¼¼°èÀÇ Àü±âÀÚµ¿Â÷¿ë Åë½Å Á¦¾î±â ½ÃÀå
Electric Vehicle Communication Controllers
»óǰÄÚµå : 1659399
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 02¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 93 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,301,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,905,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ Àü±âÀÚµ¿Â÷¿ë Åë½Å Á¦¾î±â ½ÃÀåÀº 2030³â±îÁö 24¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 4¾ï 5,130¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ Àü±âÀÚµ¿Â÷¿ë Åë½Å Á¦¾î±â ½ÃÀåÀº 2024-2030³âÀÇ ºÐ¼® ±â°£¿¡ CAGR 31.9%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 24¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ Â÷·® ±â¹Ý Åë½Å ÄÁÆ®·Ñ·¯´Â CAGR 31.0%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 14¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. °ø±Þ Àåºñ Åë½Å ÄÁÆ®·Ñ·¯(SECC) ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 33.3%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 1¾ï 3,420¸¸ ´Þ·¯, Áß±¹Àº CAGR 30.7%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ Àü±âÀÚµ¿Â÷¿ë Åë½Å Á¦¾î±â ½ÃÀåÀº 2024³â¿¡ 1¾ï 3,420¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2024-2030³âÀÇ ºÐ¼® ±â°£¿¡ CAGR 30.7%·Î ÃßÀÌÇϸç, 2030³â¿¡´Â ¿¹Ãø ½ÃÀå ±Ô¸ð 3¾ï 5,400¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 28.1%¿Í 26.9%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 22.0%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°è Àü±âÀÚµ¿Â÷ Åë½Å Á¦¾î±â ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ Á¤¸®

Àü±âÀÚµ¿Â÷¿ë Åë½Å Á¦¾î±â¶õ ¹«¾ùÀ̸ç, ¿Ö Àü±âÀÚµ¿Â÷ »ýŰ迡 ÇʼöÀûÀΰ¡?

Àü±âÀÚµ¿Â÷ Åë½Å Á¦¾î Àåºñ(EVCC)´Â Àü±âÀÚµ¿Â÷(EV) ÀÎÇÁ¶óÀÇ ÇÙ½É ÄÄÆ÷³ÍÆ®·Î Àü±âÀÚµ¿Â÷¿Í ÃæÀü¼Ò °£ÀÇ ¿øÈ°ÇÑ Åë½ÅÀ» ÃËÁøÇϸç, EVCCÀÇ ÁÖ¿ä ±â´ÉÀº ¾ÈÀüÇϰí È¿À²ÀûÀÎ ÃæÀüÀ» º¸ÀåÇϱâ À§ÇØ Àü±âÀÚµ¿Â÷ ¹èÅ͸® °ü¸® ½Ã½ºÅÛ°ú ¿ÜºÎ ÃæÀü ÀÎÇÁ¶ó °£ÀÇ µ¥ÀÌÅÍ ¹× ½ÅÈ£ ±³È¯À» °ü¸®ÇÏ´Â °ÍÀÔ´Ï´Ù. ÀÌ Åë½Å ÇÁ·Î¼¼½º´Â ÃæÀü »óÅÂ(SOC), ÃæÀü ¼Óµµ, ¿¡³ÊÁö °ü¸®, ½Ã½ºÅÛ Áø´Ü°ú °°Àº Áß¿äÇÑ ¿ä¼Ò¸¦ °áÁ¤ÇÏ´Â µ¥ ÇʼöÀûÀ̸ç, ÀÌ´Â ¸ðµÎ ÃæÀü ÁßÀÎ Â÷·®ÀÇ ¼º´ÉÀ» ÃÖÀûÈ­ÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. Æ÷ÀÎÆ® ÇÁ·ÎÅäÄÝ)¿Í °°Àº ´Ù¾çÇÑ Åë½Å Ç¥ÁØ ¹× ÇÁ·ÎÅäÄÝÀ» Áö¿øÇÏ¿© ¼­·Î ´Ù¸¥ Â÷·® Á¦Á¶¾÷ü ¹× ÃæÀü±â Á¦Á¶¾÷ü °£ÀÇ È£È¯¼ºÀ» º¸ÀåÇÕ´Ï´Ù.

