµÈ ¸Ó½Å·¯´× ¸ðµ¨Àº ÀÔ¿ø °¡´É¼º, ³«»ó À§Çè, º¹¾à ºÒÀÌÇà µîÀ» Á¤È®ÇÏ°Ô ¿¹ÃøÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¹ÃøÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÅëÂû·ÂÀ» Áø·á Á¶Á¤ Àü·«¿¡ ¹Ý¿µÇÔÀ¸·Î½á ÀÇ·á ¼­ºñ½º Á¦°ø¾÷ü´Â ÀÚ¿øÀ» È¿°úÀûÀ¸·Î ¹èºÐÇϰí, °³ÀÔÀ» °³º°È­Çϸç, °¡Ä¡ ±â¹Ý ÁöºÒ ¸ðµ¨ ÇÏ¿¡¼­ ÃÑ Áø·áºñ¸¦ Àý°¨ÇÒ ¼ö ÀÖ½À´Ï´Ù.

¿§Áö AI´Â ·ÎÄà ±â±â¿¡¼­ Á÷Á¢ ¸Ó½Å·¯´× ¸ðµ¨À» ½ÇÇàÇÔÀ¸·Î½á °¡Á¤ ȯ°æ¿¡¼­ Áö¿¬ ½Ã°£ÀÌ Âª°í ÇÁ¶óÀ̹ö½Ã¸¦ º¸È£Çϸ鼭 ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ½º¸¶Æ® ½ºÇÇÄ¿, Ȩ Çãºê, ¿þ¾î·¯ºí ¸ð´ÏÅÍ´Â ÇöÀç °Ç°­ µ¥ÀÌÅ͸¦ ·ÎÄÿ¡¼­ ó¸®ÇÒ ¼ö ÀÖ´Â AI°¡ ³»ÀåµÇ¾î ÀÖ¾î ÀÎÅÍ³Ý ¿¬°á¿¡ ÀÇÁ¸ÇÏÁö ¾Ê°íµµ Áï°¢ÀûÀÎ Çǵå¹éÀ» Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ´Â ´ë¿ªÆøÀÌ Á¦ÇÑµÈ ³ëÀÎÃþ°ú ³óÃÌ Áö¿ª¿¡¼­ ƯÈ÷ Áß¿äÇϸç, Á¦ÇÑµÈ µðÁöÅРȯ°æ¿¡¼­µµ Áö¼ÓÀûÀÎ ¸ð´ÏÅ͸µ°ú ÀÀ´äÀ» º¸ÀåÇϱ⠶§¹®¿¡ ´õ¿í Áß¿äÇÕ´Ï´Ù.

À½¼º ÀÎ½Ä ÀÎÅÍÆäÀ̽º´Â ÀÇ·á ¼­ºñ½º Á¦°ø ¹× ¸ð´ÏÅ͸µ¿¡ ÀÖ¾î »ç¿ëÇϱ⠽±°í ºÎ´ã½º·´Áö ¾ÊÀº ¸Åü·Î °¢±¤¹Þ°í ÀÖÀ¸¸ç, AI°¡ žÀçµÈ ½º¸¶Æ® ½ºÇÇÄ¿´Â À½¼º ¸í·ÉÀ» ÅëÇØ »ç¿ëÀÚ¿¡°Ô ¾à¹° º¹¿ëÀ» À¯µµÇϰí, ±¸µÎ·Î Áõ»ó¿¡ ´ëÇÑ ÃֽŠÁ¤º¸¸¦ ¼öÁýÇϰí, ¿ø°Ý ÀÇ·á »ó´ãÀ» ½ÃÀÛÇÒ ¼ö ÀÖ½À´Ï´Ù. ÇÒ ¼ö ÀÖ½À´Ï´Ù. °Åµ¿ÀÌ ºÒÆíÇϰųª ÀÎÁö ±â´ÉÀÌ ÀúÇÏµÈ È¯ÀÚÀÇ °æ¿ì, ÀÌ·¯ÇÑ ÀÎÅÍÆäÀ̽º´Â ¸¶ÂûÀ» ÁÙÀ̰í ÀÏ»óÀûÀÎ Ä¡·á ÇÁ·ÎÅäÄÝ¿¡ ´ëÇÑ Âü¿©¸¦ Çâ»ó½Ãŵ´Ï´Ù. °£º´ÀÎ Ç÷§Æû ¹× °Ç°­ °ü¸® ¾Û°úÀÇ ÅëÇÕÀº ´õ ³ªÀº ÀÓ»ó ÀÇ»ç °áÁ¤À» À§ÇØ È¯ÀÚ º¸°í µ¥ÀÌÅÍÀÇ ¿¬¼Ó¼º°ú Áß¾Ó ÁýÁßÈ­¸¦ º¸ÀåÇÕ´Ï´Ù.

