¼¼°èÀÇ ÀÚÀ²ÁÖÇàÂ÷¿ë Ĩ ½ÃÀå
Autonomous Vehicle Chips
»óǰÄÚµå : 1739319
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 06¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 182 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,136,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,408,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

ÀÚÀ²ÁÖÇàÂ÷¿ë Ĩ ¼¼°è ½ÃÀåÀº 2030³â±îÁö 418¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 255¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ÀÚÀ²ÁÖÇàÂ÷¿ë Ĩ ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 8.5%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 418¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ÇÁ·Î¼¼¼­´Â CAGR 10.4%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á±îÁö 178¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¸¶ÀÌÅ©·ÎÄÁÆ®·Ñ·¯ ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ CAGR·Î 6.3%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 67¾ï ´Þ·¯, Áß±¹Àº CAGR 8.2%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹Ãø

¹Ì±¹ÀÇ ÀÚÀ²ÁÖÇàÂ÷¿ë Ĩ ½ÃÀåÀº 2024³â¿¡ 67¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ 2024³âºÎÅÍ 2030³â±îÁö CAGR 8.2%¸¦ ´õµë¾î, 2030³â¿¡´Â ½ÃÀå ±Ô¸ð°¡ 66¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 8.1%¿Í 7.1%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 6.6%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ÀÚÀ²ÁÖÇàÂ÷¿ë Ĩ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

ÀÚÀ²ÁÖÇàÂ÷¿ë ĨÀÌ ÀÚÀ²ÁÖÇà ÀÎÅÚ¸®Àü½º¸¦ µÞ¹ÞħÇÏ´Â ÇÙ½É ÄÄÇ»ÆÃ ¿£ÁøÀÌ µÇ´Â ÀÌÀ¯´Â ¹«¾ùÀϱî?

ÀÚÀ²ÁÖÇàÂ÷¿ë Ĩ - ÀÚÀ²ÁÖÇà ¿öÅ©·Îµå ó¸® Àü¿ëÀ¸·Î ¼³°èµÈ °í¼º´É ¹ÝµµÃ¼ Ç÷§Æû - Àº ÀÚÀ²ÁÖÇà ½Ã½ºÅÛÀÇ µÎ³ú·Î ºü¸£°Ô ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ÀÌ Ä¨Àº LiDAR, ·¹ÀÌ´õ, Ä«¸Þ¶ó, GPS, °ü¼ºÃøÁ¤ÀåÄ¡(IMU) µî ¿©·¯ ¼¾¼­ÀÇ µ¥ÀÌÅ͸¦ ó¸®ÇÏ¿© ½Ç½Ã°£ ÀνÄ, À§Ä¡ ÆÄ¾Ç, ¸ÅÇÎ, ÀÇ»ç°áÁ¤ ¹× Á¦¾î¸¦ ¼öÇàÇÏ´Â ¿ªÇÒÀ» ÇÕ´Ï´Ù. ¹ü¿ë Â÷·®¿ë ECU¿Í ´Þ¸® ÀÌ Ä¨Àº CPU, GPU, NPU(Neural Processing Unit), ¸ÂÃãÇü °¡¼Ó±â¸¦ ÇϳªÀÇ ÆÐŰÁö¿¡ ÅëÇÕÇÏ¿© ÃÊÀúÁö¿¬ ¹× ÆäÀÏ¿ÀÆÛ·¹ÀÌ¼Ç ¾ÈÁ¤¼ºÀ» °®Ãá ¿§Áö¿¡¼­ÀÇ AI ¿öÅ©·Îµå¸¦ Áö¿øÇÕ´Ï´Ù.

