¼¼°èÀÇ SIP(System-in-Package) ±â¼ú ½ÃÀå
System-in-Package (SiP) Technology
»óǰÄÚµå : 1662087
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 02¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 277 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,372,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 25,117,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°è SIP(System-in-Package) ±â¼ú ½ÃÀåÀº 2030³â±îÁö 580¾ï ´Þ·¯¿¡ À̸¦ Àü¸Á

2024³â¿¡ 362¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â SIP(System-in-Package) ±â¼ú ¼¼°è ½ÃÀåÀº 2024-2030³â°£ CAGR 8.2%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 580¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ 2.5Â÷¿ø IC ÆÐŰ¡ ±â¼úÀº CAGR 8.0%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á±îÁö 272¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. 2Â÷¿ø IC ÆÐŰ¡ ±â¼ú ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 6.1%¸¦ ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 94¾ï ´Þ·¯, Áß±¹Àº CAGR 11.8%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹Ãø

¹Ì±¹ÀÇ SIP(System-in-Package) ±â¼ú ½ÃÀåÀº 2024³â¿¡ 94¾ï ´Þ·¯¿¡ À̸¥ °ÍÀ¸·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 140¾ï ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â°£ CAGRÀº 11.8%¸¦ ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î¼­´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 4.4%¿Í 7.5%¸¦ ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 5.1%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ SIP(System-in-Package) ±â¼ú ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

½Ã½ºÅÛ ÀÎ ÆÐŰÁö(SiP) ±â¼úÀº ¹ÝµµÃ¼ ¼³°è ¹× Á¦Á¶ÀÇ Áß¿äÇÑ Áøº¸¸¦ »ó¡Çϸç, ´ÜÀÏ ½Ç¸®ÄÜ Ä¨¿¡ ´õ ¸¹Àº Æ®·£Áö½ºÅ͸¦ ÁýÀûÇÏ´Â ±âÁ¸ ¹æ½Ä¿¡¼­ Àüü ½Ã½ºÅÛÀ» ÄÄÆÑÆ®ÇÑ ÆÐŰÁö¿¡ ÁýÀûÇÏ´Â º¸´Ù Á¾ÇÕÀûÀÎ Á¢±Ù ¹æ½ÄÀ¸·Î ÀüȯÇϰí ÀÖ½À´Ï´Ù. Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÀüȯÀº ¹«¾îÀÇ ¹ýÄ¢¿¡ µû¸¥ ºñ¿ë »ó½Â°ú ºÎǰÀÇ º¹À⼺ Áõ°¡¿Í °°Àº ¾÷°èÀÇ ÁÖ¿ä °úÁ¦¸¦ ÇØ°áÇϱâ À§ÇÑ °ÍÀ¸·Î, SiP ±â¼úÀº °³º° ºÎǰ ÃÖÀûÈ­ÀÇ º¹À⼺À» Ãß»óÈ­ÇÏ°í »õ·Î¿î Á¦Á¶ ±â¼ú¿¡ ´ëÇÑ Áö¼ÓÀûÀÎ ´ë±Ô¸ð ÅõÀÚ ¾øÀÌ ½Ç¸®ÄÜ ÅëÇÕÀ» À§ÇÑ ÃÖÀûÀÇ °øÁ¤À» Ȱ¿ëÇÔÀ¸·Î½á ÁýÀûȸ·ÎÀÇ »ç¿ëÀ» ´Ü¼øÈ­ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Á¢±Ù ¹æ½ÄÀº ÀüÀÚ Á¦Ç°ÀÇ ¼º´ÉÀ» Çâ»ó½Ãų »Ó¸¸ ¾Æ´Ï¶ó ±â¾÷¿¡°Ô º¸´Ù ºñ¿ë È¿À²ÀûÀÎ ¿É¼ÇÀ» Á¦°øÇÏ¿© °³¹ß Áֱ⸦ ´ÜÃàÇϰí ÃѼÒÀ¯ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ½À´Ï´Ù.