ÀçÅÃÄ¡·á¿¡¼­ AI µµÀÔÀÌ °¡¼ÓÈ­µÇ°í ÀÖ´Â ÀÌ¿ë »ç·Ê¿Í Áö¿ª ½ÃÀåÀº?

¸¸¼ºÁúȯ °ü¸®¿Í ±Þ¼º±â ÀÌÈÄ Ä¡·á´Â Áö¼ÓÀûÀÎ ¸ð´ÏÅ͸µ°ú Á¶±â °³ÀÔ¿¡ ´ëÇÑ ¼ö¿ä¿¡ ÈûÀÔ¾î ÀçÅÃÀÇ·á¿¡¼­ AI°¡ °¡Àå Ȱ¹ßÇÏ°Ô È°¿ëµÇ°í ÀÖ´Â ºÐ¾ßÀÔ´Ï´Ù. ½ÉºÎÀü, ´ç´¢º´, °íÇ÷¾Ð, Æó ÁúȯÀ» À§ÇÑ ¼Ö·ç¼ÇÀº º¹ÀâÇÑ ¾à¹° ¿ä¹ý°ú ÀÔ¿ø À§ÇèÀÌ ³ôÀº ȯÀÚ¸¦ Áö¿øÇϱâ À§ÇØ µµÀԵǰí ÀÖÀ¸¸ç, AI µµ±¸´Â ¿ø°Ý ÀçȰ¿¡µµ Ȱ¿ëµÇ°í ÀÖÀ¸¸ç, ¸ð¼Ç ¼¾¼­¿Í ML ¸ðµ¨Àº ¹°¸®Ä¡·á ¼øÀÀµµ ¹× ȸº¹ ÁøÇà »óȲÀ» ÃßÀûÇÏ´Â µ¥ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. ¸¦ ÃßÀûÇÏ¿© ÀÓ»óÀÇ¿Í Ä¡·á»ç¿¡°Ô ¿ø°ÝÀ¸·Î ½Ç¿ëÀûÀÎ ÅëÂû·ÂÀ» Á¦°øÇÕ´Ï´Ù.

ƯÈ÷ ÀϺ», ¼­À¯·´, ºÏ¹Ì¿Í °°ÀÌ Àα¸ °í·ÉÈ­°¡ ÁøÇàµÇ°í ÀÖ´Â ½ÃÀå¿¡¼­´Â AI ±â¹Ý Ȩ ¸ð´ÏÅ͸µ ½Ã½ºÅÛÀÌ ÀÎÁö ±â´É ÀúÇÏ, ³«»ó À§Çè, °Ç°­ ¹®Á¦ ¹ß»ýÀ» ³ªÅ¸³¾ ¼ö ÀÖ´Â Çൿ, º¸Çà ¹× ÀÏ»ó »ýȰÀÇ º¯È­¸¦ °¨ÁöÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÎÁö ±â´É ÀúÇÏ, ³«»ó À§Çè, °Ç°­ ¹®Á¦ ¹ß»ýÀ» ³ªÅ¸³¾ ¼ö ÀÖ´Â Çൿ, º¸Çà, ÀÏ»ó »ýȰÀÇ º¯È­¸¦ °¨ÁöÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ³ëÀÎÀÇ µ¶¸³¼ºÀ» À¯ÁöÇϸ鼭 °¡Á·À̳ª °£º´Àο¡°Ô ¾Èµµ°¨À» Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ, ÀçÅà ¿ÏÈ­ÀÇ·á ¹× Á¤½Å °Ç°­ ¼­ºñ½º´Â AI¸¦ ÅëÇÕÇÏ¿© ȯÀÚ¸¦ ¼±º°Çϰí, ÀÚ¿ø ¹èºÐÀ» ÃÖÀûÈ­Çϸç, Áö¼ÓÀûÀÎ Á¤½ÅÀûÀÎ Áö¿øÀ» Á¦°øÇÕ´Ï´Ù.