±¤¹üÀ§ÇÑ Àü±âÀÚµ¿Â÷ »ýŰ迡¼­ EVCCÀÇ Á߿伺Àº ¾Æ¹«¸® °­Á¶Çصµ Áö³ªÄ¡Áö ¾Ê½À´Ï´Ù. Àü±âÀÚµ¿Â÷ ÃæÀü ÀÎÇÁ¶óÀÇ ±Þ¼ÓÇÑ È®Àå¿¡ µû¶ó Â÷·®°ú ÃæÀü±â °£ÀÇ Áö´ÉÇü Åë½ÅÀ» ÃËÁøÇÏ´Â ´É·ÂÀº ¿¡³ÊÁö »ç¿ëÀ» ÃÖÀûÈ­Çϰí, ±×¸®µåÀÇ ¾ÈÁ¤¼ºÀ» º¸ÀåÇϸç, Àü¹ÝÀûÀÎ »ç¿ëÀÚ °æÇèÀ» Çâ»ó½ÃŰ´Â µ¥ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ÀÌ ±â¼úÀº EV°¡ ±×¸®µå¿¡¼­ Àü·ÂÀ» ²ø¾î¿Ã »Ó¸¸ ¾Æ´Ï¶ó ±×¸®µå¿¡ ¿¡³ÊÁö¸¦ °ø±ÞÇÒ ¼ö ÀÖ´Â ¾ç¹æÇâ ÃæÀü(Vehicle-to-Grid(V2G) ±â¼úÀ̶ó°íµµ ÇÔ)°ú °°Àº °í±Þ ±â´ÉÀ» ±¸ÇöÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ¾ÈÀüÇÏ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â ÃæÀü °æÇèÀ» º¸ÀåÇÏ´Â EVCCÀÇ ¿ªÇÒÀº Á¡Á¡ ´õ Áß¿äÇØÁú °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

±â¼úÀÇ ¹ßÀü°ú ½º¸¶Æ® ÃæÀü ¼Ö·ç¼ÇÀº ¾î¶»°Ô ½ÃÀåÀ» Çü¼ºÇϰí Àִ°¡?

Àü±âÀÚµ¿Â÷ Åë½Å Á¦¾î ÀåºñÀÇ ±â¼ú ¹ßÀüÀº ´õ ½º¸¶Æ®Çϰí, ´õ ºü¸£°í, ´õ ¾ÈÀüÇÑ ÃæÀü ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä¿¡ ÈûÀÔ¾î ºü¸£°Ô ¹ßÀüÇϰí ÀÖ½À´Ï´Ù. °¡Àå Áß¿äÇÑ µ¿Çâ Áß Çϳª´Â ½Ç½Ã°£ µ¥ÀÌÅ͸¦ ±â¹ÝÀ¸·Î ¿¡³ÊÁö ¼Òºñ¸¦ º¸´Ù ÃÖÀûÈ­ÇÒ ¼ö ÀÖ´Â ½º¸¶Æ® ÃæÀü ±â¼úÀÇ °³¹ßÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ½º¸¶Æ® ½Ã½ºÅÛÀº EVCC¸¦ Ŭ¶ó¿ìµå ±â¹Ý Ç÷§Æû°ú ÅëÇÕÇÏ¿© Â÷·®, ÃæÀü¼Ò, ¿¡³ÊÁö ±×¸®µå °£ÀÇ Åë½ÅÀ» °¡´ÉÇÏ°Ô Çϰí, ÃæÀü ½Ã°£ °ü¸®, Àü·Â ¼ö¿ä¿¡ µû¸¥ ÃæÀü ¼Óµµ Á¶Á¤, ¿ÀÇÁ ÇÇÅ© ½Ã°£´ë ÃæÀü ÀÌ¿ëÀ» ÅëÇÑ »ç¿ëÀÚ ºñ¿ë ÃÖÀûÈ­¸¦ ½ÇÇöÇÕ´Ï´Ù. ½ÇÇöÇÕ´Ï´Ù. ÀΰøÁö´É(AI)°ú ¸Ó½Å·¯´×(ML)À» EVCC¿¡ ÅëÇÕÇÔÀ¸·Î½á ¿¹Ãø ºÐ¼®µµ °¡´ÉÇØÁ® ½Ã½ºÅÛÀÌ »ç¿ëÀÚÀÇ ¿ä±¸¸¦ ¿¹ÃøÇϰí ÃæÀü Áֱ⸦ È¿À²ÀûÀ¸·Î ÃÖÀûÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù.