ƯÁ¤ ¿ëµµÀÇ ÁýÀûȸ·Î(ASIC)ÀÇ ¼³°è ¹× Á¦Á¶´Â ±×µ¿¾È Àü¹® ¹ÝµµÃ¼ ±â¾÷ÀÌ µ¶Á¡ÇØ ¿Ô½À´Ï´Ù. ±×·¯³ª »óȲÀº ±Þ°ÝÇÏ°Ô º¯È­Çϰí ÀÖÀ¸¸ç, ÇöÀç ÁÖ¿ä ±â¼ú ±â¾÷µéÀÌ ASIC °³¹ßÀÇ ¼±µÎ¿¡ ¼­¼­ ÀÚü SiP¸¦ »ý»êÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ SiP´Â ³»ÀåµÈ Á¦Ç°ÀÇ ÇÙ½ÉÀ̸ç, ȹ±âÀûÀÎ ±â¼ú Áøº¸¸¦ À§ÇÑ ±æÀ» ¿­¾îÁÖ°í ÀÖ½À´Ï´Ù. ±â¼ú ±â¾÷, OSAT(Outsourced Semiconductor Assembly and Test) Á¦°ø¾÷ü, ±âÆÇ ¼³°è Àü¹®°¡µéÀÌ Çù·ÂÇÏ¿© ƯÁ¤ ¿ëµµ¿¡ ¸Â´Â °íǰÁú SiP¸¦ ¸¸µé¾î Àüü ½Ã½ºÅÛ Å©±â¿Í º¹À⼺À» ÁÙÀÌ°í ¼º´ÉÀ» ÃÖÀûÈ­ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â Á¦Ç° ¼º´É Çâ»ó°ú ½ÃÀå °æÀï·Â °­È­¸¦ À§ÇØ µ¶ÀÚÀûÀÎ ºÎǰ °³¹ß ¹× ÅëÇÕÀ» À§ÇÑ ±¤¹üÀ§ÇÑ ¿òÁ÷ÀÓÀ» ¹Ý¿µÇϰí ÀÖ½À´Ï´Ù.

SiP ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¸î °¡Áö ¿äÀÎÀÌ ÀÖ½À´Ï´Ù. ½º¸¶Æ®¿öÄ¡³ª ÇÇÆ®´Ï½º Æ®·¡Ä¿¿Í °°Àº ¿þ¾î·¯ºí ±â¼ú¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ ÀÛ°í È¿À²ÀûÀÎ °íÁýÀû ½Ã½ºÅÛÀÇ Çʿ伺ÀÌ SiP ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÇ·á±â±â ±â¼úÀÇ ¹ßÀüµµ SiPÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â±â¿¡´Â ÈÞ´ë¿ë Áø´Ü ±â±â ¹× ÀÓº£µðµå ±â¼ú¿¡ ÇʼöÀûÀΠ÷´Ü ¼¾¼­¿Í ¼ÒÇü ÀüÀÚ ½Ã½ºÅÛÀÌ Á¡Á¡ ´õ ¸¹ÀÌ ³»ÀåµÇ°í Àֱ⠶§¹®ÀÔ´Ï´Ù. ½º¸¶Æ® Ȩ ±â±â, »ê¾÷¿ë IoT ¿ëµµ, ÀÚµ¿Â÷¿ë ÀÏ·ºÆ®·Î´Ð½ºÀ» Æ÷ÇÔÇÑ »ç¹°ÀÎÅͳÝ(IoT) »ýŰèÀÇ È®ÀåÀº SiP°¡ Á¦°øÇÏ´Â °í¼º´É, °ø°£ È¿À²ÀûÀΠĨ ¼Ö·ç¼ÇÀ» ÇÊ¿ä·Î ÇÕ´Ï´Ù. ¼ÒºñÀÚ ÀüÀÚ±â±â¿¡¼­´Â º¸´Ù ½º¸¶Æ®ÇÏ°í °í¼º´ÉÀÇ µð¹ÙÀ̽º°¡ ¿ä±¸µÇ°í ÀÖÀ¸¸ç, SiP·Î ±¸ÇöµÇ´Â ¼ÒÇü, ´Ù±â´É ÁýÀûȸ·ÎÀÇ °³¹ßÀÌ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, AI¿Í ¸Ó½Å·¯´× ±â¼úÀÇ ¹ßÀüÀº ¼ÒÇüÀÇ ³ôÀº ¿¬»ê ´É·ÂÀ» ÇÊ¿ä·Î Çϴµ¥, SiP´Â Á¦ÇÑµÈ °ø°£¿¡ º¹ÀâÇÑ È¸·Î¸¦ ÁýÀûÇÏ¿© À̸¦ ¿ëÀÌÇÏ°Ô Çϸç, 5G ±â¼úÀÇ Àü°³·Î ÀÎÇÑ Åë½Å ±â´ÉÀÇ °­È­µµ ÀúÀü·ÂÀ¸·Î ¼º´É°ú ÁýÀûµµ¸¦ Çâ»ó½ÃŰ´Â SiP¿¡ ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. ¸¶Áö¸·À¸·Î, SiP´Â ÀüÀÚ Æó±â¹°À» ÁÙÀÌ°í °³º° ºÎǰÀÇ ¼ö¸¦ ÃÖ¼ÒÈ­ÇÏ¿© µð¹ÙÀ̽º ¼ö¸íÀ» ¿¬ÀåÇÒ ¼ö Àֱ⠶§¹®¿¡ ȯ°æ ¹× Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ °ü½Éµµ SiPÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀº Â÷¼¼´ë ÀüÀÚ Á¦Ç° °³¹ß¿¡¼­ SiP ±â¼úÀÌ Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ °ÍÀÓÀ» µÞ¹ÞħÇÕ´Ï´Ù.