Áö¿ªº°·Î´Â ¹Ì±¹ÀÌ ¼º¼÷ÇÑ ¿ø°ÝÀÇ·á ÀÎÇÁ¶ó, ÀçÅÃÀÇ·á¿¡ ´ëÇÑ °­·ÂÇÑ »óȯ ¸ðµ¨, µðÁöÅÐ Çコ Åø¿¡ ´ëÇÑ ±ÔÁ¦Àû Áö¿øÀ¸·Î ½ÃÀåÀ» ¼±µµÇϰí ÀÖ½À´Ï´Ù. À¯·´Àº ÀçÅà ³ëÀÎ Äɾî¿Í ¸¸¼ºÁúȯ °ü¸®¸¦ À§ÇØ AI ÅøÀ» ÅëÇÕÇϰí ÀÖ´Â ±¹°¡µéÀÇ ÀÇ·á½Ã½ºÅÛÀÌ ±× µÚ¸¦ ÀÕ°í ÀÖ½À´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾ç¿¡¼­´Â ÀϺ», Çѱ¹, ½Ì°¡Æ÷¸£ÀÇ Á¤ºÎ Áö¿ø Aging in Place ÇÁ·Î±×·¥°ú Àεµ, Áß±¹ÀÇ µðÁöÅÐ Çコ ½ºÅ¸Æ®¾÷¿¡ ´ëÇÑ ¹Î°£ ÅõÀÚ·Î ÀÎÇØ ºü¸¥ µµÀÔÀÌ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. ½ÅÈï±¹¿¡¼­´Â Áø´Ü, Åõ¾à °ü¸®, °Ç°­ ÄÚĪÀ» Àúºñ¿ëÀÇ ½º¸¶Æ® ±â±â·Î Á¦°øÇÏ´Â ¸ð¹ÙÀÏ ÆÛ½ºÆ® Ç÷§ÆûÀ» ÅëÇØ AIÀÇ ¿ªÇÒÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù.

µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã, ÀÓ»ó °ËÁõ, »óÈ£¿î¿ë¼ºÀº ½ÃÀå Àü·«¿¡ ¾î¶² ¿µÇâÀ» ¹ÌÄ¡°í Àִ°¡?

µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã¿Í ±ÔÁ¦ Áؼö´Â ȯÀÚ µ¥ÀÌÅÍÀÇ ±â¹Ð¼º°ú ºÐ»êµÈ ÀÇ·á ¼­ºñ½º Á¦°øÀ» °í·ÁÇÒ ¶§, ÀçÅÃÄ¡·á¿¡ AI¸¦ Àû¿ëÇÏ´Â µ¥ ÀÖ¾î ÇÙ½ÉÀûÀÎ ¿ä¼ÒÀÔ´Ï´Ù. º¥´õµéÀº HIPAA, GDPR(EU °³ÀÎÁ¤º¸º¸È£±ÔÁ¤), ±¹°¡º° ±ÔÁ¦ Áؼö¸¦ º¸ÀåÇϱâ À§ÇØ ¿£µåÅõ¿£µå ¾Ïȣȭ, µ¿ÀÇ °ü¸® ÇÁ·¹ÀÓ¿öÅ©, Çù¾÷ ÇнÀ ¸ðµ¨¿¡ ÅõÀÚÇϰí ÀÖÀ¸¸ç, EHR ½Ã½ºÅÛ, °Ç°­ ¾Û, ¿þ¾î·¯ºí Ç÷§Æû°úÀÇ »óÈ£¿î¿ë¼ºÀ» ÅëÇØ Ä¡·á ±â·ÏÀ» ÅëÇÕÇϰí, ¼¼ÆÃÀ» ³Ñ¾î¼± Á¾´Ü°£ Ä¡·á¸¦ Áö¿øÇÏ´Â °ÍÀÌ ¿ì¼±½ÃµÇ°í ÀÖ½À´Ï´Ù. ¼¼ÆÃÀ» ³Ñ¾î¼± Á¾´ÜÀû Äɾ Áö¿øÇϱâ À§ÇØ ¿ì¼±¼øÀ§¸¦ µÎ°í ÀÖ½À´Ï´Ù.

ÁöºÒÀÚ¿Í ÀÇ·á ¼­ºñ½º Á¦°ø¾÷ü°¡ ¾ÈÀü¼º, À¯È¿¼º, °Ç°­ °á°ú °³¼±¿¡ ´ëÇÑ Áõ°Å¸¦ ¿ä±¸ÇÔ¿¡ µû¶ó ÀÓ»ó °ËÁõ°ú ±ÔÁ¦ ½ÂÀÎÀº Áß¿äÇÑ Â÷º°È­ ¿ä¼Ò°¡ µÇ°í ÀÖÀ¸¸ç, AI °ø±Þ¾÷üµéÀº ´ëÇк´¿ø ¹× ÀÇ·á ½Ã½ºÅÛ°ú Çù·ÂÇÏ¿© ½ÇÁ¦ ÀÓ»ó½ÃÇèÀ» ¼öÇàÇϰí AI ±â¹Ý ÀåÄ¡ ¹× µðÁöÅÐ Ä¡·áÁ¦ÀÇ ¾à»ç ½ÂÀÎÀ» È®º¸Çϰí ÀÖ½À´Ï´Ù. FDA¿Í EMAÀÇ ¼ÒÇÁÆ®¿þ¾î ÀÇ·á±â±â(SaMD)¿¡ ´ëÇÑ ÇÁ·¹ÀÓ¿öÅ©°¡ ¼º¼÷ÇØÁü¿¡ µû¶ó, ´õ ¸¹Àº AI ±â¹Ý Ȩ ÇコÄÉ¾î ¼Ö·ç¼ÇÀÌ Å¬·¡½º II ¶Ç´Â III µî±ÞÀ» ȹµæÇÏ¿© »óȯ °æ·Î¿Í ´õ ±¤¹üÀ§ÇÑ Ã¤ÅÃÀ» °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù.

