¼¼°èÀÇ Çϵå¿þ¾î ÀΰøÁö´É(AI) ½ÃÀå
Artificial Intelligence in Hardware
»óǰÄÚµå : 1739308
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 06¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 86 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,118,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,355,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Çϵå¿þ¾î ÀΰøÁö´É(AI) ¼¼°è ½ÃÀåÀº 2030³â±îÁö 1,372¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 546¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â Çϵå¿þ¾î ÀΰøÁö´É ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 16.6%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 1,372¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ AI ÇÁ·Î¼¼¼­´Â CAGR 14.2%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á±îÁö 566¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. AI ¿¢¼¿·¯·¹ÀÌÅÍ ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 18.8%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº ÃßÁ¤ 160¾ï ´Þ·¯, Áß±¹Àº CAGR 15.9%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ Çϵå¿þ¾î ÀΰøÁö´É(AI) ½ÃÀåÀº 2024³â¿¡ 160¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 239¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 15.9%¸¦ ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 15.1%¿Í 14.7%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 12.5%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°è Çϵå¿þ¾î ÀΰøÁö´É(AI) ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ Á¤¸®

ÀΰøÁö´ÉÀÇ ÀáÀç·ÂÀ» ±Ø´ëÈ­Çϱâ À§ÇØ Çϵå¿þ¾î Çõ½ÅÀÌ ÇʼöÀûÀÎ ÀÌÀ¯´Â ¹«¾ùÀϱî?

ÀΰøÁö´É(AI) Çϵå¿þ¾î´Â ¾÷°è Àü¹Ý¿¡¼­ AI ¿öÅ©·ÎµåÀÇ ±¤¹üÀ§ÇÑ ¹èÆ÷¿Í °¡¼ÓÈ­¸¦ °¡´ÉÇÏ°Ô ÇÏ´Â ±âº» ÃàÀ¸·Î ºÎ»óÇϰí ÀÖÀ¸¸ç, AI ¸ðµ¨ÀÌ º¹ÀâÇØÁö°í, ÄÄÇ»ÆÃ ºÎÇϰ¡ ³ô¾ÆÁö°í, µ¥ÀÌÅÍ ¾çÀÌ ¸¹¾ÆÁü¿¡ µû¶ó ±âÁ¸ÀÇ Çϵå¿þ¾î ¾ÆÅ°ÅØÃ³(ƯÈ÷ ¹ü¿ë CPU)·Î´Â ´õ ÀÌ»ó ½Ç½Ã°£ ó¸®, Ãß·Ð, ÇнÀ ÀÛ¾÷À» È¿À²ÀûÀ¸·Î ó¸®Çϱ⿡ ÃæºÐÇÏÁö ¾Ê½À´Ï´Ù. ½Ç½Ã°£ ó¸®, Ãß·Ð, ÇнÀ ÀÛ¾÷À» È¿À²ÀûÀ¸·Î ó¸®Çϱ⿡´Â ´õ ÀÌ»ó ÃæºÐÇÏÁö ¾Ê½À´Ï´Ù. ÀÌ¿¡ µû¶ó ±×·¡ÇÈ Ã³¸® ÀåÄ¡(GPU), ÅÙ¼­ ó¸® ÀåÄ¡(TPU), Çʵå ÇÁ·Î±×·¡¸Óºí °ÔÀÌÆ® ¾î·¹ÀÌ(FPGA), ÁÖ¹®Çü ¹ÝµµÃ¼(ASIC), ¿§Áö AI ÇÁ·Î¼¼¼­ µî AI¿¡ ÃÖÀûÈ­µÈ Àü¿ë Çϵå¿þ¾îÀÇ °³¹ß ¹× äÅÃÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. °³¹ß ¹× äÅÿ¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀº ÄÄÇ»ÅÍ ºñÀü, µö·¯´×, ÀÚ¿¬¾î ó¸®, ÀÚÀ² ½Ã½ºÅÛ µî Â÷¼¼´ë AI ¾ÖÇø®ÄÉÀ̼ǿ¡ ÇʼöÀûÀÎ º´·Ä ó¸®, ³·Àº Áö¿¬½Ã°£, ³ôÀº 󸮷®À» ±¸ÇöÇÏ´Â °ÍÀ» ¸ñÇ¥·Î ±¸ÃàµÇ°í ÀÖ½À´Ï´Ù.

