¼¼°èÀÇ ¼¶À¯ ¹èÅ͸® ½ÃÀå
Fiber Batteries
»óǰÄÚµå : 1733536
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 05¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 478 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,015,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,045,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¶À¯ ¹èÅ͸® ¼¼°è ½ÃÀåÀº 2030³â±îÁö 2¾ï 8,670¸¸ ´Þ·¯¿¡ À̸¦ Àü¸Á

2024³â¿¡ 1¾ï 720¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¶À¯ ¹èÅ͸® ¼¼°è ½ÃÀåÀº ºÐ¼® ±â°£2024-2030³â¿¡ CAGR 17.8%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 2¾ï 8,670¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ¹Ú¸· ¹èÅ͸®´Â CAGR 18.5%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 1¾ï 7,310¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÇÁ¸°Æ® ¹èÅ͸® ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£Áß CAGR 15.9%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 2,920¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 24.3%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ¼¶À¯ ¹èÅ͸® ½ÃÀåÀº 2024³â¿¡ 2,920¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ 2024-2030³â°£ CAGR 24.3%·Î ¼ºÀåÀ» Áö¼ÓÇÏ¿©, 2030³â¿¡´Â ¿¹Ãø ½ÃÀå ±Ô¸ð 6,660¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î¼­´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 14.1%¿Í 15.9%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 14.9%·Î Àü¸ÁµË´Ï´Ù.

¼¼°èÀÇ ¼¶À¯ ¹èÅ͸® ½ÃÀå-ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

¼¶À¯ ¹èÅ͸®°¡ ¿¡³ÊÁö ÀúÀå ½ÃÀå¿¡ Çõ¸íÀ» °¡Á®¿Ã ¼ö ÀÖ´Â ÀÌÀ¯´Â ¹«¾ùÀϱî?

À¯¿¬ÇÏ°í °¡º­¿î ½Ç°ú °°Àº ¿¡³ÊÁö ÀúÀå ÀåÄ¡ÀÎ ¼¶À¯ ¹èÅ͸®´Â Àü ¼¼°è ¹èÅ͸® ±â¼ú ºÐ¾ß¿¡¼­ ȹ±âÀûÀÎ Çõ½ÅÀ¸·Î ºü¸£°Ô ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ±æ°í ½ÅÃ༺ ÀÖ´Â ¼¶À¯³ª ½Ç ÇüÅ·Π¼³°èµÈ ÀÌ ¹èÅ͸®´Â Á÷¹°¿¡ Á÷Á¢ Á÷Á¶Çϰųª Ç÷º¼­ºí ÀÏ·ºÆ®·Î´Ð½º¿¡ ¸Å²ô·´°Ô ÅëÇÕÇÒ ¼ö ÀÖ¾î ±âÁ¸ÀÇ µüµüÇÑ ¹èÅ͸®°¡ ½Ç¿ëÀûÀÌÁö ¾ÊÀº ÀÀ¿ë ºÐ¾ß¿¡ Å« °¡´É¼ºÀ» Á¦°øÇÕ´Ï´Ù. ¿þ¾î·¯ºí ÀÏ·ºÆ®·Î´Ð½º, ½º¸¶Æ® ¼¶À¯, Ç÷º¼­ºí ¼ÒºñÀÚ ±â±â°¡ ´ëÁßÈ­µÊ¿¡ µû¶ó ÀÌ·¯ÇÑ Æû ÆÑÅÍ¿¡ ÀûÇÕÇÑ ¿¡³ÊÁö ¼Ö·ç¼Ç¿¡ ´ëÇÑ Çʿ伺ÀÌ Á¡Á¡ ´õ Ä¿Áö°í ÀÖ½À´Ï´Ù. ¼¶À¯ ¹èÅ͸®´Â ±¸ºÎ¸®°í, ºñƲ°í, ´Ã¿©µµ ¾ÈÁ¤ÀûÀÎ Àü±â È­ÇÐÀû ¼º´ÉÀ» À¯ÁöÇÒ ¼ö Àֱ⠶§¹®¿¡ ÀÇ·ù, »ýüÀÇÇÐ ¼¾¼­, Á¢ÀÌ½Ä ÀåÄ¡¿¡ ³»ÀåÇϱ⿡ ÀûÇÕÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±â´É¼ºÀº Â÷¼¼´ë ¿þ¾î·¯ºí ¹× IoT(»ç¹°ÀÎÅͳÝ) ½Ã½ºÅÛ ¼³°è¿¡ Çõ¸íÀ» °¡Á®¿Ã °ÍÀ̸ç, Àü¿øÀÌ ¿ÜºÎ ºÎǰÀÌ ¾Æ´Ñ Á¦Ç° ±¸Á¶ÀÇ ÀϺΰ¡ µÉ ¼ö ÀÖµµ·Ï ÇØÁÝ´Ï´Ù. ź¼Ò³ª³ëÆ©ºê, ±×·¡ÇÉ, Àüµµ¼º Æú¸®¸Ó µî ³ª³ë¼ÒÀçÀÇ ¹ßÀüÀ¸·Î °í¿¡³ÊÁö ¹Ðµµ, °æ·®È­, °í¼Ó Ãæ¹æÀü »çÀÌŬÀÌ °¡´ÉÇØÁ³½À´Ï´Ù. Áö¼Ó°¡´É¼ºÀÌ ¼ÒºñÀÚ ÀüÀÚÁ¦Ç°ÀÇ Áß¿äÇÑ °ü½É»ç°¡ µÇ°í ÀÖ´Â °¡¿îµ¥, ¼¶À¯ ¹èÅ͸®´Â º¸´Ù ģȯ°æÀûÀÎ Á¦Á¶ ¹æ¹ý°ú Àç·áÀÇ °¡´É¼ºÀ» Á¦°øÇÔÀ¸·Î½á ±× ¸Å·ÂÀ» ´õ¿í ³ôÀ̰í ÀÖ½À´Ï´Ù. ½ÃÀåÀº ¾ÆÁ÷ Ãʱ⠼ºÀå ´Ü°è¿¡ ÀÖÁö¸¸, ÷´Ü ±â¼ú ºÐ¾ß ¼ö¿ä·Î ÀÎÇØ ¼¶À¯ ¹èÅ͸®°¡ ¿¹»óº¸´Ù ºü¸£°Ô ½ÇÇè½Ç¿¡¼­ ÁÖ·ù »ý»êÀ¸·Î ÁøÀÔÇÒ ¼ö ÀÖ´Â °­·ÂÇÑ ¸ð¸àÅÒÀÌ Çü¼ºµÇ°í ÀÖ½À´Ï´Ù.