ÀÚµ¿Â÷°¡ º¸´Ù ³ôÀº ¼öÁØÀÇ ÀÚÀ²ÁÖÇà(SAE ·¹º§ 3 ÀÌ»ó)À¸·Î À̵¿ÇÔ¿¡ µû¶ó, ÇÊ¿äÇÑ ÇÁ·Î¼¼½ÌÀÇ º¹À⼺ÀÌ ±âÇϱ޼öÀûÀ¸·Î Áõ°¡ÇÏ¿© ÃÊ´ç ¼ö½ÊÁ¶¿¡¼­ ¼ö¹éÁ¶ ¹øÀÇ ¿¬»ê(TOPS)À» ó¸®ÇÒ ¼ö ÀÖ´Â °­·ÂÇÏ°í ¿¡³ÊÁö È¿À²ÀûÀΠĨÀÌ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. ÇöÀç ÀÚÀ²ÁÖÇà ĨÀÌ ¼¾¼­ À¶ÇÕ, µö·¯´× Ãß·Ð, ½Ç½Ã°£ °æ·Î °èȹÀ» ±¸¼ºÇÏ´Â Áß¾Ó ÁýÁᫎ ÄÄÇ»ÆÃ Ç÷§ÆûÀ» Áß½ÉÀ¸·Î ÀÚµ¿Â÷¸¦ ¼³°èÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ä¨Àº ÇÙ½ÉÀûÀÎ ÀÚÀ²¼ºÀ» ±¸ÇöÇÒ »Ó¸¸ ¾Æ´Ï¶ó ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ Â÷·®À¸·ÎÀÇ ÀüȯÀ» Áö¿øÇϸç, Áö´ÉÇü ¸ðºô¸®Æ¼ÀÇ ´ÙÀ½ ½Ã´ë¸¦ À§ÇÑ ¹Ì¼Ç Å©¸®Æ¼ÄÃÇÑ ¿ä¼Ò·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

AI °¡¼Ó, 5nm °øÁ¤ ³ëµå, ±â´É ¾ÈÀü, Ĩ ¼³°è¿Í ¼º´ÉÀ» ¾î¶»°Ô Çü¼ºÇϰí Àִ°¡?

ÃֽŠÀÚÀ²ÁÖÇàÂ÷¿ë ĨÀº ÃÖ÷´Ü ¹ÝµµÃ¼ °øÁ¤ ±â¼úÀ» ±â¹ÝÀ¸·Î Á¦À۵ǰí ÀÖÀ¸¸ç, ÁÖ¿ä ¾÷üµéÀº 5nm ¹× 7nm ³ëµå¸¦ äÅÃÇÏ¿© ³ôÀº Æ®·£Áö½ºÅÍ ¹Ðµµ, ³·Àº Àü·Â ¼Òºñ ¹× Çâ»óµÈ ó¸® ó¸®·®À» ½ÇÇöÇϰí ÀÖ½À´Ï´Ù. Àº ½Ã°¢ ÀνÄ, ¼¾¼­ À¶ÇÕ, Çൿ ¿¹ÃøÀ» À§ÇÑ ½Ç½Ã°£ ÄÁº¼·ç¼Ç ½Å°æ¸Á(CNN) ½ÇÇàÀ» Áö¿øÇÒ ¼ö ÀÖ´Â Àü¿ë NPU¸¦ ÅëÇÕÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ AI ¿£ÁøÀº ¹Ð¸®ÃÊ ´ÜÀ§ÀÇ ÀÀ´ä¼ºÀÌ ¿ä±¸µÇ´Â ½ÇÁ¦ ½ÇÇà ½Ã³ª¸®¿À¿¡ ÇʼöÀûÀÎ ³·Àº Áö¿¬½Ã°£°ú ³ôÀº º´·Ä¼º¿¡ ÃÖÀûÈ­µÇ¾î ÀÖ½À´Ï´Ù.