AI Çϵå¿þ¾î´Â ÇöÀç µ¥ÀÌÅͼ¾ÅͻӸ¸ ¾Æ´Ï¶ó ¿§Áö µð¹ÙÀ̽º, ·Îº¿ °øÇÐ, IoT Ç÷§Æû, °í¼º´É ÄÄÇ»ÆÃ ȯ°æÀÇ Àü·«Àû Àο¡ÀÌºí·¯·Î °£Áֵǰí ÀÖ½À´Ï´Ù. Ŭ¶ó¿ìµå ¼­ºñ½º Á¦°ø¾÷ü, ¹ÝµµÃ¼ ±â¾÷, ÇÏÀÌÆÛ½ºÄÉÀÏ ±â¾÷µéÀº ¿¡³ÊÁö È¿À²À» °³¼±Çϰí, AI ÇнÀ Áֱ⸦ ´ÜÃàÇϰí, ÃѼÒÀ¯ºñ¿ëÀ» Àý°¨Çϱâ À§ÇØ ¸ÂÃãÇü AI Ĩ¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. AI°¡ ÀÚµ¿Â÷, ÇコÄɾî, ±¹¹æ, »ê¾÷ ÀÚµ¿È­ µîÀÇ ºÐ¾ß¿¡ ħÅõÇÔ¿¡ µû¶ó ¼º´É, Àü·Â È¿À²¼º, È®À强ÀÇ ±ÕÇüÀ» °®Ãá AI Çϵå¿þ¾î¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖÀ¸¸ç, ÀÌ ºÐ¾ß´Â ¼¼°è AI »ýŰèÀÇ ÇÙ½ÉÀ¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

AI ƯÀ¯ÀÇ ÄÄÇ»ÆÃ ¼ö¿ä¸¦ ÃæÁ·½Ã۱â À§ÇØ Çϵå¿þ¾î ¾ÆÅ°ÅØÃ³´Â ¾î¶»°Ô ÁøÈ­Çϰí Àִ°¡?

ºü¸£°Ô ÁøÈ­ÇÏ´Â AI ¿öÅ©·Îµå¸¦ Áö¿øÇϱâ À§ÇØ Çϵå¿þ¾î ¾ÆÅ°ÅØÃ³´Â ¹ü¿ë 󸮿¡¼­ µµ¸ÞÀκ° °¡¼ÓÈ­·Î ÆÐ·¯´ÙÀÓÀÌ ÀüȯµÇ°í ÀÖÀ¸¸ç, GPU´Â ¿ø·¡ ±×·¡ÇÈ ·»´õ¸µÀ» À§ÇØ ¼³°èµÇ¾úÁö¸¸, ´ë±Ô¸ð º´·Ä ó¸® ´É·ÂÀ¸·Î ÀÎÇØ AI ÇнÀÀÇ ÁÖÃàÀÌ µÇ¾ú½À´Ï´Ù. Nvidia, AMD, IntelÀº ´õ ³ôÀº ¸Þ¸ð¸® ´ë¿ªÆø, ¼ÒÇÁÆ®¿þ¾î ½ºÅà ÅëÇÕ(CUDA, ROCm), µö·¯´×¿¡¼­ Áß¿äÇÑ Çà·Ä °ö¼À¿¡ ƯȭµÈ ÅÙ¼­ ÄÚ¾î µî AI¿¡ ÃÖÀûÈ­µÈ GPU ¾ÆÅ°ÅØÃ³¸¦ Á¦°øÇϰí ÀÖ½À´Ï´Ù. ¸¦ Á¦°øÇϸç ÀÌ ºÐ¾ß¿¡¼­ Çõ½ÅÀ» À̾°í ÀÖ½À´Ï´Ù.