¶Ç ´Ù¸¥ Áß¿äÇÑ ±â¼úÀû Áøº¸´Â EVCC°¡ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÏ´Â ¾ç¹æÇâ ÃæÀü ½Ã½ºÅÛÀÇ µµÀÔÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛ¿¡¼­´Â Â÷·®¿¡ ÃæÀüÇÏ´Â °Í ¿Ü¿¡µµ Â÷·®¿¡¼­ Àü·Â¸ÁÀ¸·Î Àü·ÂÀ» Àü¼ÛÇϰųª °¡Á¤À¸·Î Àü·ÂÀ» Àü¼ÛÇÒ ¼ö ÀÖÀ¸¸ç, V2H(Vehicle-to-Home) ¶Ç´Â V2G(Vehicle-to-Grid)·Î ¾Ë·ÁÁø °³³äÀÔ´Ï´Ù. ÀÌ ±â¼ú Çõ½ÅÀº Àü±âÀÚµ¿Â÷ ¼ÒÀ¯ÀÚ¿¡°Ô »õ·Î¿î ¼öÀÔ¿øÀ» Á¦°øÇÒ »Ó¸¸ ¾Æ´Ï¶ó Àü·Â ¼ö¿ä ÇÇÅ©½Ã À׿© Àü·ÂÀ» °ø±ÞÇÔÀ¸·Î½á Àü·Â¸Á ¾ÈÁ¤È­¿¡ ±â¿©ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ Ãʰí¼Ó ¹× °íÃâ·Â ÃæÀü¼Ò(¿¹: 350kW ÀÌ»ó)ÀÇ ÃßÁøÀÌ °­È­µÊ¿¡ µû¶ó EVCC´Â ÀÌ·¯ÇÑ °íÃâ·Â ¼öÁØ¿¡ ´ëÀÀÇÒ ¼ö ÀÖµµ·Ï ÁøÈ­Çϰí ÀÖÀ¸¸ç, Åë½Å ÇÁ·ÎÅäÄÝÀÌ ¾ÈÀü¼ºÀ» ¼Õ»ó½ÃŰÁö ¾Ê°í Áõ°¡ÇÏ´Â ¿¡³ÊÁö È帧À» °ü¸®ÇÒ ¼ö ÀÖµµ·Ï º¸ÀåÇϰí ÀÖ½À´Ï´Ù.