¼º´É»Ó¸¸ ¾Æ´Ï¶ó ±â´É ¾ÈÀüµµ Áß¿äÇÑ ¼³°è ¿ä°ÇÀÔ´Ï´Ù. ÀÚÀ²ÁÖÇà ¾ÖÇø®ÄÉÀ̼ÇÀ» ´ë»óÀ¸·Î Çϴ ĨÀº ISO 26262 ASIL-D Ç¥ÁØÀ» ÃæÁ·ÇØ¾ß Çϸç, Çϵå¿þ¾î ÀÌÁßÈ­, ÆäÀÏ¿À¹ö ¸ÞÄ¿´ÏÁò, ¸Þ¸ð¸® º¸È£, º¸¾È ºÎÆÃ ÇÁ·ÎÅäÄÝÀ» Æ÷ÇÔÇØ¾ß ÇÕ´Ï´Ù. ¿ÂĨ Áø´Ü ¹× ¼¼ÀÌÇÁƼ ¾ÆÀÏ·£µå´Â ½Ã½ºÅÛÀÇ ÀϺΰ¡ °íÀå ³ª´õ¶óµµ ¾ÈÀü¿¡ Áß¿äÇÑ ±â´ÉÀÌ °è¼Ó ÀÛµ¿ÇÒ ¼ö ÀÖµµ·Ï º¸ÀåÇÕ´Ï´Ù. ÷´Ü ÆÐŰ¡, ¿­ °ü¸® ¹× Â÷·®¿ë µî±Þ °ËÁõ ÇÁ·Î¼¼½º´Â °¡È¤ÇÑ È¯°æ Á¶°ÇÀ» °ßµð°í Àå±âÀûÀÎ ¼ö¸í Áֱ⠵¿¾È Áö¼ÓÀûÀ¸·Î ÀÛµ¿Çϱâ À§ÇØ ÇʼöÀûÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú ¹ßÀüÀº ÇöÀçÀÇ ADAS ±â´ÉÀ» Áö¿øÇÒ »Ó¸¸ ¾Æ´Ï¶ó ÇâÈÄ ¿ÏÀüÇÑ ÀÚÀ²¼º°ú Áö¼ÓÀûÀÎ OTA(Over-the-Air) ÁøÈ­¸¦ À§ÇÑ Ä¨À» ±¸ÇöÇÒ ¼ö ÀÖµµ·Ï Çϰí ÀÖ½À´Ï´Ù.

ÀÚÀ²ÁÖÇàÂ÷¿ë ĨÀÇ ¼ö¿ä´Â ¾îµð·Î È®´ëµÉ °ÍÀ̸ç, ¾î¶² ¾ÖÇø®ÄÉÀ̼ÇÀÌ Ã¤ÅÃÀ» ÁÖµµÇÒ °ÍÀΰ¡?

ÀÚÀ²ÁÖÇàÂ÷¿ë Ĩ¿¡ ´ëÇÑ ¼ö¿ä´Â ÀÚÀ²ÁÖÇàÂ÷ °³¹ß, ½º¸¶Æ® ÀÎÇÁ¶ó ±¸Ãà, AI Çõ½ÅÀÇ ÃÖÀü¼±¿¡ ÀÖ´Â ºÏ¹Ì, Áß±¹, À¯·´, ÀϺ», ³²¹Ì¿¡¼­ °¡Àå ºü¸£°Ô Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌµé ½ÃÀåÀÇ ÁÖ¿ä OEM°ú AV ½ºÅ¸Æ®¾÷µéÀº ·Îº¸ÅýÃ, ÀÚÀ² ¹è¼Û Â÷·®, °í¼Óµµ·Î ÀÚµ¿Á¶Á¾ ½Ã½ºÅÛ µîÀÇ ¿ëµµ·Î ½ÃÁ¦Ç° ¹× »ó¿ëÂ÷¿¡ ÀÌ Ä¨À» žÀçÇϰí ÀÖ½À´Ï´Ù. ÇÁ¸®¹Ì¾ö ÀÚµ¿Â÷¿Í Â÷¼¼´ë EV Ç÷§ÆûÀº °í±Þ ADAS ±â´É°ú ÇâÈÄ ¾÷±×·¹À̵带 À§ÇØ ÀÚÀ²ÁÖÇà ĨÀÌ Å¾ÀçµÈ Áß¾Ó ÁýÁᫎ ÄÄÇ»ÆÃ ¾ÆÅ°ÅØÃ³¸¦ °¡Àå ¸ÕÀú äÅÃÇϰí ÀÖ½À´Ï´Ù.