GPU»Ó¸¸ ¾Æ´Ï¶ó ±¸±ÛÀÇ TPU³ª ¾Æ¸¶Á¸ÀÇ Inferentia Ĩ°ú °°Àº ¸ÂÃãÇü ½Ç¸®Äܵµ Ŭ¶ó¿ìµå ±â¹Ý Ãß·Ð ÀÛ¾÷ÀÇ ¼º´É ÇѰ踦 ¶Ù¾î³Ñ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ASIC´Â ÃÖÀûÈ­µÈ ¿ÍÆ®´ç 󸮷® ºñÀ²°ú ÃÖ¼ÒÀÇ ·¹ÀÌÅϽø¦ Á¦°øÇÏ¿© ÇÏÀÌÆÛ½ºÄÉÀÏ ¼öÁØÀÇ AI ¿öÅ©·Îµå¸¦ Áö¿øÇϸç, FPGA´Â ±¸¼ºÀÌ °¡´ÉÇÏ°í ¼º´É°ú À¯¿¬¼ºÀÇ ±ÕÇüÀÌ Àß ÀâÇô ÀÖ¾î Àú·¹ÀÌÅϽà ¿§Áö Ã߷аú ÇÁ·ÎÅäŸÀÌÇο¡ ÀûÇÕÇÕ´Ï´Ù. ÇÁ·ÎÅäŸÀÌÇο¡ ÀûÇÕÇÏ¿© Àα⸦ ²ø°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Àΰ£ÀÇ ³ú¿¡¼­ ¿µ°¨À» ¾òÀº ´º·Î¸ðÇÈ ÄÄÇ»ÆÃ ¾ÆÅ°ÅØÃ³¿Í ºûÀ» °è»ê¿¡ Ȱ¿ëÇÏ´Â Æ÷Åä´Ð ĨÀº ÃÊÀúÀü·Â ¼Òºñ¿Í ºü¸¥ AI ½ÇÇàÀ» À§ÇØ ¿¬±¸µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀ¸·Î AI Çϵå¿þ¾î°¡ ¿öÅ©·Îµå¿¡ ƯȭµÈ °¡¼ÓÈ­¸¦ ½ÇÇöÇÏ´Â À̱âÁ¾ ÄÄÇ»ÆÃ Ç÷§ÆûÀÌ Åº»ýÇϸ鼭 Çϵå¿þ¾î Á¤ÀÇ Áö´ÉÀÇ »õ·Î¿î ½Ã´ë°¡ µµ·¡Çϰí ÀÖ½À´Ï´Ù.

AI ÃÖÀûÈ­ Çϵå¿þ¾î¿¡ ´ëÇÑ ¼ö¿ä´Â ¾îµð·Î È®´ëµÉ °ÍÀ̸ç, ¾î¶² ÃÖÁ¾»ç¿ëÀÚ ºÎ¹®ÀÌ Ã¤ÅÃÀ» ÁÖµµÇÒ °ÍÀΰ¡?

AI¿¡ ÃÖÀûÈ­µÈ Çϵå¿þ¾î¿¡ ´ëÇÑ ¼ö¿ä´Â Ŭ¶ó¿ìµå µ¥ÀÌÅͼ¾ÅÍ, ÀÚÀ² ½Ã½ºÅÛ, ¸ð¹ÙÀÏ µð¹ÙÀ̽º, ¿§Áö ÀÎÇÁ¶ó¿¡¼­ ºü¸£°Ô Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ºÏ¹Ì´Â ±¸±Û, ¾Æ¸¶Á¸, ¸¶ÀÌÅ©·Î¼ÒÇÁÆ®, ¸ÞŸ µî ÇÏÀÌÆÛ½ºÄÉÀÏ Å¬¶ó¿ìµå Á¦°ø¾÷üµéÀÇ ´ë±Ô¸ð ÅõÀÚ°¡ ÁÖµµÇÏ¸ç ¼¼°è ½ÃÀåÀ» ¼±µµÇϰí ÀÖ½À´Ï´Ù. ÀÌµé ±â¾÷Àº ¹æ´ëÇÑ ÇнÀ ¿öÅ©·Îµå, ´ë±Ô¸ð ¾ð¾î ¸ðµ¨, ¸ÖƼ¸ð´Þ Ãß·ÐÀ» ´ë±Ô¸ð·Î ó¸®ÇÏ´Â AI Àü¿ë ĨÀ» °³¹ßÇϰųª Á¶´ÞÇϰí ÀÖ½À´Ï´Ù. Áß±¹, Çѱ¹, ´ë¸¸À» Áß½ÉÀ¸·Î ÇÑ À¯·´°ú ¾Æ½Ã¾ÆÅÂÆò¾çµµ ±¹°¡ AI Àü·«, ¹ÝµµÃ¼ ÀÚ±Þ·ü Çâ»ó ÀÌ´Ï¼ÅÆ¼ºê, ½º¸¶Æ® Á¦Á¶ ÇÁ·Î±×·¥À» ÅëÇØ AI Çϵå¿þ¾î äÅÃÀ» È®´ëÇϰí ÀÖ½À´Ï´Ù.