EV Åë½Å ÄÁÆ®·Ñ·¯ ½ÃÀåÀÇ ÁÖ¿ä ±â¾÷°ú ±× µ¿Çâ

LGÀ̳ëÅØ, Áö¸à½º AG, ABB, ·Î¹öÆ® º¸½¬(Robert Bosch GmbH), Å×½½¶ó(Tesla) µî ¿©·¯ ÁÖ¿ä ±â¾÷ÀÌ ¼¼°è EV Åë½Å ÄÁÆ®·Ñ·¯ ½ÃÀåÀ» µ¶Á¡Çϰí ÀÖ½À´Ï´Ù. ÀÌµé ¾÷°è ¼±µÎÁÖÀÚµéÀº Àü±âÀÚµ¿Â÷¿Í ÃæÀü¼Ò °£ ÷´Ü Åë½Å ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ´ëÀÀÇϱâ À§ÇØ Áö¼ÓÀûÀ¸·Î Çõ½ÅÀ» °ÅµìÇϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î Áö¸à½º¿Í ABB´Â EVCC¿Í ½º¸¶Æ® ±×¸®µå ±â¼úÀ» ÅëÇÕÇÏ¿© ½Ã½ºÅÛÀÇ ³»°áÇÔ¼ºÀ» ³ôÀÌ°í º¯µ¿ÇÏ´Â ¿¡³ÊÁö ¼ö¿ä¿¡ ´ëÇÑ ÀûÀÀ¼ºÀ» ³ôÀÌ´Â µ¥ ÁÖ·ÂÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÌµé ±â¾÷Àº V2G ¹× V2H ±â¼ú¿¡ ÁýÁß ÅõÀÚÇÏ¿© Àü·Â¸Á Àü¹Ý¿¡ °ÉÃÄ ¿¡³ÊÁö ºÐ¹è ¹× »ç¿ë ¹æ½ÄÀ» º¯È­½Ãų °ÍÀ» ¾à¼ÓÇϰí ÀÖ½À´Ï´Ù.

ÇÑÆí, Å×½½¶ó´Â ÀÚü ½´ÆÛÂ÷Àú ³×Æ®¿öÅ©·Î À¯¸íÇϸç, °íµµ·Î Àü¹®È­µÈ Åë½Å ÄÁÆ®·Ñ·¯¸¦ ÅëÇØ ÀÚµ¿Â÷¸¦ ºü¸£°í È¿À²ÀûÀ¸·Î ÃæÀüÇÏ´Â °ÍÀ¸·Î À¯¸íÇÕ´Ï´Ù. Â÷·®¿¡¼­ ÃæÀü ÀÎÇÁ¶ó±îÁö ÅëÇÕµÈ »ýŰ踦 ±¸ÃàÇÏ´Â µ¥ ÁÖ·ÂÇϰí ÀÖ´Â Å×½½¶ó´Â ¿øÈ°ÇÑ ÃæÀü °æÇèÀ» Á¦°øÇÏ´Â EVCCÀÇ Á߿伺À» °­Á¶Çϰí ÀÖÀ¸¸ç, LGÀ̳ëÅØ°ú °°Àº ´Ù¸¥ ±â¾÷Àº ¿©·¯ Àü±âÀÚµ¿Â÷ ¸ðµ¨°ú ÃæÀü ½Ã½ºÅÛÀÇ È£È¯¼ºÀ» º¸ÀåÇÏ´Â °í±Þ Åë½Å ÇÁ·ÎÅäÄÝ °³¹ß¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. »ç¿ëÀÚ °æÇèÀ» °³¼±Çϰí Àü±âÀÚµ¿Â÷ º¸±ÞÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¸¹Àº Á¦Á¶¾÷üµéÀÌ ÇÏÀÌÅ×Å© ±â¾÷°úÀÇ Á¦ÈÞ ¹× Çù·ÂÀ» ÅëÇØ ¼ÒÇÁÆ®¿þ¾î ±â´ÉÀ» °³¼±Çϰí EV »ç¿ëÀÚ¸¦ À§ÇØ º¸´Ù Áö´ÉÀûÀÌ°í ¿¬°áµÈ ½Ã½ºÅÛÀ» ±¸ÃàÇϱâ À§ÇØ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù.