Àç·á °úÇаú °øÇÐÀÇ Çõ½ÅÀº ¾î¶»°Ô ¼¶À¯ ¹èÅ͸®ÀÇ ¼º´ÉÀ» °ßÀÎÇϰí Àִ°¡?

ÃÖ±Ù Àç·á °úÇаú ¼¶À¯ °øÇÐÀÇ ¹ßÀüÀº ¼¶À¯ ¹èÅ͸®°¡ ½ÇÁ¦ ÀÀ¿ë ºÐ¾ß¿¡¼­ ½ÇÇö °¡´É¼ºÀ» ³ôÀÌ´Â µ¥ ÇÙ½ÉÀûÀÎ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹èÅ͸®´Â Á¾Á¾ ¸®Æ¬ ÄÚ¹ßÆ® »êÈ­¹°À̳ª ÀÌ»êÈ­¸Á°£°ú °°Àº Ȱ¼º Àü±Ø Àç·á·Î ÄÚÆÃµÈ À¯¿¬ÇÑ ÀüÇØÁú°ú º¸È£ ¿ÜÇÇ¿¡ ³»ÀåµÈ °íÀüµµ¼º ¼¶À¯¿¡ ÀÇÁ¸ÇÕ´Ï´Ù. ¿¡³ÊÁö ÀúÀå°ú Àüµµ¼º ¹× ±¸Á¶Àû ¹«°á¼ºÀ» °áÇÕÇÒ ¼ö ÀÖ´Â ´Ù±â´É º¹ÇÕ ¼¶À¯ÀÇ °³¹ßÀº Å« µ¹ÆÄ±¸ Áß ÇϳªÀÔ´Ï´Ù. ¿¬±¸ÁøÀº ÇöÀç ½À½Ä ¹æÀû, Àü±â ¹æ»ç, µ¿Ãà ¾ÐÃâ µîÀÇ ±â¼úÀ» »ç¿ëÇÏ¿© ¾ç±Ø°ú À½±Ø Àç·á¸¦ µ¿½É¿ø Ãþ¿¡ ÀúÀåÇÏ´Â ¼¶À¯¸¦ ¸¸µé¾î µ¶¸³ÀûÀ̰í È¿À²ÀûÀÎ ¹èÅ͸® À¯´ÖÀ» ½ÇÇöÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, °íü ÀüÇØÁú Çõ½ÅÀº ¾×ü ±â¹Ý ½Ã½ºÅÛ°ú °ü·ÃµÈ ÀÎÈ­¼º ¹× ´©Ãâ À§ÇèÀ» ÁÙÀ̰í, ¿þ¾î·¯ºí ¹× ÇǺΠÁ¢ÃË ¿ëµµÀÇ ¾ÈÀü¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù. ¼¶À¯ Á¦Ç°¿¡ ÅëÇÕÇϱâ À§ÇØ ÇʼöÀûÀÎ ³»±¸¼º°ú ¼¼Ã´¼ºÀº ½À±â, ¸¶Âû ¹× ȯ°æÀû ½ºÆ®·¹½º·ÎºÎÅÍ ¹èÅ͸®¸¦ º¸È£Çϴ ĸ½¶È­ ±â¼ú ¹× º¸È£ Æú¸®¸Ó¸¦ ÅëÇØ ÇØ°áµË´Ï´Ù. ¶ÇÇÑ, ·ÑÅõ·Ñ °¡°ø ¹× ÀÚµ¿ ÆíÁ÷ ±â¼ú µî ´ë·® »ý»êÀ» Áö¿øÇÏ´Â È®Àå °¡´ÉÇÑ Á¦Á¶ ¹æ¹ýµµ ¹ßÀüÇϰí ÀÖ½À´Ï´Ù. ¿¬±¸ °³¹ß ¹× ½Å»ý ±â¾÷Àº ¼¶À¯ Á¦Á¶¾÷ü¿Í Àû±ØÀûÀ¸·Î Çù·ÂÇÏ¿© ¿¡³ÊÁö ÀúÀå ¼¶À¯¸¦ ÅëÇÕÇÑ ÇÁ·ÎÅäŸÀÔ ÀÇ·ù¸¦ °³¹ßÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼ÒÀç Çõ½ÅÀ» ÅëÇØ ¼¶À¯ ¹èÅ͸®´Â ½ÇÇèÀûÀÎ ÇÁ·ÎÅäŸÀÔ¿¡¼­ ¿¡³ÊÁö ÅëÇÕ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ´ëÀÀÇÒ ¼ö ÀÖ´Â °í¼º´ÉÀÇ »ó¾÷ÀûÀ¸·Î ½ÇÇà °¡´ÉÇÑ ¼Ö·ç¼ÇÀ¸·Î º¯¸ðÇϰí ÀÖ½À´Ï´Ù.