AI ĨÀÌ ÀÚÀ²ÁÖÇà ½Ã½ºÅÛ, ADAS(÷´Ü ¿îÀüÀÚ º¸Á¶ ½Ã½ºÅÛ), Â÷·®¿ë ÀÎÆ÷Å×ÀÎ¸ÕÆ®¸¦ ±¸µ¿ÇÏ´Â ÀÚµ¿Â÷, AI ÇÁ·Î¼¼¼­°¡ ½Ç½Ã°£ ÀÇ·á ¿µ»ó, Áø´Ü, ¿ø°Ý ȯÀÚ ¸ð´ÏÅ͸µÀ» °¡´ÉÇÏ°Ô ÇÏ´Â ÇコÄɾî, ¿§Áö AI ĨÀÌ ·Îº¿°øÇÐ, ¿¹Áö, À¯Áöº¸¼ö, ½Ã°¢Àû ¸ð´ÏÅ͸µÀ» Áö¿øÇÏ´Â »ê¾÷ ÀÚµ¿È­ µîÀÌ ÀÖ½À´Ï´Ù. À¯Áöº¸¼ö, À°¾È °Ë»ç¸¦ Áö¿øÇÏ´Â »ê¾÷ ÀÚµ¿È­ µîÀÌ ÀÖ½À´Ï´Ù. °¡Àü¾÷üµéÀº AI °¡¼Ó±â¸¦ ½º¸¶Æ®Æù, ¿þ¾î·¯ºí ±â±â, ½º¸¶Æ®È¨ ±â±â¿¡ žÀçÇÏ¿© À½¼º ÀνÄ, ¾ó±¼ÀνÄ, »óȲº° ÄÄÇ»ÆÃÀ» °­È­Çϰí ÀÖ½À´Ï´Ù. ±º»ç ¹× Ç×°ø¿ìÁÖ ºÐ¾ß¿¡¼­µµ °¨½Ã, »óȲ ÀνÄ, ÀÚÀ² ÀÓ¹« °èȹÀ» À§ÇØ ¾ÈÀüÇÏ°í ¹Ì¼Ç Å©¸®Æ¼ÄÃÇÑ AI Çϵå¿þ¾î¸¦ Ȱ¿ëÇϰí ÀÖÀ¸¸ç, AI »ç¿ë »ç·Ê°¡ ´Ù¾çÇØÁü¿¡ µû¶ó Áß¾ÓÁýÁß½Ä ÈÆ·Ã¿¡¼­ ºÐ»êÇü ½Ç½Ã°£ Ãß·ÐÀ¸·Î ¼ö¿ä°¡ À̵¿Çϸ鼭 ¿§Áö AI Çϵå¿þ¾îÀÇ °­·ÂÇÑ ¼ºÀåÀ» °ßÀÎÇϰí ÀÖ½À´Ï´Ù. Çϵå¿þ¾îÀÇ °­·ÂÇÑ ¼ºÀåÀ» °ßÀÎÇϰí ÀÖ½À´Ï´Ù.

AI Çϵå¿þ¾î ½ÃÀåÀÇ ¼¼°è È®´ë ¿øµ¿·ÂÀº?

Çϵå¿þ¾î ÀΰøÁö´É(AI) ½ÃÀåÀÇ ¼ºÀåÀº AI ¾ÖÇø®ÄÉÀ̼ÇÀÇ ±Þ°ÝÇÑ ¼ºÀå, ¿§Áö¿¡¼­ÀÇ ½Ç½Ã°£ Ã߷п¡ ´ëÇÑ ¼ö¿ä, ¹ÝµµÃ¼ Á¦Á¶ÀÇ ¹ßÀü µî ¸î °¡Áö Áý¾àÀûÀÎ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ÁÖ¿ä ÃËÁø¿äÀÎÀº »ý¼ºÇü AI, ¸ÖƼ¸ð´Þ ¸ðµ¨, °­È­ÇнÀ ½Ã½ºÅÛ µî AI ¸ðµ¨ÀÇ ±Ô¸ð¿Í °íµµÈ­°¡ È®´ëµÇ°í ÀÖÀ¸¸ç, ÀÌ·¯ÇÑ ¸ðµ¨Àº È¿À²ÀûÀÎ ÇнÀ°ú ¹èÆ÷¸¦ À§ÇØ Á¡Á¡ ´õ °­·ÂÇÑ Çϵå¿þ¾î¸¦ ÇÊ¿ä·Î ÇÕ´Ï´Ù. ½º¸¶Æ® ¸ð´ÏÅ͸µ ¹× ¿¹Ãø ºÐ¼®¿¡¼­ ÀÚÀ²ÁÖÇà¿¡ À̸£±â±îÁö ¿§Áö ÄÄÇ»ÆÃ°ú Áö¿¬¿¡ ¹Î°¨ÇÑ ¾ÖÇø®ÄÉÀ̼ÇÀÇ ºÎ»óÀ¸·Î ¿Âµð¹ÙÀ̽º Ãß·ÐÀÌ °¡´ÉÇÑ ¼ÒÇüÀÇ Àü·Â È¿À²ÀûÀÎ AI Ĩ¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù.

¹ÝµµÃ¼ ÁÖ±ÇÀ» ´Þ¼ºÇϱâ À§ÇÑ Á¤ºÎ Àڱݰú Àü·«Àû ÆÄÆ®³Ê½ÊÀº ƯÈ÷ ¹Ì±¹, Áß±¹, EU¿¡¼­ AI Ĩ °³¹ß ¿¬±¸ °³¹ßÀ» ´õ¿í °­È­Çϰí ÀÖÀ¸¸ç, AI¿Í 5G, IoT, ·Îº¿ °øÇÐÀÇ À¶ÇÕÀ¸·Î Ŭ¶ó¿ìµå¿¡¼­ ¿§Áö ¾ÆÅ°ÅØÃ³±îÁö È®Àå °¡´ÉÇÑ ¼öÁ÷ ÅëÇÕÇü Çϵå¿þ¾î ¹× ¼ÒÇÁÆ®¿þ¾î ½ºÅÃÀÇ Çʿ伺ÀÌ ´ëµÎµÇ°í ÀÖ½À´Ï´Ù. Çϵå¿þ¾î-¼ÒÇÁÆ®¿þ¾î ½ºÅÃÀÇ Çʿ伺ÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¿ÀÇ Çϵå¿þ¾î »ýŰè¿Í ¸ðµâÇü ¾×¼¿·¯·¹ÀÌÅÍÀÇ »ó¾÷Àû Ȱ¼ºÈ­·Î ½ºÅ¸Æ®¾÷, ¿¬±¸ÀÚ, Æ´»õ AI °³¹ßÀÚµéÀÇ Á¢±Ù¼ºÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù. Çϵå¿þ¾î°¡ AI Çõ½ÅÀÇ º´¸ñ Çö»ó°ú ÃËÁøÁ¦ ¿ªÇÒÀ» µ¿½Ã¿¡ ´ã´çÇÏ°Ô µÇ¸é¼­ Àü·«Àû ¹®Á¦°¡ ´ëµÎµÇ°í ÀÖ½À´Ï´Ù. ¼¼°è AI Çϵå¿þ¾î »ýŰ谡 Á¢±Ù¼º, Áö¼Ó°¡´É¼º, »óÈ£¿î¿ë¼ºÀ» ÈѼÕÇÏÁö ¾ÊÀ¸¸é¼­ ³»ÀÏÀÇ AI ±â¹Ý °æÁ¦°¡ ¿ä±¸ÇÏ´Â ¿¬»ê ´É·Â°ú È¿À²¼ºÀ» ÃæÁ·½Ãų ¼ö ÀÖÀ»±î?

ºÎ¹®

Çϵå¿þ¾î(AI ÇÁ·Î¼¼¼­, AI ¾×¼¿·¯·¹ÀÌÅÍ, AI Ĩ, AI ´ëÀÀ ¼­¹ö), ÃÖÁ¾»ç¿ë(IT¡¤Åë½Å, Á¦Á¶, ¼Ò¸Å, ÀÚµ¿Â÷, ÇコÄɾî, ±âŸ ÃÖÁ¾»ç¿ë)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê(ÃÑ 42°³»ç)

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶ °ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ÀÎÀ§ÀûÀÎ ¸ÅÃâ¿ø°¡ Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»ç¿¡ ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