Àü±âÀÚµ¿Â÷¿ë Åë½Å Á¦¾î±â ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

Àü±âÀÚµ¿Â÷¿ë Åë½Å Á¦¾î±â ½ÃÀåÀÇ ¼ºÀåÀº Àü±âÀÚµ¿Â÷ÀÇ ±Þ¼ÓÇÑ º¸±Þ°ú ÃæÀü ÀÎÇÁ¶óÀÇ È®´ë µî ¿©·¯ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ¼¼°è °¢±¹ Á¤ºÎ´Â Àü±âÀÚµ¿Â÷¿¡ ´ëÇÑ Àμ¾Æ¼ºê, ¼¼±Ý ȯ±Þ, ¾ö°ÝÇÑ ¹è±â°¡½º ±ÔÁ¦ µîÀ» ÅëÇØ Àü±âÀÚµ¿Â÷¸¦ Àû±Ø Àå·ÁÇϰí ÀÖÀ¸¸ç, ÀÌ¿¡ µû¶ó ÃæÀü ÀÎÇÁ¶ó¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ¿© EVCC ½ÃÀåµµ È®´ëµÇ°í ÀÖ½À´Ï´Ù. Àü±âÀÚµ¿Â÷ ÆÇ¸Å Áõ°¡´Â È¿À²ÀûÀÌ°í ¾ÈÀüÇÑ ÃæÀü ¼Ö·ç¼ÇÀÇ Çʿ伺°ú ÇÔ²² °ø°ø ¹× ¹Î°£ ÃæÀü¼Ò¿¡ Åë½Å ÄÁÆ®·Ñ·¯ÀÇ º¸±ÞÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ EVCC°¡ ¼­·Î ´Ù¸¥ Àü±âÀÚµ¿Â÷ ¸ðµ¨°ú ÃæÀü Ç¥ÁØ °£ÀÇ È£È¯¼ºÀ» º¸ÀåÇϱâ À§ÇØ Àüü ÃæÀü ³×Æ®¿öÅ©ÀÇ »óÈ£¿î¿ë¼º ¹× Ç¥ÁØÈ­¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡Çϰí ÀÖ´Â °Íµµ Áß¿äÇÑ ÃËÁø¿äÀÎÀÔ´Ï´Ù.

V2G ¹× V2H¿Í °°Àº ±×¸®µå ÅëÇÕ ±â¼úÀÇ Á߿伺ÀÌ Áõ°¡Çϰí ÀÖ´Â °Íµµ Áß¿äÇÑ ÃËÁø¿äÀÎÀ̸ç, ÀÌ´Â °¡±î¿î ¹Ì·¡¿¡ ¿¡³ÊÁö °ü¸® ½Ã½ºÅÛ¿¡¼­ Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. Àü ¼¼°è ¿¡³ÊÁö ±×¸®µå°¡ dz·Â ¹× ž籤°ú °°Àº Àç»ý ¿¡³ÊÁö¿øÀ¸·Î ÀüȯµÊ¿¡ µû¶ó EV°¡ À̵¿½Ä ¿¡³ÊÁö ÀúÀå Àåºñ·Î ±â´ÉÇÒ ¼ö ÀÖ´Â ´É·ÂÀÌ Á¡Á¡ ´õ Áß¿äÇØÁö°í ÀÖÀ¸¸ç, EVCC´Â ÀÌ·¯ÇÑ ¾ç¹æÇâ ¿¡³ÊÁö È帧À» °¡´ÉÇÏ°Ô ÇÏ¿© ¹Ì·¡ÀÇ ¿¡³ÊÁö »ýŰ迡 ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ °ÍÀÔ´Ï´Ù. ¹Ì·¡ÀÇ ¿¡³ÊÁö »ýŰ迡 ¸Å¿ì Áß¿äÇÑ Á¸Àç°¡ µÉ °ÍÀÔ´Ï´Ù. ¶ÇÇÑ °íÃâ·Â ÃæÀü ¼Ö·ç¼ÇÀÇ °³¹ßÀº EVCC Á¦Á¶¾÷ü°¡ Ãʰí¼Ó ÃæÀü ¼Óµµ¸¦ Áö¿øÇÏ´Â ÄÁÆ®·Ñ·¯¸¦ °³¹ßÇÒ ¼ö ÀÖ´Â ±âȸ¸¦ Á¦°øÇÏ¿© ÃæÀü ½Ã°£À» ´ÜÃàÇÏ°í ¼ÒºñÀÚ¿¡°Ô ´õ Æí¸®ÇÑ Àü±âÀÚµ¿Â÷¸¦ Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù. ¸¶Áö¸·À¸·Î ÃæÀü ½Ã½ºÅÛÀÇ µðÁöÅÐÈ­°¡ ÁøÇàµÊ¿¡ µû¶ó »çÀ̹ö º¸¾È¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ ¾ÈÀüÇÑ Åë½ÅÀ» º¸ÀåÇϰí ÃæÀü ÇÁ·Î¼¼½º Áß µ¥ÀÌÅÍ À¯Ãâ ¹× ½Ã½ºÅÛ ¿ÀÀÛµ¿À» ¹æÁöÇÒ ¼ö ÀÖ´Â °í±Þ EVCC¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