½ÅÈï ¿ëµµ°ú ½º¸¶Æ® »ýŰè´Â ½ÃÀå ¼ºÀå¿¡ ¾î¶² ¿ªÇÒÀ» ÇÒ °ÍÀΰ¡?

¼¶À¯ ¹èÅ͸®´Â ¿þ¾î·¯ºí, ÇコÄɾî, ±¹¹æ, ¼ÒºñÀÚ ÀüÀÚÁ¦Ç°°ú °°Àº ½ÅÈï ¿ëµµ°úÀÇ È£È¯¼ºÀ¸·Î ÀÎÇØ °ü·Ã¼ºÀÌ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. °¡Àå À¯¸ÁÇÑ ºÐ¾ß Áß Çϳª´Â ¿þ¾î·¯ºí °Ç°­ ±â¼ú·Î, ÀǺ¹¿¡ ³»ÀåµÈ ¼¾¼­¸¦ ÅëÇÑ Áö¼ÓÀûÀÎ »ýü ÀÎ½Ä ¸ð´ÏÅ͸µ¿¡´Â ½Å·ÚÇÒ ¼ö ÀÖ°í À¯¿¬ÇÑ Àü¿ø °ø±ÞÀÌ ÇÊ¿äÇÕ´Ï´Ù. ¼¶À¯ ¹èÅ͸®´Â Æí¾ÈÇÔÀ» À¯ÁöÇϸ鼭 ÇÊ¿äÇÑ Àü·Â ¹Ðµµ¸¦ Á¦°øÇÏ°í ½É¹Ú¼ö, ¼öºÐ º¸Ãæ, ü¿Â, ½Åü Ȱµ¿À» 24½Ã°£ ÃßÀûÇÒ ¼ö ÀÖ½À´Ï´Ù. ½ºÆ÷Ã÷ ¹× ÇÇÆ®´Ï½º »ê¾÷¿¡¼­ ¿¡³ÊÁö ÀúÀå ¼¶À¯´Â µ¥ÀÌÅÍ ÀúÀå, °¡½Ã¼ºÀ» À§ÇÑ Á¶¸í, ³»ÀåµÈ ¹ß¿­Ã¼¿¡ Àü·ÂÀ» °ø±ÞÇÒ ¼ö ÀÖ´Â ½º¸¶Æ® ÀÇ·ùÀÇ »õ·Î¿î °¡´É¼ºÀ» ¿­¾îÁÖ°í ÀÖ½À´Ï´Ù. ±¹¹æ ºÐ¾ß¿¡¼­´Â Åë½Å ½Ã½ºÅÛ, GPS ÀåÄ¡, ½Åü Âø¿ëÇü ¼¾¼­¸¦ Áö¿øÇÏ´Â ÆÄÀ̹ö ¹èÅ͸®¸¦ ÀåÂøÇÑ À¯´ÏÆûÀÌ °³¹ßµÇ°í ÀÖ½À´Ï´Ù. °¡ÀüÁ¦Ç° Á¦Á¶¾÷üµéµµ Æú´õºí ½º¸¶Æ®Æù, ½º¸¶Æ® ±Û·¡½º, ÇìµåÆùÀÇ µðÀÚÀÎÀ» °­È­Çϱâ À§ÇØ ¼¶À¯ ¹èÅ͸® ¿¬±¸¿¡ ÅõÀÚÇÏ¿© À¯¿¬¼º, °ø°£ Àý¾à, »ç¿ëÀÚ °æÇèÀÇ Çâ»óÀ» ½ÇÇöÇϰí ÀÖ½À´Ï´Ù. žçÀüÁö ¼¶À¯ ¹× ¿¡³ÊÁö ÀÌ¿ë ¼¶À¯¿Í ÅëÇÕÇÏ¿© ¾ß¿Ü¿¡¼­ ¿¬¼Ó ÃæÀüÀÌ °¡´ÉÇÏ¿© ¼¶À¯ ¹èÅ͸®ÀÇ »ç¿ë ÆíÀǼºÀ» ´õ¿í Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ÀÌ ¹èÅ͸®´Â ½º¸¶Æ® Ȩ ¹× »ê¾÷¿ë ¸ð´ÏÅ͸µ ½Ã½ºÅÛÀÇ ºÐ»êÇü ¼¾¼­ ³ëµå¿¡ Àü·ÂÀ» °ø±ÞÇÔÀ¸·Î½á ´õ ³ÐÀº IoT ȯ°æ¿¡¼­µµ Ȱ·Î¸¦ ã°í ÀÖ½À´Ï´Ù. Ä¿³ØÆ¼µå µð¹ÙÀ̽º »ýŰ谡 ¼ºÀåÇÔ¿¡ µû¶ó Á¦Ç° ÆûÆÑÅÍ¿¡ ¿¡³ÊÁö ÀúÀåÀ» ÅëÇÕÇÒ ¼ö ÀÖ´Â ´É·ÂÀÌ Àü·«Àû ÀÌÁ¡À¸·Î ÀÛ¿ëÇϰí ÀÖÀ¸¸ç, ÆÄÀ̹ö ¹èÅ͸®´Â Â÷¼¼´ë ±â¼ú ȯ°æ¿¡¼­ ¼³°è Çõ½Å°ú ¿¡³ÊÁö ÀÚÀ²¼ºÀ» ½ÇÇöÇÏ´Â Áß¿äÇÑ ¿øµ¿·ÂÀ¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

¼¶À¯ ¹èÅ͸® ¼¼°è ½ÃÀå ¼ºÀå °¡¼ÓÈ­ÀÇ ¿øµ¿·ÂÀº?