±Ô¸ð¿Í ÅëÇÕÀ» Áö¿øÇϱâ À§ÇØ Ç÷§Æû Á¦°ø¾÷üµéÀº ÀÇ·á ½Ã½ºÅÛ, º¸Çè»ç, ȨÄÉ¾î ±â°üÀÌ ±âÁ¸ ¿öÅ©Ç÷ο쿡 AI ¸ðµâÀ» ÅëÇÕÇÒ ¼ö ÀÖ´Â ¸ðµâ½Ä API ±â¹Ý »ýŰ踦 Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Ç÷§ÆûÀº ÀÓ»ó ´ë½Ãº¸µå, ¿¹Ãø ºÐ¼®, ȯÀÚ Âü¿© µµ±¸, Äɾî Á¶Á¤ ÀÎÅÍÆäÀ̽º¸¦ °áÇÕÇÏ¿© ¿ø°ÝÁö¿¡ Àִ ȯÀÚ, °£º´ÀÎ, ÀÇ·á Àü¹®°¡ °£ÀÇ ½Ç½Ã°£ Çù¾÷À» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÀçÅÃÄ¡·áÀÇ µðÁöÅÐ °ü¸®°¡ ¹ßÀüÇÔ¿¡ µû¶ó, ¿øÈ°ÇÑ ÅëÇÕ°ú °á°ú¿Í ¿¬°èµÈ AI ±â´ÉÀ» Á¦°øÇÏ´Â º¥´õ°¡ Àü·«Àû ¿ìÀ§¸¦ Á¡Çϰí ÀÖ½À´Ï´Ù.

ÀçÅÃÄ¡·á AI ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

ÀçÅÃÀÇ·á ºÐ¾ß AI ½ÃÀåÀº Àα¸Åë°èÇÐÀû º¯È­, ¸¸¼ºÁúȯÀÇ À¯Çà, ÀÇ·á½Ã½ºÅÛÀÇ Á¦¾à, ÀçÅÃÀÇ·á¿¡ ´ëÇÑ È¯ÀÚµéÀÇ ¼±È£µµ Áõ°¡ µîÀ» ¹è°æÀ¸·Î ºü¸£°Ô ¼ºÀåÇϰí ÀÖÀ¸¸ç, AI ±â¼úÀº ÀÓ»óÀû ¿ª·®À» °¡Á¤À¸·Î È®ÀåÇÏ´Â È®Àå °¡´ÉÇϰí Áö´ÉÀûÀÎ ¼Ö·ç¼ÇÀ» Á¦°øÇÏ¿© Á¶±â ¹ß°ß, °³ÀÎÈ­µÈ Ä¡·á, ½Ã¼³ ȯ°æ¿¡ ´ëÇÑ ÀÇÁ¸µµ °¨¼Ò¸¦ °¡´ÉÄÉ ÇÕ´Ï´Ù. ½Ã¼³ ȯ°æ¿¡ ´ëÇÑ ÀÇÁ¸µµ °¨¼Ò, Á¶±â ¹ß°ß, º¸´Ù °³ÀÎÈ­µÈ Ä¡·á, ½Ã¼³ ȯ°æ ÀÇÁ¸µµ °¨¼Ò¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.

¿§Áö ÄÄÇ»ÆÃ, ¼¾¼­ ÅëÇÕ, À½¼º AI, ¿¹Ãø ¸ðµ¨¸µ µîÀÇ ¹ßÀüÀ¸·Î ÀçÅÃÄ¡·á µµ±¸ÀÇ È¿À²¼º°ú Á¢±Ù¼ºÀÌ Çâ»óµÇ°í ÀÖ½À´Ï´Ù. Á¤ºÎ, ÀÇ·á ÁöºÒÀÚ, ÀÇ·á ¼­ºñ½º Á¦°ø¾÷ü°¡ ¼º°ú ±â¹Ý ÀÇ·á ¼­ºñ½º Á¦°øÀ¸·Î ÀüȯÇÏ´Â °¡¿îµ¥, AI´Â »çÀü ¿¹¹æÀû, ¿¹¹æÀû, Âü¿©Çü ÀÇ·á ¸ðµ¨À» ±¸ÇöÇÏ´Â ºñ¿ë È¿À²ÀûÀ̰í È®Àå °¡´ÉÇÑ ¼ö´ÜÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù.