ºÎ¹®

½Ã½ºÅÛ Àü¸Á(Â÷·® ±â¹Ý Åë½Å ÄÁÆ®·Ñ·¯, °ø±ÞÀåºñ Åë½Å ÄÁÆ®·Ñ·¯(SECC)), ÃæÀü À¯Çü(À¯¼±, ¹«¼±), Àü±âÀÚµ¿Â÷ À¯Çü(Ç÷¯±×ÀÎ ÇÏÀ̺긮µå, ¹èÅ͸®), ÃÖÁ¾ ¿ëµµ(½Â¿ëÂ÷, »ó¿ëÂ÷)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹(ÃÑ 42°Ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Electric Vehicle Communication Controllers Market to Reach US$2.4 Billion by 2030

The global market for Electric Vehicle Communication Controllers estimated at US$451.3 Million in the year 2024, is expected to reach US$2.4 Billion by 2030, growing at a CAGR of 31.9% over the analysis period 2024-2030. Vehicle-based Communication Controller, one of the segments analyzed in the report, is expected to record a 31.0% CAGR and reach US$1.4 Billion by the end of the analysis period. Growth in the Supply Equipment Communication Controller (SECC) segment is estimated at 33.3% CAGR over the analysis period.

The U.S. Market is Estimated at US$134.2 Million While China is Forecast to Grow at 30.7% CAGR

The Electric Vehicle Communication Controllers market in the U.S. is estimated at US$134.2 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$354.0 Million by the year 2030 trailing a CAGR of 30.7% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 28.1% and 26.9% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 22.0% CAGR.

Global Electric Vehicle Communication Controllers Market – Key Trends & Drivers Summarized

What Are Electric Vehicle Communication Controllers and Why Are They Essential in the EV Ecosystem?

Electric Vehicle Communication Controllers (EVCCs) are crucial components in the infrastructure of electric vehicles (EVs), facilitating seamless communication between the electric vehicle and the charging station. The primary function of an EVCC is to manage the exchange of data and signals between the EV’s battery management system and the external charging infrastructure to ensure safe and efficient charging. This communication process is vital for determining critical factors such as the state of charge (SOC), charging speed, energy management, and system diagnostics, all of which are essential for optimizing the performance of the vehicle during charging. EVCCs support various communication standards and protocols like ISO 15118, CHAdeMO, and OCPP (Open Charge Point Protocol), ensuring compatibility across different vehicle and charger manufacturers.

In the broader EV ecosystem, the importance of EVCCs cannot be overstated. With the rapid expansion of electric vehicle charging infrastructure, the ability to facilitate intelligent communication between vehicles and chargers is crucial for optimizing energy use, ensuring grid stability, and improving the overall user experience. This technology allows for advanced features such as bidirectional charging, also known as Vehicle-to-Grid (V2G) technology, where EVs can not only draw power from the grid but also supply energy back to it. As the adoption of EVs continues to grow globally, the role of EVCCs in ensuring efficient, secure, and reliable charging experiences will become increasingly vital.

How Are Technological Advancements and Smart Charging Solutions Shaping the Market?

Technological advancements in electric vehicle communication controllers are rapidly evolving, driven by the demand for smarter, faster, and more secure charging solutions. One of the most significant trends is the development of smart charging technologies, which allow for better optimization of energy consumption based on real-time data. These smart systems integrate EVCCs with cloud-based platforms, enabling communication between the vehicle, charging station, and energy grid to manage charging times, adjust charging speeds based on electricity demand, and even optimize costs for users by utilizing off-peak hours for charging. The integration of artificial intelligence (AI) and machine learning (ML) into EVCCs is also enabling predictive analytics, allowing systems to anticipate user needs and optimize charging cycles for efficiency.