¼¼°è ¼¶À¯ ¹èÅ͸® ½ÃÀåÀÇ ¼ºÀåÀº ±â¼ú ¹ßÀü, ¼ÒºñÀÚ Çൿ, »ê¾÷ Çõ½Å, Áö¼Ó°¡´É¼º Æ®·»µå¿Í °ü·ÃµÈ ¿©·¯ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ´ëÇ¥ÀûÀÎ ¿äÀÎ Áß Çϳª´Â ¿þ¾î·¯ºí ±â¼ú ¹× ½º¸¶Æ® ¼¶À¯¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ±âÁ¸ ¹èÅ͸®´Â Å©±â, À¯¿¬¼º, ÆûÆÑÅÍ¿¡ ´ëÇÑ ¿ä±¸ »çÇ×À» ÃæÁ·½Ãų ¼ö ¾ø½À´Ï´Ù. ÇÇÆ®´Ï½º, °Ç°­ ¸ð´ÏÅ͸µ, ¿£ÅÍÅ×ÀÎ¸ÕÆ® µî º¸´Ù ½º¸¶Æ®ÇÏ°í Æí¾ÈÇÑ ¿þ¾î·¯ºí¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ¼¶À¯ ¹èÅ͸®´Â ¼ÒÇüÈ­ Ãß¼¼¿¡ ºÎÇÕÇÏ´Â ¿ì¾ÆÇÑ ¿¡³ÊÁö ¼Ö·ç¼ÇÀ» Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù. ³ª³ë±â¼ú°ú Àüµµ¼º ¼ÒÀçÀÇ ¹ßÀüÀ¸·Î ¼¶À¯ ±â¹Ý ¿¡³ÊÁö ½Ã½ºÅÛÀÇ ¼º´É°ú ½Å·Ú¼ºÀÌ Å©°Ô Çâ»óµÇ¾î ±âÁ¸ ¹Ú¸· ¹èÅ͸®¿Í ÄÚÀÎ ¼¿¿¡ ÇÊÀûÇÒ ¼ö ÀÖ´Â ¼º´ÉÀ» °®Ãß°Ô µÇ¾ú½À´Ï´Ù. ÇコÄɾ¼­ ÆÐ¼Ç¿¡ À̸£±â±îÁö ¹«¼±, ÈÞ´ë¿ë, ÀÚ°¡¹ßÀü »ýŰè·ÎÀÇ ÀüȯÀÌ ÁøÇàµÊ¿¡ µû¶ó ÀÌ¿ë »ç·ÊÀÇ ÆøÀÌ ´õ¿í ³Ð¾îÁö°í ÀÖ½À´Ï´Ù. ´ëÇÐ, ÇÏÀÌÅ×Å© ´ë±â¾÷, ¹æÀ§»ê¾÷üµéÀÇ R&D ÅõÀÚ´Â Çõ½Å Áֱ⸦ °¡¼ÓÈ­Çϰí ÀÖÀ¸¸ç, ÀÇ·ù ºê·£µå ¹× ÀÇ·á±â±â ±â¾÷°úÀÇ Á¦ÈÞ´Â ½Ç»ýȰ¿¡ Àû¿ëµÉ ¼ö ÀÖ´Â ±âȸ¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù. Áö¼Ó °¡´ÉÇÑ ¿¡³ÊÁö ÀúÀå ¹× ¾ÈÀüÇÑ ¿þ¾î·¯ºí ±â¼ú¿¡ ´ëÇÑ ±ÔÁ¦ ´ç±¹ÀÇ Áö¿øµµ »õ·Î¿î Ç¥ÁØÀ» ÁؼöÇÏ´Â ¼¶À¯ ¹èÅ͸® ÅëÇÕÀ» Ãß±¸ÇÏ´Â Á¦Á¶¾÷ü¸¦ Áö¿øÇϰí ÀÖÀ¸¸ç, ESG(ȯ°æ, »çȸ, °Å¹ö³Í½º)ÀÇ Á߿伺ÀÌ ³ô¾ÆÁü¿¡ µû¶ó ¾÷°è´Â ȯ°æ ºÎÇϰ¡ Àû°í ÀçȰ¿ëÀÌ °¡´ÉÇÏ¸ç ¾ÈÀüÇÑ ¹èÅ͸® ±â¼úÀ» äÅÃÇϰí ÀÖ½À´Ï´Ù. ÀçȰ¿ëÀÌ °¡´ÉÇϰí ȯ°æ ºÎÇϰ¡ Àû°í ¾ÈÀüÇÑ ¹èÅ͸® ±â¼úÀ» äÅÃÇϰí ÀÖÀ¸¸ç, ¼¶À¯ ¹èÅ͸®´Â ¹Ì·¡ÁöÇâÀûÀÎ Á¶´Þ Àü·«¿¡¼­ µÎµå·¯Áø °­Á¡À» ¹ßÈÖÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Ç÷º¼­ºí µð½ºÇ÷¹ÀÌ, ½º¸¶Æ® ÆÐºê¸¯, AI ±â¹Ý ¼¾¼­ÀÇ ±Þ¼ÓÇÑ ¹ßÀüÀº ¼¶À¯ ¹èÅ͸®°¡ Á¦°øÇÏ´Â ÀûÀÀÇü Àü¿øÀ» ¿ä±¸Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÃËÁø¿äÀÎÀ» Á¾ÇÕÇϸé, ¼¼°è ÆÄÀ̹ö ¹èÅ͸® ½ÃÀåÀº °­·ÂÇϰí Áö¼ÓÀûÀÎ ¼ºÀå ±Ëµµ¸¦ ±×¸®¸ç °¢ »ê¾÷ ºÐ¾ß¿¡¼­ ¿¡³ÊÁö ÀúÀå, °ø±Þ ¹× »ç¿ë ¹æ½ÄÀ» º¯È­½Ã۰í ÀÖ½À´Ï´Ù.

ºÎ¹®

À¯Çü(¹Ú¸·Çü, ÀμâÇü, ±âŸ À¯Çü), ÀçÃæÀü °¡´É¼º(1Â÷, 2Â÷), ¿ë·®(10mAh ¹Ì¸¸, 10mAh-100mAh, 100mAh ÀÌ»ó), ÃÖÁ¾ ¿ëµµ(¼ÒºñÀÚ ÀÏ·ºÆ®·Î´Ð½º, ½º¸¶Æ® Æ÷Àå, ½º¸¶Æ® Ä«µå, ÀÇ·á±â±â, ¹«¼± ¼¾¼­, ±âŸ ÃÖÁ¾ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ ¿¹(ÁÖ¿ä 43°³»ç)

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ÀÎÀ§ÀûÀÎ ¼öÀÍ¿ø°¡ Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