ÇâÈÄ ½ÃÀåÀÌ ¾î¶² ¹æÇâÀ¸·Î ³ª¾Æ°¥Áö´Â ÀÌÇØ°ü°èÀÚµéÀÌ ÇÁ¶óÀ̹ö½Ã, »óÈ£¿î¿ë¼º, ÀÓ»óÀû °ËÁõ ¹®Á¦¸¦ ¾ó¸¶³ª È¿°úÀûÀ¸·Î ÇØ°áÇÒ ¼ö ÀÖ´ÂÁö¿¡ ´Þ·ÁÀÖ½À´Ï´Ù. ÀçÅÃÀÇ·á°¡ ÀÇ·á ¼­ºñ½º Á¦°øÀÇ »õ·Î¿î ÃÖÀü¼±ÀÌ µÊ¿¡ µû¶ó, AI´Â ÀÇ·á ¼­ºñ½º Á¦°ø ¹æ½Ä»Ó¸¸ ¾Æ´Ï¶ó ¾ðÁ¦, ¾îµð¼­, ´©°¡ °ü¸®ÇÒ °ÍÀΰ¡¸¦ ÀçÁ¤ÀÇÇÒ ¼ö ÀÖ½À´Ï´Ù.

ºÎ¹®

Á¦°ø(¼ÒÇÁÆ®¿þ¾î Çϵå¿þ¾î, ¼­ºñ½º); ±â¼ú(¸Ó½Å·¯´×, ÀÚ¿¬¾î ó¸®, »óȲ ÀÎ½Ä ÄÄÇ»ÆÃ, ÄÄÇ»ÅÍ ºñÀü); ¾ÖÇø®ÄÉÀ̼Ç(¶óÀÌÇÁ½ºÅ¸ÀÏ °ü¸® ¹× ¿ø°Ý ȯÀÚ ¸ð´ÏÅ͸µ, ȯÀÚ µ¥ÀÌÅÍ ¹× À§Çè ºÐ¼®, °¡»ó ºñ¼­, ¿þ¾î·¯ºí, Á¤½Å °Ç°­, ±âŸ ¾ÖÇø®ÄÉÀ̼Ç); ÃÖÁ¾ »ç¿ëÀÚ(ÀÇ·á ¼­ºñ½º Á¦°øÀÚ, ÀÇ·áºñ ÁöºÒÀÚ, ȯÀÚ, ±âŸ ÃÖÁ¾ »ç¿ëÀÚ)

Á¶»ç ´ë»ó ±â¾÷ ¿¹(ÃÑ 48°³»ç)

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ÀÎÀ§ÀûÀÎ ¼öÀÍ¿ø°¡ Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

Global Industry Analysts´Â ¼¼°è ÁÖ¿ä ¼ö¼® ÀÌÄÚ³ë¹Ì½ºÆ®(1,4,949¸í), ½ÌÅ©ÅÊÅ©(62°³ ±â°ü), ¹«¿ª ¹× »ê¾÷ ´Üü(171°³ ±â°ü)ÀÇ Àü¹®°¡µéÀÇ ÀǰßÀ» ¸é¹ÐÈ÷ °ËÅäÇÏ¿© »ýŰ迡 ¹ÌÄ¡´Â ¿µÇâÀ» Æò°¡ÇÏ°í »õ·Î¿î ½ÃÀå Çö½Ç¿¡ ´ëÀÀÇϰí ÀÖ½À´Ï´Ù. ¸ðµç ÁÖ¿ä ±¹°¡ÀÇ Àü¹®°¡¿Í °æÁ¦ÇÐÀÚµéÀÌ °ü¼¼¿Í ±×°ÍÀÌ ÀÚ±¹¿¡ ¹ÌÄ¡´Â ¿µÇâ¿¡ ´ëÇÑ ÀǰßÀ» ÃßÀû Á¶»çÇß½À´Ï´Ù.