Global Industry Analysts´Â ¼¼°è ÁÖ¿ä ¼ö¼® ÀÌÄÚ³ë¹Ì½ºÆ®(1,4,949¸í), ½ÌÅ©ÅÊÅ©(62°³ ±â°ü), ¹«¿ª ¹× »ê¾÷ ´Üü(171°³ ±â°ü)ÀÇ Àü¹®°¡µéÀÇ ÀǰßÀ» ¸é¹ÐÈ÷ °ËÅäÇÏ¿© »ýŰ迡 ¹ÌÄ¡´Â ¿µÇâÀ» Æò°¡ÇÏ°í »õ·Î¿î ½ÃÀå Çö½Ç¿¡ ´ëÀÀÇϰí ÀÖ½À´Ï´Ù. ¸ðµç ÁÖ¿ä ±¹°¡ÀÇ Àü¹®°¡¿Í °æÁ¦ÇÐÀÚµéÀÌ °ü¼¼¿Í ±×°ÍÀÌ ÀÚ±¹¿¡ ¹ÌÄ¡´Â ¿µÇâ¿¡ ´ëÇÑ ÀǰßÀ» ÃßÀû Á¶»çÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀÌ·¯ÇÑ È¥¶õÀÌ ÇâÈÄ 2-3°³¿ù ³»¿¡ ¸¶¹«¸®µÇ°í »õ·Î¿î ¼¼°è Áú¼­°¡ º¸´Ù ¸íÈ®ÇÏ°Ô È®¸³µÉ °ÍÀ¸·Î ¿¹»óÇϰí ÀÖÀ¸¸ç, Global Industry Analysts´Â ÀÌ·¯ÇÑ »óȲÀ» ½Ç½Ã°£À¸·Î ÃßÀûÇϰí ÀÖ½À´Ï´Ù.

2025³â 4¿ù : Çù»ó ´Ü°è

À̹ø 4¿ù º¸°í¼­¿¡¼­´Â °ü¼¼°¡ ¼¼°è ½ÃÀå Àüü¿¡ ¹ÌÄ¡´Â ¿µÇâ°ú Áö¿ªº° ½ÃÀå Á¶Á¤¿¡ ´ëÇØ ¼Ò°³ÇÕ´Ï´Ù. ´ç»çÀÇ ¿¹ÃøÀº °ú°Å µ¥ÀÌÅÍ¿Í ÁøÈ­ÇÏ´Â ½ÃÀå ¿µÇâ¿äÀÎÀ» ±â¹ÝÀ¸·Î ÇÕ´Ï´Ù.

2025³â 7¿ù : ÃÖÁ¾ °ü¼¼ Àç¼³Á¤

°í°´´Ôµé²²´Â °¢ ±¹°¡º° ÃÖÁ¾ ¸®¼ÂÀÌ ¹ßÇ¥µÈ ÈÄ 7¿ù¿¡ ¹«·á ¾÷µ¥ÀÌÆ® ¹öÀüÀ» Á¦°øÇØ µå¸³´Ï´Ù. ÃÖÁ¾ ¾÷µ¥ÀÌÆ® ¹öÀü¿¡´Â ¸íÈ®ÇÏ°Ô Á¤ÀÇµÈ °ü¼¼ ¿µÇ⠺м®ÀÌ Æ÷ÇԵǾî ÀÖ½À´Ï´Ù.

»óÈ£ ¹× ¾çÀÚ °£ ¹«¿ª°ú °ü¼¼ÀÇ ¿µÇ⠺м®:

¹Ì±¹ <> Áß±¹ <> ¸ß½ÃÄÚ <> ij³ª´Ù <> EU <> ÀϺ» <> Àεµ <> ±âŸ 176°³±¹

¾÷°è ÃÖ°íÀÇ ÀÌÄÚ³ë¹Ì½ºÆ® : Global Industry AnalystsÀÇ Áö½Ä ±â¹ÝÀº ±¹°¡, ½ÌÅ©ÅÊÅ©, ¹«¿ª ¹× »ê¾÷ ´Üü, ´ë±â¾÷, ±×¸®°í ¼¼°è °è·® °æÁ¦ »óȲÀÇ Àü·Ê ¾ø´Â ÆÐ·¯´ÙÀÓ ÀüȯÀÇ ¿µÇâÀ» °øÀ¯ÇÏ´Â ºÐ¾ßº° Àü¹®°¡ µî °¡Àå ¿µÇâ·Â ÀÖ´Â ¼ö¼® ÀÌÄÚ³ë¹Ì½ºÆ®¸¦ Æ÷ÇÔÇÑ 14,949¸íÀÇ ÀÌÄÚ³ë¹Ì½ºÆ®¸¦ ÃßÀûÇϰí ÀÖ½À´Ï´Ù. 16,491°³ ÀÌ»óÀÇ º¸°í¼­ ´ëºÎºÐ¿¡ ¸¶ÀϽºÅæ¿¡ ±â¹ÝÇÑ 2´Ü°è Ãâ½Ã ÀÏÁ¤ÀÌ Àû¿ëµÇ¾î ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSM
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Artificial Intelligence in Hardware Market to Reach US$137.2 Billion by 2030