Another critical technological advancement is the implementation of bidirectional charging systems, where EVCCs play a pivotal role. In addition to charging the vehicle, these systems allow for the vehicle to send power back to the grid or to power homes, a concept known as Vehicle-to-Home (V2H) and Vehicle-to-Grid (V2G). This innovation not only provides an additional source of revenue for EV owners but also contributes to grid stability by supplying excess power during peak demand times. Furthermore, as the push for ultra-fast and high-power charging stations (such as 350 kW or more) intensifies, EVCCs are evolving to handle these higher power levels, ensuring that communication protocols are capable of managing the increased energy flow without compromising safety.

Who Are the Key Players in the EV Communication Controllers Market and How Are They Innovating?

Several major players are dominating the global EV communication controllers market, including companies like LG Innotek, Siemens AG, ABB, Robert Bosch GmbH, and Tesla. These industry leaders are continuously innovating to address the growing demand for advanced communication solutions between electric vehicles and charging stations. For instance, Siemens and ABB have been focusing heavily on integrating EVCCs with smart grid technology, making their systems more resilient and adaptable to fluctuating energy demands. These companies are also heavily invested in V2G and V2H technologies, which promise to revolutionize the way energy is distributed and utilized across the electrical grid.

Tesla, on the other hand, is known for its proprietary Supercharger network, which utilizes highly specialized communication controllers to ensure fast and efficient charging for its vehicles. The company’s focus on building an integrated ecosystem—from vehicles to charging infrastructure—highlights the importance of EVCCs in delivering a seamless charging experience. Other companies, such as LG Innotek, are investing in the development of advanced communication protocols that ensure compatibility across multiple EV models and charging systems, enhancing the user experience and promoting the widespread adoption of electric vehicles. Furthermore, many manufacturers are turning to partnerships and collaborations with tech companies to improve their software capabilities, creating more intelligent and connected systems for EV users.

What Factors Are Driving Growth in the Electric Vehicle Communication Controllers Market?

The growth in the electric vehicle communication controllers market is driven by several factors, chief among them being the rapid increase in electric vehicle adoption and the expanding charging infrastructure. Governments around the world are heavily promoting electric vehicles through incentives, tax rebates, and stringent emissions regulations, which in turn is boosting the demand for charging infrastructure, and by extension, the EVCC market. The rise in electric vehicle sales, coupled with the need for efficient and secure charging solutions, is accelerating the deployment of communication controllers in both public and private charging stations. Additionally, the growing demand for interoperability and standardization across charging networks is a significant driver, as EVCCs ensure compatibility between different EV models and charging standards.

Another key driver is the rising importance of grid integration technologies such as V2G and V2H, which are poised to play a major role in energy management systems in the near future. As energy grids around the world transition to renewable sources like wind and solar, the ability of EVs to serve as mobile energy storage units becomes increasingly important. EVCCs enable these bi-directional energy flows, making them crucial for future energy ecosystems. Furthermore, advancements in high-power charging solutions are creating opportunities for EVCC manufacturers to develop controllers that can handle ultra-fast charging speeds, reducing charging times and making electric vehicles more convenient for consumers. Lastly, the emphasis on cybersecurity, driven by the increasing digitization of charging systems, is creating demand for advanced EVCCs that can ensure secure communication and prevent data breaches or system malfunctions during the charging process.

SCOPE OF STUDY:

The report analyzes the Electric Vehicle Communication Controllers market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

System Outlook (Vehicle-based Communication Controller, Supply Equipment Communication Controller (SECC)); Charging Type (Wired, Wireless); Electric Vehicle Type (Plug-In Hybrid, Battery); End-Use (Passenger Cars, Commercial Vehicles)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 42 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â