ÁÖ¿ä ÀÀ¿ë ºÐ¾ß·Î´Â ¼¾¼­ µ¥ÀÌÅÍ À¶ÇÕ, ½Ç½Ã°£ ¹°Ã¼ ºÐ·ù, ±Ëµµ °èȹ, Á¦¾î ·çÇÁ ½ÇÇà µîÀÌ ÀÖÀ¸¸ç, ¸ðµÎ Ĩ ¼öÁØÀÇ Ã³¸®¿¡ ÀÇÁ¸ÇÕ´Ï´Ù. ÀÌ Ä¨Àº ¶ÇÇÑ Æ®·¹ÀÌ´× ½Ã¹Ä·¹ÀÌÅÍ, Å×½ºÆ® º¥Ä¡, HIL(Hardware-in-the-Loop) ȯ°æ¿¡¼­µµ »ç¿ëµÇ¾î AI ¸ðµ¨°ú ÀÎ½Ä ½ºÅÃÀ» ¹èÆ÷Çϱâ Àü¿¡ °ËÁõÇÏ´Â µ¥ »ç¿ëµË´Ï´Ù. Àå°Å¸® Æ®·° ¾÷°è¿¡¼­ ÀÚÀ²ÁÖÇà ĨÀº °íÁ¤µÈ °æ·ÎÀÇ °í¼Óµµ·Î ±â¹Ý ¹«ÀÎ ¿îÇàÀ» Áö¿øÇϰí, µµ½ÉÀÇ ÀÚÀ²ÁÖÇà ¼ÅÆ²Àº ¹ÐÁýµÈ ȯ°æÀ» Ž»öÇÏ´Â µ¥ »ç¿ëµË´Ï´Ù. Â÷·® ³» AI(¿îÀüÀÚ ¸ð´ÏÅ͸µ, Á¦½ºÃ³ Á¦¾î µî)¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ĨÀº ¿ÜºÎ ¹× ³»ºÎ ÀÎÅÚ¸®Àü½º ±â´ÉÀ» °ü¸®Çϱâ À§ÇØ ÀÌÁßÀ¸·Î Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù.

ÀÚÀ²ÁÖÇàÂ÷¿ë Ĩ ½ÃÀåÀÇ ¼¼°è ¼ºÀå ¿øµ¿·ÂÀº?

¼¼°è ÀÚÀ²ÁÖÇàÂ÷¿ë Ĩ ½ÃÀåÀº ÀÚµ¿Â÷ Àüµ¿È­, ÷´Ü AI ¿öÅ©·Îµå, Áß¾ÓÁýÁᫎ ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ¾ÆÅ°ÅØÃ³¿¡ ´ëÇÑ ¾÷°èÀÇ °ü½ÉÀÌ À¶ÇյǸ鼭 ¼ºÀå¼¼¸¦ º¸À̰í ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀº ¹ÝµµÃ¼ Á¦Á¶¾÷ü¿Í Çù·ÂÇÏ¿© ÀÚÀ²ÁÖÇà ½ºÅÿ¡ ÃÖÀûÈ­µÈ ¸ÂÃãÇü SoC¸¦ °øµ¿ °³¹ßÇÏ¿© ½Ã½ºÅÛ ¼öÁØÀÇ Â÷º°È­¿Í Àå±âÀûÀÎ OTA ¾÷±×·¹À̵带 À§ÇØ AI Æ®·¹ÀÌ´× µ¥ÀÌÅÍ, ½Ã¹Ä·¹ÀÌ¼Ç Ç÷§Æû, AV ¿¡ÄڽýºÅÛ¿¡ ´ëÇÑ ´ë±Ô¸ð ÅõÀÚ¸¦ È®´ëÇϰí ÀÖ½À´Ï´Ù. ½Ã½ºÅÛ¿¡ ´ëÇÑ ´ë±Ô¸ð ÅõÀÚ°¡ Ĩ Çõ½ÅÀ» ÃËÁøÇϰí ÀÖÀ¸¸ç, Tier 1 °ø±Þ¾÷üµéÀº ÀÌ·¯ÇÑ Ä¨À» µµ¸ÞÀÎ ÄÁÆ®·Ñ·¯, ½´ÆÛÄÄÇ»ÅÍ, ·¹ÆÛ·±½º Ç÷§Æû¿¡ ÅëÇÕÇϰí ÀÖ½À´Ï´Ù.