The global market for Artificial Intelligence in Hardware estimated at US$54.6 Billion in the year 2024, is expected to reach US$137.2 Billion by 2030, growing at a CAGR of 16.6% over the analysis period 2024-2030. AI Processors, one of the segments analyzed in the report, is expected to record a 14.2% CAGR and reach US$56.6 Billion by the end of the analysis period. Growth in the AI Accelerators segment is estimated at 18.8% CAGR over the analysis period.

The U.S. Market is Estimated at US$16.0 Billion While China is Forecast to Grow at 15.9% CAGR

The Artificial Intelligence in Hardware market in the U.S. is estimated at US$16.0 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$23.9 Billion by the year 2030 trailing a CAGR of 15.9% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 15.1% and 14.7% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 12.5% CAGR.

Global Artificial Intelligence in Hardware Market - Key Trends & Drivers Summarized

Why Is Hardware Innovation Critical to Unlocking the Full Potential of Artificial Intelligence?

Artificial Intelligence (AI) hardware is emerging as a foundational pillar in enabling the widespread deployment and acceleration of AI workloads across industries. As AI models become more complex, compute-intensive, and data-hungry, traditional hardware architectures-especially general-purpose CPUs-are no longer sufficient to handle real-time processing, inference, and training tasks efficiently. This has spurred the development and adoption of specialized AI-optimized hardware, including graphics processing units (GPUs), tensor processing units (TPUs), field-programmable gate arrays (FPGAs), application-specific integrated circuits (ASICs), and edge AI processors. These technologies are purpose-built to deliver the parallel processing, low latency, and high throughput essential for next-generation AI applications such as computer vision, deep learning, natural language processing, and autonomous systems.

AI hardware is now seen as a strategic enabler not just for data centers, but for edge devices, robotics, IoT platforms, and high-performance computing environments. Cloud service providers, semiconductor firms, and hyperscale enterprises are investing heavily in custom AI chips to improve energy efficiency, accelerate AI training cycles, and reduce total cost of ownership. As AI penetrates sectors such as automotive, healthcare, defense, and industrial automation, demand for AI hardware that balances performance, power efficiency, and scalability is rising sharply-positioning this segment as a linchpin of the global AI ecosystem.

How Are Hardware Architectures Evolving to Meet AI-Specific Computational Demands?

To support rapidly evolving AI workloads, hardware architectures are undergoing a paradigm shift from general-purpose processing to domain-specific acceleration. GPUs, originally designed for rendering graphics, have become the workhorse for AI training due to their massive parallel processing capabilities. Nvidia, AMD, and Intel continue to innovate in this space with AI-optimized GPU architectures featuring higher memory bandwidth, software stack integration (CUDA, ROCm), and tensor cores specifically tailored for matrix multiplications critical in deep learning.

Beyond GPUs, custom silicon such as Google’s TPUs and Amazon’s Inferentia chips are pushing performance boundaries for cloud-based inference tasks. These ASICs offer optimized throughput-per-watt ratios and minimal latency, addressing AI workloads at hyperscale levels. FPGAs are gaining traction for their configurability and balance between performance and flexibility, making them suitable for low-latency edge inference and prototyping. Moreover, neuromorphic computing architectures, inspired by the human brain, and photonic chips leveraging light for computation are being explored for ultra-low-power and high-speed AI execution. These innovations are giving rise to heterogeneous computing platforms where AI hardware is purpose-built for workload-specific acceleration-ushering in a new era of hardware-defined intelligence.

Where Is Demand for AI-Optimized Hardware Growing and Which End-Use Segments Are Leading Adoption?

Demand for AI-optimized hardware is growing rapidly across cloud data centers, autonomous systems, mobile devices, and edge infrastructure. North America leads the global market, driven by massive investments from hyperscale cloud providers such as Google, Amazon, Microsoft, and Meta. These companies are developing or procuring AI-specific chips to handle enormous training workloads, large language models, and multimodal inference at scale. Europe and Asia-Pacific-particularly China, South Korea, and Taiwan-are also expanding AI hardware adoption through national AI strategies, semiconductor self-sufficiency initiatives, and smart manufacturing programs.