Global Industry Analysts´Â ¼¼°è ÁÖ¿ä ¼ö¼® ÀÌÄÚ³ë¹Ì½ºÆ®(1,4,949¸í), ½ÌÅ©ÅÊÅ©(62°³ ±â°ü), ¹«¿ª ¹× »ê¾÷ ´Üü(171°³ ±â°ü)ÀÇ Àü¹®°¡µéÀÇ ÀǰßÀ» ¸é¹ÐÈ÷ °ËÅäÇÏ¿© »ýŰ迡 ¹ÌÄ¡´Â ¿µÇâÀ» Æò°¡ÇÏ°í »õ·Î¿î ½ÃÀå Çö½Ç¿¡ ´ëÀÀÇϰí ÀÖ½À´Ï´Ù. ¸ðµç ÁÖ¿ä ±¹°¡ÀÇ Àü¹®°¡¿Í °æÁ¦ÇÐÀÚµéÀÌ °ü¼¼¿Í ±×°ÍÀÌ ÀÚ±¹¿¡ ¹ÌÄ¡´Â ¿µÇâ¿¡ ´ëÇÑ ÀǰßÀ» ÃßÀû Á¶»çÇß½À´Ï´Ù.

Global Industry Analysts´Â ÀÌ·¯ÇÑ È¥¶õÀÌ ÇâÈÄ 2-3°³¿ù ³»¿¡ ¸¶¹«¸®µÇ°í »õ·Î¿î ¼¼°è Áú¼­°¡ º¸´Ù ¸íÈ®ÇÏ°Ô È®¸³µÉ °ÍÀ¸·Î ¿¹»óÇϰí ÀÖÀ¸¸ç, Global Industry Analysts´Â ÀÌ·¯ÇÑ »óȲÀ» ½Ç½Ã°£À¸·Î ÃßÀûÇϰí ÀÖ½À´Ï´Ù.

2025³â 4¿ù: Çù»ó ´Ü°è

À̹ø 4¿ù º¸°í¼­¿¡¼­´Â °ü¼¼°¡ ¼¼°è ½ÃÀå Àüü¿¡ ¹ÌÄ¡´Â ¿µÇâ°ú Áö¿ªº° ½ÃÀå Á¶Á¤¿¡ ´ëÇØ ¼Ò°³ÇÕ´Ï´Ù. ´ç»çÀÇ ¿¹ÃøÀº °ú°Å µ¥ÀÌÅÍ¿Í ÁøÈ­ÇÏ´Â ½ÃÀå ¿µÇâ¿äÀÎÀ» ±â¹ÝÀ¸·Î ÇÕ´Ï´Ù.

2025³â 7¿ù: ÃÖÁ¾ °ü¼¼ Àç¼³Á¤

¹«·á ¾÷µ¥ÀÌÆ® °¢±¹ÀÇ ÃÖÁ¾ ¸®¼ÂÀÌ ¹ßÇ¥µÈ ÈÄ, 7¿ù¿¡ ¹«·á ¾÷µ¥ÀÌÆ® ¹öÀüÀ» °í°´´Ôµé²² Á¦°øÇØ µå¸³´Ï´Ù. ÃÖÁ¾ ¾÷µ¥ÀÌÆ® ¹öÀü¿¡´Â ¸íÈ®ÇÏ°Ô Á¤ÀÇµÈ °ü¼¼ ¿µÇ⠺м®ÀÌ Æ÷ÇԵǾî ÀÖ½À´Ï´Ù.

»óÈ£ ¹× ¾çÀÚ °£ ¹«¿ª°ú °ü¼¼ÀÇ ¿µÇ⠺м® :

¹Ì±¹ÀÇ <>& Áß±¹ <>& ¸ß½ÃÄÚ <>& ij³ª´Ù <>&EU <>& ÀϺ» <>& Àεµ <>& ±âŸ 176°³±¹

¾÷°è ÃÖ°íÀÇ ÀÌÄÚ³ë¹Ì½ºÆ®: Global Industry AnalystsÀÇ Áö½Ä ±â¹ÝÀº ±¹°¡, ½ÌÅ©ÅÊÅ©, ¹«¿ª ¹× »ê¾÷ ´Üü, ´ë±â¾÷, ±×¸®°í ¼¼°è °è·® °æÁ¦ »óȲÀÇ Àü·Ê ¾ø´Â ÆÐ·¯´ÙÀÓ ÀüȯÀÇ ¿µÇâÀ» °øÀ¯ÇÏ´Â ºÐ¾ßº° Àü¹®°¡ µî °¡Àå ¿µÇâ·Â ÀÖ´Â ¼ö¼® ÀÌÄÚ³ë¹Ì½ºÆ®¸¦ Æ÷ÇÔÇÑ 14,949¸íÀÇ ÀÌÄÚ³ë¹Ì½ºÆ®¸¦ ÃßÀûÇϰí ÀÖ½À´Ï´Ù. 16,491°³ ÀÌ»óÀÇ º¸°í¼­ ´ëºÎºÐ¿¡ ¸¶ÀϽºÅæ¿¡ ±â¹ÝÇÑ 2´Ü°è Ãâ½Ã ÀÏÁ¤ÀÌ Àû¿ëµÇ¾î ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Fiber Batteries Market to Reach US$286.7 Million by 2030