½ÃÀå ¼ºÀåÀº Çϵå¿þ¾î¿Í ¼ÒÇÁÆ®¿þ¾îÀÇ Çù¾÷ ¼³°è°¡ ¼º¼÷ÇØÁö¸é¼­ ĨÀ» ƯÁ¤ ½Å°æ¸Á, ¼¾¼­ Á¦Ç°±º ¹× ¾ÖÇø®ÄÉÀ̼ÇÀÇ ¿ä±¸¿¡ ¸Â°Ô Á¶Á¤ÇÒ ¼ö ÀÖ°Ô µÊ¿¡ µû¶ó ´õ¿í °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ¾ÈÀü Àǹ«È­ ¹× ½ÇÁ¦ ȯ°æ¿¡¼­ÀÇ Å×½ºÆ® ½ÂÀΰú °ü·ÃµÈ ±ÔÁ¦ ¸ð¸àÅÒÀº ´ë±Ô¸ð ¹èÆ÷¸¦ À§ÇÑ ±æÀ» ¿­¾îÁÖ°í ÀÖÀ¸¸ç, °ËÁõµÈ ASIL ȣȯ ÄÄÇ»ÆÃ ¼Ö·ç¼ÇÀÇ Çʿ伺ÀÌ ´õ¿í Ä¿Áö°í ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ÀÇ Áö´ÉÈ­, Ä¿³ØÆ¼µåÈ­, ÀÚÀ²È­°¡ ÁøÇàµÊ¿¡ µû¶ó, ÀÌ ºÐ¾ßÀÇ ±Ëµµ¸¦ °áÁ¤ÇÏ´Â Àü·«Àû Áú¹®ÀÌ ÀÖ½À´Ï´Ù. ÀÚÀ²ÁÖÇà Â÷·®¿ë ĨÀÌ ¼º´É, ¾ÈÀü¼º, ¿¡³ÊÁö È¿À²¼º Ãø¸é¿¡¼­ ½ÇÁ¦ ÁÖÇà ȯ°æ¿¡¼­ Ç®½ºÅà ÀÚÀ²ÁÖÇàÀ» À§ÇØ ÃæºÐÈ÷ ºü¸¥ ¼Óµµ·Î È®ÀåµÉ ¼ö ÀÖÀ»±î?

ºÎ¹®

Ĩ À¯Çü(ÇÁ·Î¼¼¼­, ¸¶ÀÌÅ©·ÎÄÁÆ®·Ñ·¯, FPGA, GPU), ¿ëµµ(½Â¿ëÂ÷, »ó¿ëÂ÷, ¹æÀ§ Â÷·®, ´ëÁß±³Åë Â÷·®), ÃÖÁ¾»ç¿ëÀÚ(ÀÚµ¿Â÷, ¹°·ù¡¤¿î¼Û, ¹æÀ§, ±âŸ ÃÖÁ¾»ç¿ëÀÚ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê(ÃÑ 44°³»ç)

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ÀÎÀ§ÀûÀÎ ¸ÅÃâ¿ø°¡ Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

