¼¼°èÀÇ ÇÁ·Î¼¼½º ºÐ±¤ÇÐ ½ÃÀå
Process Spectroscopy
»óǰÄÚµå : 1659344
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 02¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 89 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,464,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 25,393,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ÇÁ·Î¼¼½º ºÐ±¤ÇÐ ½ÃÀåÀº 2030³â±îÁö 407¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 277¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ ÇÁ·Î¼¼½º ºÐ±¤ÇÐ ½ÃÀåÀº 2024-2030³â¿¡ CAGR 6.6%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 407¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÇÁ·Î¼¼½º ºÐ±¤ÇÐ ¸®Æ÷Æ®¿¡¼­ ºÐ¼®Çϰí ÀÖ´Â ºÎ¹®ÀÇ ÇϳªÀÎ Çϵå¿þ¾î´Â CAGR 6.0%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 262¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÇÁ·Î¼¼½º ºÐ±¤ÇмÒÇÁÆ®¿þ¾î ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 7.8%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 72¾ï ´Þ·¯, Áß±¹Àº CAGR 10.0%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹Ãø

¹Ì±¹ÀÇ ÇÁ·Î¼¼½º ºÐ±¤ÇÐ ½ÃÀåÀº 2024³â¿¡ 72¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 96¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³âÀÇ CAGRÀº 10.0%ÀÔ´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 3.2%¿Í 5.9%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 3.9%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ÇÁ·Î¼¼½º ºÐ±¤ÇÐ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

ÇÁ·Î¼¼½º ºÐ±¤ÇÐÀ̶õ ¹«¾ùÀ̸ç, ¾î¶»°Ô ¾÷°è¿¡ Çõ¸íÀ» °¡Á®¿Ã °ÍÀΰ¡?

°øÁ¤ ºÐ±¤ÇÐÀº Á¦Á¶ °øÁ¤¿¡¼­ Àç·áÀÇ È­ÇÐÀû Á¶¼º ¹× ¹°¸®Àû Ư¼ºÀ» ½Ç½Ã°£À¸·Î ºÐ¼®Çϱâ À§ÇØ »ç¿ëµÇ´Â Áß¿äÇÑ ±â¼úÀÔ´Ï´Ù. ±ÙÀû¿Ü¼± ºÐ±¤¹ý(NIR), Ǫ¸®¿¡ º¯È¯ Àû¿Ü¼± ºÐ±¤¹ý(FTIR), ¶ó¸¸ ºÐ±¤¹ý, Àڿܼ±-°¡½Ã±¤¼± ºÐ±¤¹ý(UV-Vis) µîÀÇ ºÐ±¤ ±â¼úÀ» »ç¿ëÇÏ¿© »ê¾÷°è´Â °øÁ¤ È帧À» Áß´ÜÇÏÁö ¾Ê°íµµ Àç·áÀÇ Æ¯¼º¿¡ ´ëÇÑ ÀÚ¼¼ÇÑ ÀλçÀÌÆ®À» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù. ÀÌ ÀζóÀÎ ¶Ç´Â ¾Ü¶óÀÎ °Ë»ç ±â´ÉÀ» ÅëÇØ Áï°¢ÀûÀΠǰÁú°ü¸®°¡ °¡´ÉÇÏ¿© »ý»êÀÌ ¿øÇÏ´Â »ç¾ç ³»¿¡¼­ À¯ÁöµÇµµ·Ï º¸ÀåÇÏ°í ºñ¿ëÀÌ ¸¹ÀÌ µå´Â Æó±â¹°°ú Àç°¡°øÀ» ¹æÁöÇÒ ¼ö ÀÖ½À´Ï´Ù. °øÁ¤ ºÐ±¤ÇÐÀº Á¦¾à, È­ÇÐ, ½Äǰ ¹× À½·á, ¼®À¯ ¹× °¡½º µî Á¤¹Ðµµ¿Í ¼øµµ°¡ Áß¿äÇÑ »ê¾÷¿¡¼­ ƯÈ÷ À¯¿ëÇÕ´Ï´Ù. ÀÌ·¯ÇÑ »ê¾÷¿¡¼­´Â ǰÁú ¹× ¾ÈÀü Ç¥ÁØ¿¡ ´ëÇÑ ±ÔÁ¦°¡ Á¡Á¡ ´õ ¾ö°ÝÇØÁö°í ÀÖÀ¸¸ç, ºÐ±¤ÇÐÀº ½Ã°£ÀÌ ¸¹ÀÌ ¼Ò¿äµÇ´Â ½ÇÇè½Ç ºÐ¼®ÀÇ Çʿ伺À» ÁÙÀ̸鼭 ÀϰüµÈ °íǰÁú Ãâ·ÂÀ» º¸ÀåÇÏ¿© ±ÔÁ¤À» ÁؼöÇÒ ¼ö ÀÖµµ·Ï µµ¿ÍÁÝ´Ï´Ù.