The global market for Fiber Batteries estimated at US$107.2 Million in the year 2024, is expected to reach US$286.7 Million by 2030, growing at a CAGR of 17.8% over the analysis period 2024-2030. Thin-Film Batteries, one of the segments analyzed in the report, is expected to record a 18.5% CAGR and reach US$173.1 Million by the end of the analysis period. Growth in the Printed Batteries segment is estimated at 15.9% CAGR over the analysis period.

The U.S. Market is Estimated at US$29.2 Million While China is Forecast to Grow at 24.3% CAGR

The Fiber Batteries market in the U.S. is estimated at US$29.2 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$66.6 Million by the year 2030 trailing a CAGR of 24.3% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 14.1% and 15.9% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 14.9% CAGR.

Global Fiber Batteries Market - Key Trends & Drivers Summarized

Why Are Fiber Batteries Poised to Revolutionize the Energy Storage Landscape?

Fiber batteries-flexible, lightweight, and thread-like energy storage devices-are rapidly emerging as a groundbreaking innovation in the global battery technology sector. Designed in the form of long, stretchable fibers or yarns, these batteries can be woven directly into fabrics or integrated seamlessly into flexible electronics, offering enormous potential for applications where traditional rigid batteries are impractical. As wearable electronics, smart textiles, and flexible consumer devices gain popularity, the need for energy solutions that match their form factor has become increasingly urgent. Fiber batteries are capable of maintaining stable electrochemical performance under bending, twisting, or stretching, making them ideal for integration into clothing, biomedical sensors, and foldable devices. This functionality is revolutionizing the design of next-gen wearables and IoT (Internet of Things) systems, allowing power sources to become part of the product’s structure rather than an external component. The advancement in nanomaterials, including carbon nanotubes, graphene, and conductive polymers, is enabling high energy density, low weight, and fast charge-discharge cycles in fiber batteries. With sustainability becoming a key concern in consumer electronics, fiber batteries also offer the potential for greener manufacturing methods and materials, further enhancing their appeal. The market is still in its early growth phase, but the demand from technology-forward sectors is creating a powerful momentum that could push fiber batteries from labs into mainstream production faster than anticipated.

How Are Material Science and Engineering Innovations Driving Fiber Battery Performance?

Recent advancements in materials science and textile engineering are central to the growing viability of fiber batteries in real-world applications. These batteries often rely on highly conductive fibers coated with active electrode materials, such as lithium cobalt oxide or manganese dioxide, embedded into flexible electrolytes and protective sheaths. The development of multifunctional composite fibers, capable of combining energy storage with conductivity and structural integrity, is one of the major breakthroughs. Researchers are now using techniques such as wet-spinning, electrospinning, and coaxial extrusion to create fibers that house both anode and cathode materials in concentric layers, enabling a self-contained, efficient battery unit. Innovations in solid-state electrolytes are also reducing the flammability and leakage risks associated with liquid-based systems, thereby improving safety for wearable and skin-contact applications. Durability and washability, which are essential for integration into textiles, are being addressed through encapsulation technologies and protective polymers that shield the battery from moisture, friction, and environmental stress. In addition, scalable fabrication methods are evolving to support mass production, including roll-to-roll processing and automated knitting techniques. Research labs and startups are actively collaborating with textile manufacturers to develop prototype garments embedded with energy-storing fibers, ranging from health-monitoring athletic wear to self-powered military uniforms. These material innovations are transforming fiber batteries from experimental prototypes into high-performance, commercially viable solutions ready to meet the growing demand for seamless energy integration.

What Role Do Emerging Applications and Smart Ecosystems Play in Market Growth?