Global Industry Analysts´Â ¼¼°è ÁÖ¿ä ¼ö¼® ÀÌÄÚ³ë¹Ì½ºÆ®(1,4,949¸í), ½ÌÅ©ÅÊÅ©(62°³ ±â°ü), ¹«¿ª ¹× »ê¾÷ ´Üü(171°³ ±â°ü)ÀÇ Àü¹®°¡µéÀÇ ÀǰßÀ» ¸é¹ÐÈ÷ °ËÅäÇÏ¿© »ýŰ迡 ¹ÌÄ¡´Â ¿µÇâÀ» Æò°¡ÇÏ°í »õ·Î¿î ½ÃÀå Çö½Ç¿¡ ´ëÀÀÇϰí ÀÖ½À´Ï´Ù. ¸ðµç ÁÖ¿ä ±¹°¡ÀÇ Àü¹®°¡¿Í °æÁ¦ÇÐÀÚµéÀÌ °ü¼¼¿Í ±×°ÍÀÌ ÀÚ±¹¿¡ ¹ÌÄ¡´Â ¿µÇâ¿¡ ´ëÇÑ ÀǰßÀ» ÃßÀû Á¶»çÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀÌ·¯ÇÑ È¥¶õÀÌ ÇâÈÄ 2-3°³¿ù ³»¿¡ ¸¶¹«¸®µÇ°í »õ·Î¿î ¼¼°è Áú¼­°¡ º¸´Ù ¸íÈ®ÇÏ°Ô È®¸³µÉ °ÍÀ¸·Î ¿¹»óÇϰí ÀÖÀ¸¸ç, Global Industry Analysts´Â ÀÌ·¯ÇÑ »óȲÀ» ½Ç½Ã°£À¸·Î ÃßÀûÇϰí ÀÖ½À´Ï´Ù.

2025³â 4¿ù : Çù»ó ´Ü°è

À̹ø 4¿ù º¸°í¼­¿¡¼­´Â °ü¼¼°¡ ¼¼°è ½ÃÀå Àüü¿¡ ¹ÌÄ¡´Â ¿µÇâ°ú Áö¿ªº° ½ÃÀå Á¶Á¤¿¡ ´ëÇØ ¼Ò°³ÇÕ´Ï´Ù. ´ç»çÀÇ ¿¹ÃøÀº °ú°Å µ¥ÀÌÅÍ¿Í ÁøÈ­ÇÏ´Â ½ÃÀå ¿µÇâ¿äÀÎÀ» ±â¹ÝÀ¸·Î ÇÕ´Ï´Ù.

2025³â 7¿ù : ÃÖÁ¾ °ü¼¼ Àç¼³Á¤

°í°´´Ôµé²²´Â °¢ ±¹°¡º° ÃÖÁ¾ ¸®¼ÂÀÌ ¹ßÇ¥µÈ ÈÄ 7¿ù¿¡ ¹«·á ¾÷µ¥ÀÌÆ® ¹öÀüÀ» Á¦°øÇØ µå¸³´Ï´Ù. ÃÖÁ¾ ¾÷µ¥ÀÌÆ® ¹öÀü¿¡´Â ¸íÈ®ÇÏ°Ô Á¤ÀÇµÈ °ü¼¼ ¿µÇ⠺м®ÀÌ Æ÷ÇԵǾî ÀÖ½À´Ï´Ù.

»óÈ£ ¹× ¾çÀÚ °£ ¹«¿ª°ú °ü¼¼ÀÇ ¿µÇ⠺м®:

¹Ì±¹ <> Áß±¹ <> ¸ß½ÃÄÚ <> ij³ª´Ù <> EU <> ÀϺ» <> Àεµ <> ±âŸ 176°³±¹

¾÷°è ÃÖ°íÀÇ ÀÌÄÚ³ë¹Ì½ºÆ® : Global Industry AnalystsÀÇ Áö½Ä ±â¹ÝÀº ±¹°¡, ½ÌÅ©ÅÊÅ©, ¹«¿ª ¹× »ê¾÷ ´Üü, ´ë±â¾÷, ±×¸®°í ¼¼°è °è·® °æÁ¦ »óȲÀÇ Àü·Ê ¾ø´Â ÆÐ·¯´ÙÀÓ ÀüȯÀÇ ¿µÇâÀ» °øÀ¯ÇÏ´Â ºÐ¾ßº° Àü¹®°¡ µî °¡Àå ¿µÇâ·Â ÀÖ´Â ¼ö¼® ÀÌÄÚ³ë¹Ì½ºÆ® ±×·ìÀ» Æ÷ÇÔÇÑ 14,949¸íÀÇ ÀÌÄÚ³ë¹Ì½ºÆ®¸¦ ÃßÀûÇϰí ÀÖ½À´Ï´Ù. 16,491°³ ÀÌ»óÀÇ º¸°í¼­ ´ëºÎºÐ¿¡ ¸¶ÀϽºÅæ¿¡ ±â¹ÝÇÑ 2´Ü°è Ãâ½Ã ÀÏÁ¤À» Àû¿ëÇϰí ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSM
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Autonomous Vehicle Chips Market to Reach US$41.8 Billion by 2030