Industries leading adoption include automotive, where AI chips power autonomous driving systems, advanced driver assistance systems (ADAS), and in-vehicle infotainment; healthcare, where AI processors enable real-time medical imaging, diagnostics, and remote patient monitoring; and industrial automation, where edge AI chips support robotics, predictive maintenance, and visual inspection. Consumer electronics companies are integrating AI accelerators into smartphones, wearables, and smart home devices to enhance voice recognition, facial authentication, and contextual computing. Military and aerospace sectors are also leveraging secure, mission-critical AI hardware for surveillance, situational awareness, and autonomous mission planning. As AI use cases diversify, demand is shifting from centralized training to decentralized, real-time inference, driving strong growth in edge AI hardware.

What Is Fueling the Global Expansion of the AI in Hardware Market?

The growth in the artificial intelligence in hardware market is driven by several converging factors, including the exponential growth of AI applications, demand for real-time inference at the edge, and advancements in semiconductor fabrication. A major driver is the expanding scale and sophistication of AI models-such as generative AI, multimodal models, and reinforcement learning systems-that require increasingly powerful hardware to train and deploy efficiently. The rise of edge computing and latency-sensitive applications-ranging from smart surveillance and predictive analytics to autonomous mobility-is creating robust demand for compact, power-efficient AI chips capable of on-device inference.

Government funding and strategic partnerships aimed at achieving semiconductor sovereignty are further bolstering R&D in AI chip development, particularly in the U.S., China, and the EU. The convergence of AI with 5G, IoT, and robotics is amplifying the need for vertically integrated hardware-software stacks that can scale across cloud-to-edge architectures. Additionally, the commercial push toward open hardware ecosystems and modular accelerators is expanding accessibility for startups, researchers, and niche AI developers. As hardware becomes the bottleneck and enabler of AI innovation simultaneously, a strategic question emerges: Can the global AI hardware ecosystem keep pace with the computational and efficiency demands of tomorrow’s AI-driven economies without compromising accessibility, sustainability, and interoperability?

SCOPE OF STUDY:

The report analyzes the Artificial Intelligence in Hardware market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Hardware (AI Processors, AI Accelerators, AI Chips, AI-enabled Servers); End-Use (IT & Telecommunications, Manufacturing, Retail, Automotive, Healthcare, Other End-Uses)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 42 Featured) -

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by artificially increasing the COGS, reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

We are diligently following expert opinions of leading Chief Economists (14,949), Think Tanks (62), Trade & Industry bodies (171) worldwide, as they assess impact and address new market realities for their ecosystems. Experts and economists from every major country are tracked for their opinions on tariffs and how they will impact their countries.

We expect this chaos to play out over the next 2-3 months and a new world order is established with more clarity. We are tracking these developments on a real time basis.

As we release this report, U.S. Trade Representatives are pushing their counterparts in 183 countries for an early closure to bilateral tariff negotiations. Most of the major trading partners also have initiated trade agreements with other key trading nations, outside of those in the works with the United States. We are tracking such secondary fallouts as supply chains shift.

To our valued clients, we say, we have your back. We will present a simplified market reassessment by incorporating these changes!

APRIL 2025: NEGOTIATION PHASE

Our April release addresses the impact of tariffs on the overall global market and presents market adjustments by geography. Our trajectories are based on historic data and evolving market impacting factors.

JULY 2025 FINAL TARIFF RESET

Complimentary Update: Our clients will also receive a complimentary update in July after a final reset is announced between nations. The final updated version incorporates clearly defined Tariff Impact Analyses.

Reciprocal and Bilateral Trade & Tariff Impact Analyses:

USA <> CHINA <> MEXICO <> CANADA <> EU <> JAPAN <> INDIA <> 176 OTHER COUNTRIES.

Leading Economists - Our knowledge base tracks 14,949 economists including a select group of most influential Chief Economists of nations, think tanks, trade and industry bodies, big enterprises, and domain experts who are sharing views on the fallout of this unprecedented paradigm shift in the global econometric landscape. Most of our 16,491+ reports have incorporated this two-stage release schedule based on milestones.

COMPLIMENTARY PREVIEW

Contact your sales agent to request an online 300+ page complimentary preview of this research project. Our preview will present full stack sources, and validated domain expert data transcripts. Deep dive into our interactive data-driven online platform.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â