ºÎ¹®

ÆÐŰ¡ ±â¼ú(2.5-D IC, 2-D IC, 3D IC), ÆÐŰ¡ ¹æ¹ý(Çø³Ä¨, ¿ÍÀ̾µå & ´ÙÀÌÅÍÄ¡, FOWLP), ¿ëµµ(°¡Àü, Åë½Å, ÀÚµ¿Â÷, Ç×°ø¿ìÁÖ ¹× ¹æÀ§, »ê¾÷, ±âŸ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ ¿¹(ÃÑ 49°³»ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global System-in-Package (SiP) Technology Market to Reach US$58.0 Billion by 2030

The global market for System-in-Package (SiP) Technology estimated at US$36.2 Billion in the year 2024, is expected to reach US$58.0 Billion by 2030, growing at a CAGR of 8.2% over the analysis period 2024-2030. 2.5-D IC Packaging Technology, one of the segments analyzed in the report, is expected to record a 8.0% CAGR and reach US$27.2 Billion by the end of the analysis period. Growth in the 2-D IC Packaging Technology segment is estimated at 6.1% CAGR over the analysis period.

The U.S. Market is Estimated at US$9.4 Billion While China is Forecast to Grow at 11.8% CAGR

The System-in-Package (SiP) Technology market in the U.S. is estimated at US$9.4 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$14.0 Billion by the year 2030 trailing a CAGR of 11.8% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 4.4% and 7.5% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 5.1% CAGR.

Global System-in-Package (SiP) Technology Market - Key Trends and Drivers Summarized

System-in-Package (SiP) technology represents a significant advancement in semiconductor design and manufacturing, moving beyond the traditional focus on integrating more transistors into a single silicon chip to a more holistic approach of integrating entire systems into compact packages. This shift addresses key industry challenges such as the escalating costs associated with Moore's Law and the growing complexity of components. SiP technology simplifies the usage of integrated circuits by abstracting the complexities of individual component optimization and leveraging the best processes for silicon integration without continuous heavy investments in new fabrication technologies. This approach not only enhances the performance of electronic products but also provides a more cost-effective alternative for companies, enabling faster development cycles and reduced total ownership costs.

The design and manufacture of Application-Specific Integrated Circuits (ASICs) have historically been dominated by specialized semiconductor companies. However, the landscape has shifted dramatically, with major technology firms now spearheading ASIC development to produce proprietary SiPs. These SiPs are central to the products in which they are embedded, paving the way for groundbreaking technological advancements. The collaboration among technology firms, Outsourced Semiconductor Assembly and Test (OSAT) providers, and substrate design specialists has led to the creation of high-quality SiPs tailored to specific applications, optimizing performance while reducing the size and complexity of the overall system. This trend reflects a broader move towards proprietary component development and integration, aimed at enhancing product performance and competitive edge in the market.

Several key drivers are fueling the growth of the SiP market. The surge in consumer interest in wearable technology, such as smartwatches and fitness trackers, fuels the demand for SiPs due to their need for compact, efficient, and highly integrated systems. Advancements in medical device technology also drive SiP adoption, as these devices increasingly incorporate advanced sensors and miniature electronic systems, essential for portable diagnostic devices and implantable technology. The expansion of the Internet of Things (IoT) ecosystem, including smart home devices, industrial IoT applications, and automotive electronics, requires high-performance, space-efficient chip solutions that SiPs uniquely offer. Consumer electronics demand sleeker, more powerful devices, necessitating the development of compact, multifunctional integrated circuits enabled by SiPs. Furthermore, the progress in AI and machine learning technologies requires high computational power in small dimensions, which SiPs facilitate by integrating complex circuitry within constrained spaces. Enhanced telecommunication capabilities with the rollout of 5G technology also rely on SiPs for improved performance and integration at lower power consumption. Lastly, environmental and sustainability concerns drive the adoption of SiPs, as they reduce electronic waste and enhance device longevity by minimizing the number of separate components needed. These factors collectively underscore the critical role of SiP technology in the next generation of electronic product development.

SCOPE OF STUDY:

The report analyzes the System-in-Package (SiP) Technology market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Packaging Technology (2.5-D IC, 2-D IC, 3-D IC); Packaging Method (Flip Chip, Wire Bond & Die Attach, FOWLP); Application (Consumer Electronics, Telecommunications, Automotive, Aerospace & Defense, Industrial, Other Applications)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 49 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â