The global market for Autonomous Vehicle Chips estimated at US$25.5 Billion in the year 2024, is expected to reach US$41.8 Billion by 2030, growing at a CAGR of 8.5% over the analysis period 2024-2030. Processors, one of the segments analyzed in the report, is expected to record a 10.4% CAGR and reach US$17.8 Billion by the end of the analysis period. Growth in the Microcontrollers segment is estimated at 6.3% CAGR over the analysis period.

The U.S. Market is Estimated at US$6.7 Billion While China is Forecast to Grow at 8.2% CAGR

The Autonomous Vehicle Chips market in the U.S. is estimated at US$6.7 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$6.6 Billion by the year 2030 trailing a CAGR of 8.2% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 8.1% and 7.1% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 6.6% CAGR.

Global Autonomous Vehicle Chips Market - Key Trends & Drivers Summarized

Why Are Autonomous Vehicle Chips Becoming the Core Compute Engines Behind Self-Driving Intelligence?

Autonomous vehicle chips-high-performance semiconductor platforms designed specifically for processing autonomous driving workloads-are rapidly emerging as the brain of self-driving systems. These chips are responsible for executing real-time perception, localization, mapping, decision-making, and control by processing data from multiple sensors such as LiDAR, radar, cameras, GPS, and inertial measurement units (IMUs). Unlike general-purpose automotive ECUs, these chips integrate CPUs, GPUs, NPUs (neural processing units), and custom accelerators into a single package to support AI workloads at the edge with ultra-low latency and fail-operational reliability.

As vehicles move toward higher levels of autonomy (SAE Level 3 and above), the complexity of required processing has increased exponentially-demanding powerful yet energy-efficient chips that can handle tens to hundreds of trillions of operations per second (TOPS). OEMs and tech suppliers are now designing vehicles around centralized compute platforms where autonomous chips orchestrate sensor fusion, deep learning inference, and path planning in real time. These chips not only enable core autonomy but also underpin the shift toward software-defined vehicles, positioning them as mission-critical to the next era of intelligent mobility.

How Are AI Acceleration, 5nm Process Nodes, and Functional Safety Shaping Chip Design and Performance?

Modern autonomous vehicle chips are built on cutting-edge semiconductor process technologies, with leading vendors adopting 5nm and 7nm nodes to achieve high transistor density, low power consumption, and increased processing throughput. AI acceleration is a defining feature, with many chips integrating dedicated NPUs capable of supporting real-time convolutional neural network (CNN) execution for vision recognition, sensor fusion, and behavioral prediction. These AI engines are optimized for low latency and high parallelism, critical for real-world driving scenarios that demand millisecond-level responsiveness.

In addition to performance, functional safety is a key design requirement. Chips targeting autonomous applications must meet ISO 26262 ASIL-D standards and include hardware redundancy, failover mechanisms, memory protection, and secure boot protocols. On-chip diagnostics and safety islands ensure that safety-critical functions remain operational even during partial system failures. Advanced packaging, thermal management, and automotive-grade validation processes are also essential to withstand harsh environmental conditions and continuous operation over extended lifecycles. These technical advancements are enabling chips that not only support current ADAS features but are future-ready for full autonomy and continuous over-the-air (OTA) evolution.

Where Is Demand for Autonomous Vehicle Chips Expanding and Which Applications Are Leading Adoption?

Demand for autonomous vehicle chips is rising fastest in North America, China, Europe, Japan, and South Korea-regions at the forefront of autonomous vehicle development, smart infrastructure deployment, and AI innovation. Leading OEMs and AV startups in these markets are integrating these chips into prototype and commercial vehicles for applications including robotaxis, autonomous delivery fleets, and highway autopilot systems. Premium vehicles and next-generation EV platforms are among the first to adopt centralized compute architectures powered by autonomous chips, enabling high-end ADAS features and future upgradability.