Global Industry Analysts´Â ÀÌ·¯ÇÑ È¥¶õÀÌ ÇâÈÄ 2-3°³¿ù ³»¿¡ ¸¶¹«¸®µÇ°í »õ·Î¿î ¼¼°è Áú¼­°¡ º¸´Ù ¸íÈ®ÇÏ°Ô È®¸³µÉ °ÍÀ¸·Î ¿¹»óÇϰí ÀÖÀ¸¸ç, Global Industry Analysts´Â ÀÌ·¯ÇÑ »óȲÀ» ½Ç½Ã°£À¸·Î ÃßÀûÇϰí ÀÖ½À´Ï´Ù.

2025³â 4¿ù: Çù»ó ´Ü°è

À̹ø 4¿ù º¸°í¼­¿¡¼­´Â °ü¼¼°¡ ¼¼°è ½ÃÀå Àüü¿¡ ¹ÌÄ¡´Â ¿µÇâ°ú Áö¿ªº° ½ÃÀå Á¶Á¤¿¡ ´ëÇØ ¼Ò°³ÇÕ´Ï´Ù. ´ç»çÀÇ ¿¹ÃøÀº °ú°Å µ¥ÀÌÅÍ¿Í ÁøÈ­ÇÏ´Â ½ÃÀå ¿µÇâ¿äÀÎÀ» ±â¹ÝÀ¸·Î ÇÕ´Ï´Ù.

2025³â 7¿ù: ÃÖÁ¾ °ü¼¼ Àç¼³Á¤

°í°´´Ôµé²²´Â °¢ ±¹°¡º° ÃÖÁ¾ ¸®¼ÂÀÌ ¹ßÇ¥µÈ ÈÄ 7¿ù¿¡ ¹«·á ¾÷µ¥ÀÌÆ® ¹öÀüÀ» Á¦°øÇØ µå¸³´Ï´Ù. ÃÖÁ¾ ¾÷µ¥ÀÌÆ® ¹öÀü¿¡´Â ¸íÈ®ÇÏ°Ô Á¤ÀÇµÈ °ü¼¼ ¿µÇ⠺м®ÀÌ Æ÷ÇԵǾî ÀÖ½À´Ï´Ù.

»óÈ£ ¹× ¾çÀÚ °£ ¹«¿ª°ú °ü¼¼ÀÇ ¿µÇ⠺м® :

¹Ì±¹ <>& Áß±¹ <>& ¸ß½ÃÄÚ <>& ij³ª´Ù <>&EU <>& ÀϺ» <>& Àεµ <>& ±âŸ 176°³±¹

¾÷°è ÃÖ°íÀÇ ÀÌÄÚ³ë¹Ì½ºÆ®: Global Industry AnalystsÀÇ Áö½Ä ±â¹ÝÀº ±¹°¡, ½ÌÅ©ÅÊÅ©, ¹«¿ª ¹× »ê¾÷ ´Üü, ´ë±â¾÷, ±×¸®°í ¼¼°è °è·® °æÁ¦ »óȲÀÇ Àü·Ê ¾ø´Â ÆÐ·¯´ÙÀÓ ÀüȯÀÇ ¿µÇâÀ» °øÀ¯ÇÏ´Â ºÐ¾ßº° Àü¹®°¡ µî °¡Àå ¿µÇâ·Â ÀÖ´Â ¼ö¼® ÀÌÄÚ³ë¹Ì½ºÆ® ±×·ìÀ» Æ÷ÇÔÇÑ 14,949¸íÀÇ ÀÌÄÚ³ë¹Ì½ºÆ®¸¦ ÃßÀûÇϰí ÀÖ½À´Ï´Ù. 16,491°³ ÀÌ»óÀÇ º¸°í¼­ ´ëºÎºÐ¿¡ ¸¶ÀϽºÅæ¿¡ ±â¹ÝÇÑ 2´Ü°è Ãâ½Ã ÀÏÁ¤ÀÌ Àû¿ëµÇ¾î ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Artificial Intelligence in Home Healthcare Market to Reach US$24.2 Billion by 2030

The global market for Artificial Intelligence in Home Healthcare estimated at US$2.2 Billion in the year 2024, is expected to reach US$24.2 Billion by 2030, growing at a CAGR of 49.7% over the analysis period 2024-2030. AI Software, one of the segments analyzed in the report, is expected to record a 44.1% CAGR and reach US$12.4 Billion by the end of the analysis period. Growth in the AI Services segment is estimated at 57.8% CAGR over the analysis period.

The U.S. Market is Estimated at US$565.3 Million While China is Forecast to Grow at 47.3% CAGR

The Artificial Intelligence in Home Healthcare market in the U.S. is estimated at US$565.3 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$3.6 Billion by the year 2030 trailing a CAGR of 47.3% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 44.4% and 43.4% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 34.5% CAGR.