Fiber batteries are experiencing a surge in relevance due to their compatibility with emerging applications across wearables, healthcare, defense, and consumer electronics. One of the most promising areas is wearable health tech, where continuous biometric monitoring through sensors embedded in clothing requires a reliable and flexible power source. Fiber batteries provide the necessary power density without compromising comfort, enabling round-the-clock tracking of heart rate, hydration, temperature, and physical activity. In the sports and fitness industry, energy-storing textiles are unlocking new opportunities for smart apparel that can store data, illuminate for visibility, or power embedded heating elements. The defense sector is another key adopter, exploring uniforms equipped with fiber batteries to support communication systems, GPS devices, and body-worn sensors, all while reducing the weight and bulk of traditional power packs. Consumer electronics companies are also investing in fiber battery research to enhance the design of foldable smartphones, smart glasses, and headphones, offering flexibility, space savings, and enhanced user experience. Integration with solar fabrics and energy-harvesting textiles further extends the usability of fiber batteries by enabling continuous charging during outdoor use. These batteries are also finding a place in the broader IoT landscape, powering distributed sensor nodes in smart homes and industrial monitoring systems. As ecosystems of connected devices grow, the ability to incorporate energy storage into product form factors becomes a strategic advantage, positioning fiber batteries as a key enabler of design innovation and energy autonomy in next-generation tech environments.

What’s Driving the Accelerated Growth of the Global Fiber Batteries Market?

The growth in the global fiber batteries market is driven by several factors linked to technological progress, consumer behavior, industrial innovation, and sustainability trends. One of the leading drivers is the exponential rise in demand for wearable technology and smart textiles, where traditional batteries fail to meet the size, flexibility, and form factor requirements. As users demand sleeker, more comfortable wearables for fitness, health monitoring, and entertainment, fiber batteries offer an elegant energy solution that aligns with miniaturization trends. Advancements in nanotechnology and conductive materials are significantly improving the performance and reliability of fiber-based energy systems, making them competitive with conventional thin-film and coin-cell batteries. The ongoing shift toward wireless, portable, and self-powered ecosystems-spanning from healthcare to fashion-further expands the range of use cases. Investment in research and development by universities, tech giants, and defense contractors is accelerating innovation cycles, while partnerships with apparel brands and medical device companies are creating real-world deployment opportunities. Regulatory support for sustainable energy storage and safe wearable technology is also encouraging manufacturers to pursue fiber battery integration in compliance with emerging standards. The growing importance of ESG (Environmental, Social, Governance) practices is pushing industries to adopt low-impact, recyclable, and safer battery technologies, giving fiber batteries a distinct edge in future-focused procurement strategies. Furthermore, the rapid evolution of flexible displays, smart fabrics, and AI-driven sensors demands an equally adaptive power source-one that fiber batteries are uniquely equipped to provide. Collectively, these drivers point to a strong, sustained growth trajectory for the global fiber batteries market, transforming how energy is stored, delivered, and experienced across industries.

SCOPE OF STUDY:

The report analyzes the Fiber Batteries market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Type (Thin-Film, Printed, Other Types); Rechargeability (Primary, Secondary); Capacity (Below 10 mAh, 10 mAh - 100 mAh, Above 100 mAh); End-Use (Consumer Electronics, Smart Packaging, Smart Cards, Medical Devices, Wireless Sensors, Other End-Uses)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 43 Featured) -

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by artificially increasing the COGS, reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

We are diligently following expert opinions of leading Chief Economists (14,949), Think Tanks (62), Trade & Industry bodies (171) worldwide, as they assess impact and address new market realities for their ecosystems. Experts and economists from every major country are tracked for their opinions on tariffs and how they will impact their countries.

We expect this chaos to play out over the next 2-3 months and a new world order is established with more clarity. We are tracking these developments on a real time basis.

As we release this report, U.S. Trade Representatives are pushing their counterparts in 183 countries for an early closure to bilateral tariff negotiations. Most of the major trading partners also have initiated trade agreements with other key trading nations, outside of those in the works with the United States. We are tracking such secondary fallouts as supply chains shift.

To our valued clients, we say, we have your back. We will present a simplified market reassessment by incorporating these changes!

APRIL 2025: NEGOTIATION PHASE

Our April release addresses the impact of tariffs on the overall global market and presents market adjustments by geography. Our trajectories are based on historic data and evolving market impacting factors.

JULY 2025 FINAL TARIFF RESET

Complimentary Update: Our clients will also receive a complimentary update in July after a final reset is announced between nations. The final updated version incorporates clearly defined Tariff Impact Analyses.

Reciprocal and Bilateral Trade & Tariff Impact Analyses:

USA <> CHINA <> MEXICO <> CANADA <> EU <> JAPAN <> INDIA <> 176 OTHER COUNTRIES.

Leading Economists - Our knowledge base tracks 14,949 economists including a select group of most influential Chief Economists of nations, think tanks, trade and industry bodies, big enterprises, and domain experts who are sharing views on the fallout of this unprecedented paradigm shift in the global econometric landscape. Most of our 16,491+ reports have incorporated this two-stage release schedule based on milestones.

COMPLIMENTARY PREVIEW

Contact your sales agent to request an online 300+ page complimentary preview of this research project. Our preview will present full stack sources, and validated domain expert data transcripts. Deep dive into our interactive data-driven online platform.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â