Key applications include sensor data fusion, real-time object classification, trajectory planning, and control loop execution-all of which are dependent on chip-level processing. Chips are also being used in training simulators, test benches, and HIL (hardware-in-the-loop) environments to validate AI models and perception stacks before deployment. In the long-haul trucking industry, autonomous chips are supporting highway-based driverless operation across fixed routes, while urban autonomous shuttles use them to navigate dense environments. As demand for in-cabin AI (e.g., driver monitoring, gesture control) grows, chips are being dual-purposed to manage both external and internal intelligence functions.

What Is Fueling the Global Growth of the Autonomous Vehicle Chips Market?

The global autonomous vehicle chips market is being driven by the convergence of automotive electrification, advanced AI workloads, and the industry's pivot to centralized, software-defined architectures. Automakers are increasingly partnering with semiconductor companies to co-develop custom SoCs optimized for autonomous stacks, allowing differentiation at the system level and long-term OTA upgradability. Massive investments in AI training data, simulation platforms, and AV ecosystems are fueling chip innovation, while Tier 1 suppliers are embedding these chips into domain controllers, supercomputers, and reference platforms.

Market growth is further supported by the maturation of hardware-software co-design practices, enabling chips to be tuned for specific neural networks, sensor suites, and application needs. Regulatory momentum around safety mandates and real-world testing approvals is opening pathways for scaled deployment, reinforcing the need for validated, ASIL-compliant compute solutions. As vehicles become increasingly intelligent, connected, and autonomous, a strategic question defines the sector’s trajectory: Can autonomous vehicle chips continue to scale in performance, safety, and energy efficiency fast enough to power full-stack autonomy in mass-market, real-world driving environments?

SCOPE OF STUDY:

The report analyzes the Autonomous Vehicle Chips market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Chip Type (Processors, Microcontrollers, FPGAs, GPUs); Application (Passenger Cars, Commercial Vehicles, Defense Vehicles, Public Transport Vehicles); End-User (Automotive, Logistics & Transportation, Defense, Other End-Users)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 44 Featured) -

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by artificially increasing the COGS, reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

We are diligently following expert opinions of leading Chief Economists (14,949), Think Tanks (62), Trade & Industry bodies (171) worldwide, as they assess impact and address new market realities for their ecosystems. Experts and economists from every major country are tracked for their opinions on tariffs and how they will impact their countries.

We expect this chaos to play out over the next 2-3 months and a new world order is established with more clarity. We are tracking these developments on a real time basis.

As we release this report, U.S. Trade Representatives are pushing their counterparts in 183 countries for an early closure to bilateral tariff negotiations. Most of the major trading partners also have initiated trade agreements with other key trading nations, outside of those in the works with the United States. We are tracking such secondary fallouts as supply chains shift.

To our valued clients, we say, we have your back. We will present a simplified market reassessment by incorporating these changes!

APRIL 2025: NEGOTIATION PHASE

Our April release addresses the impact of tariffs on the overall global market and presents market adjustments by geography. Our trajectories are based on historic data and evolving market impacting factors.

JULY 2025 FINAL TARIFF RESET

Complimentary Update: Our clients will also receive a complimentary update in July after a final reset is announced between nations. The final updated version incorporates clearly defined Tariff Impact Analyses.

Reciprocal and Bilateral Trade & Tariff Impact Analyses:

USA <> CHINA <> MEXICO <> CANADA <> EU <> JAPAN <> INDIA <> 176 OTHER COUNTRIES.

Leading Economists - Our knowledge base tracks 14,949 economists including a select group of most influential Chief Economists of nations, think tanks, trade and industry bodies, big enterprises, and domain experts who are sharing views on the fallout of this unprecedented paradigm shift in the global econometric landscape. Most of our 16,491+ reports have incorporated this two-stage release schedule based on milestones.

COMPLIMENTARY PREVIEW

Contact your sales agent to request an online 300+ page complimentary preview of this research project. Our preview will present full stack sources, and validated domain expert data transcripts. Deep dive into our interactive data-driven online platform.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â