Global Artificial Intelligence in Home Healthcare Market - Key Trends & Drivers Summarized

Why Is Artificial Intelligence Becoming Foundational to the Evolution of Home-Based Healthcare Delivery?

Artificial Intelligence (AI) is rapidly transforming home healthcare by enabling proactive, personalized, and resource-efficient care models that extend clinical-grade monitoring and intervention capabilities into patient residences. With aging populations, rising prevalence of chronic diseases, and growing pressure on institutional healthcare systems, AI-driven home care solutions are being prioritized to reduce hospital admissions, lower healthcare costs, and enhance quality of life. From remote diagnostics and medication adherence to rehabilitation support and predictive analytics, AI is becoming a foundational technology for decentralized care ecosystems.

One of the most prominent applications is in AI-powered remote patient monitoring (RPM), where wearable devices and ambient sensors continuously collect data on vitals, mobility, sleep, and medication compliance. AI algorithms analyze this data in real-time to detect anomalies, predict deterioration, and trigger alerts to care teams or caregivers. These systems help manage conditions such as diabetes, heart failure, COPD, and post-operative recovery-enabling early intervention and reducing unnecessary clinical visits or emergency escalations.

Additionally, AI-enabled virtual assistants and chatbots are enhancing patient engagement, supporting chronic disease self-management, and delivering mental health guidance. Natural language processing (NLP) allows these interfaces to understand patient queries, provide medication reminders, and even screen for depression or anxiety symptoms using conversational data. As home healthcare shifts toward patient-centric, technology-enabled models, AI is proving instrumental in closing gaps between clinical oversight and independent living.

How Are Predictive Models, Edge AI, and Voice Interfaces Expanding Functional Capabilities in Home Care?

Predictive analytics driven by AI is allowing care providers to stratify risk, anticipate complications, and customize care pathways for patients in home settings. Machine learning models trained on EHRs, sensor data, and historical outcomes can forecast hospitalization likelihood, fall risk, or medication non-compliance with high accuracy. These insights inform care coordination strategies, allowing providers to allocate resources effectively, personalize interventions, and reduce total cost of care under value-based payment models.

Edge AI-running machine learning models directly on local devices-is enabling low-latency, privacy-preserving decision-making in the home environment. Smart speakers, home hubs, and wearable monitors now incorporate embedded AI to process health data locally, enabling immediate feedback without reliance on constant internet connectivity. This is especially critical for elderly populations or rural areas with limited bandwidth, as it ensures continuous monitoring and responsiveness even in constrained digital environments.

Voice-enabled interfaces are gaining prominence as accessible, non-intrusive mediums for care delivery and monitoring. AI-powered smart speakers can remind users to take medications, collect verbal symptom updates, and initiate telehealth consultations through voice commands. For patients with mobility impairments or cognitive decline, these interfaces reduce friction and improve daily engagement with care protocols. Integration with caregiver platforms and health management apps ensures continuity and centralization of patient-reported data for better clinical decision-making.

Which Use Cases and Regional Markets Are Accelerating Adoption of AI in Home Healthcare?

Chronic disease management and post-acute care represent the most active domains for AI in home healthcare, driven by demand for continuous monitoring and early intervention. Solutions targeting heart failure, diabetes, hypertension, and pulmonary diseases are being deployed to support patients with complex medication regimens and high hospitalization risk. AI tools are also being used in remote rehabilitation-where motion sensors and ML models track physical therapy adherence and recovery progress-providing actionable insights to clinicians and therapists remotely.

Elder care and aging-in-place initiatives are another key driver, particularly in markets with aging demographics such as Japan, Western Europe, and North America. AI-enabled home monitoring systems detect changes in behavior, gait, or routine that may indicate cognitive decline, fall risk, or the onset of health issues. These systems offer peace of mind to families and caregivers while preserving independence for seniors. Additionally, home-based palliative care and mental health services are integrating AI to triage patients, optimize resource allocation, and deliver ongoing emotional support.

Regionally, the U.S. leads the market due to its mature telehealth infrastructure, strong reimbursement models for home care, and regulatory support for digital health tools. Europe follows with national health systems integrating AI tools for home-based elderly care and chronic condition management. Asia-Pacific is witnessing rapid adoption, led by government-supported aging-in-place programs in Japan, South Korea, and Singapore, along with private sector investment in digital health startups in India and China. In emerging economies, AI’s role is expanding through mobile-first platforms that offer diagnostics, medication management, and health coaching via low-cost smart devices.

How Are Data Privacy, Clinical Validation, and Interoperability Influencing Market Strategies?

Data privacy and regulatory compliance are central to the deployment of AI in home healthcare, given the sensitive nature of patient data and the distributed nature of care delivery. Vendors are investing in end-to-end encryption, consent management frameworks, and federated learning models to ensure HIPAA, GDPR, and country-specific regulatory adherence. Interoperability with EHR systems, health apps, and wearable platforms is being prioritized to unify care records and support longitudinal care across settings.

Clinical validation and regulatory approval are becoming critical differentiators, as payers and providers demand evidence of safety, efficacy, and health outcome improvement. AI vendors are partnering with academic medical centers and health systems to conduct real-world clinical trials and secure regulatory clearance for AI-powered devices and digital therapeutics. As FDA and EMA frameworks mature for software as a medical device (SaMD), more AI-based home healthcare solutions are achieving Class II or III device status, unlocking reimbursement pathways and wider adoption.

To support scale and integration, platform providers are offering modular, API-driven ecosystems that allow health systems, insurers, and home care agencies to incorporate AI modules into existing workflows. These platforms combine clinical dashboards, predictive analytics, patient engagement tools, and care coordination interfaces, enabling real-time collaboration between remote patients, caregivers, and healthcare professionals. As home healthcare becomes more digitally managed, vendors that deliver seamless integration and outcome-linked AI functionality are gaining strategic advantage.

What Are the Factors Driving Growth in the AI in Home Healthcare Market?

The AI in home healthcare market is expanding rapidly, driven by demographic shifts, chronic disease prevalence, health system constraints, and rising patient preference for home-based care. AI technologies offer scalable, intelligent solutions that extend clinical capabilities into the home-enabling earlier detection, more personalized care, and reduced dependency on institutional settings.

Advancements in edge computing, sensor integration, voice AI, and predictive modeling are enhancing the effectiveness and accessibility of home care tools. As governments, payers, and providers pivot toward outcome-based care delivery, AI is emerging as a cost-effective, scalable enabler of proactive, preventive, and participatory healthcare models.

Looking ahead, the market’s trajectory will depend on how effectively stakeholders address privacy, interoperability, and clinical validation challenges. As home becomes the new front line of healthcare delivery, could AI redefine not just how care is delivered-but where, when, and by whom it is managed?

SCOPE OF STUDY:

The report analyzes the Artificial Intelligence in Home Healthcare market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Offering (Software Hardware, Services); Technology (Machine Learning, Natural Language Processing, Context-aware Computing, Computer Vision); Application (Lifestyle Management & Remote Patient Monitoring, Patient Data & Risk Analysis, Virtual Assistants, Wearables, Mental Health, Other Applications); End-User (Healthcare Providers, Healthcare Payers, Patients, Other End-Users)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 48 Featured) -

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by artificially increasing the COGS, reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

We are diligently following expert opinions of leading Chief Economists (14,949), Think Tanks (62), Trade & Industry bodies (171) worldwide, as they assess impact and address new market realities for their ecosystems. Experts and economists from every major country are tracked for their opinions on tariffs and how they will impact their countries.

We expect this chaos to play out over the next 2-3 months and a new world order is established with more clarity. We are tracking these developments on a real time basis.

As we release this report, U.S. Trade Representatives are pushing their counterparts in 183 countries for an early closure to bilateral tariff negotiations. Most of the major trading partners also have initiated trade agreements with other key trading nations, outside of those in the works with the United States. We are tracking such secondary fallouts as supply chains shift.

To our valued clients, we say, we have your back. We will present a simplified market reassessment by incorporating these changes!

APRIL 2025: NEGOTIATION PHASE

Our April release addresses the impact of tariffs on the overall global market and presents market adjustments by geography. Our trajectories are based on historic data and evolving market impacting factors.

JULY 2025 FINAL TARIFF RESET

Complimentary Update: Our clients will also receive a complimentary update in July after a final reset is announced between nations. The final updated version incorporates clearly defined Tariff Impact Analyses.

Reciprocal and Bilateral Trade & Tariff Impact Analyses:

USA <> CHINA <> MEXICO <> CANADA <> EU <> JAPAN <> INDIA <> 176 OTHER COUNTRIES.

Leading Economists - Our knowledge base tracks 14,949 economists including a select group of most influential Chief Economists of nations, think tanks, trade and industry bodies, big enterprises, and domain experts who are sharing views on the fallout of this unprecedented paradigm shift in the global econometric landscape. Most of our 16,491+ reports have incorporated this two-stage release schedule based on milestones.

COMPLIMENTARY PREVIEW

Contact your sales agent to request an online 300+ page complimentary preview of this research project. Our preview will present full stack sources, and validated domain expert data transcripts. Deep dive into our interactive data-driven online platform.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â