ǰÁú º¸Áõ ¿Ü¿¡µµ °øÁ¤ ºÐ±¤ÇÐÀº »ý»ê ÇöÀå¿¡¼­ ½Å¼ÓÇÑ ÀÇ»ç°áÁ¤À» ÃËÁøÇϰí È¿À²¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. °øÁ¤ ºÐ±¤ÇÐÀº ½Ç½Ã°£À¸·Î Àç·á ±¸¼º µ¥ÀÌÅ͸¦ Á¦°øÇϹǷΠÀÛ¾÷ÀÚ´Â º¯µ¿¿¡ µû¶ó °øÁ¤ ¸Å°³ º¯¼ö¸¦ Áï½Ã Á¶Á¤ÇÏ¿© ÃÖÀûÀÇ »óŸ¦ À¯ÁöÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î Á¦¾à »ê¾÷¿¡¼­´Â À¯È¿ ¼ººÐ°ú ºÎÇüÁ¦ÀÇ ½Ç½Ã°£ ¸ð´ÏÅ͸µÀÌ °¡´ÉÇÏ¿© »ý»ê ±â°£ Áß Á¤È®ÇÑ ¿ë·®À» À¯ÁöÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºü¸¥ Çǵå¹é ·çÇÁ¸¦ ÅëÇØ »ý»ê Áß´Ü ½Ã°£À» ÃÖ¼ÒÈ­Çϰí, ¼öÀ²À» °³¼±Çϸç, ǰÁú ÀúÇÏ ¾øÀÌ ¿î¿µÀ» È®ÀåÇÒ ¼ö ÀÖ½À´Ï´Ù. »ê¾÷°è°¡ Á¤È®¼º, ¼Óµµ, È¿À²¼ºÀ» ¿ì¼±½ÃÇÏ´Â °¡¿îµ¥, °øÁ¤ ºÐ±¤ÇÐÀº Àü ¼¼°è ÷´Ü Á¦Á¶ ȯ°æÀÇ ÇÙ½É ¿ä¼Ò·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù.

±â¼ú Çõ½ÅÀº ÇÁ·Î¼¼½º ºÐ±¤ÇÐ ½ÃÀåÀ» ¾î¶»°Ô Çü¼ºÇϰí Àִ°¡?

ºÐ±¤ ±â¼ú°ú µ¥ÀÌÅÍ ºÐ¼®ÀÇ ¹ßÀüÀº ÇÁ·Î¼¼½º ºÐ±¤ÇÐ ½ÃÀåÀ» ¹ßÀü½ÃÄÑ ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼­ ´õ ½±°Ô »ç¿ëÇÒ ¼ö ÀÖ°í Àû¿ëÇϱ⠽±°Ô ¸¸µé¾ú½À´Ï´Ù. ºÐ±¤ ÀåºñÀÇ ¼ÒÇüÈ­, ÈÞ´ë¿ë ¹× ÇÚµå Çïµå Àåºñ°¡ °¡´ÉÇÏ¿© Á¦Á¶ÀÇ ´Ù¾çÇÑ ´Ü°è¿¡¼­ ¸ð´ÏÅ͸µ ¹× ǰÁú º¸ÀåÀ»º¸´Ù À¯¿¬ÇÏ°Ô ¼öÇà ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î ¼ÒÇüÈ­µÈ NIR ºÐ±¤°è´Â »ý»ê ¶óÀο¡ Á÷Á¢ ÅëÇÕÇϰųª ·Îº¿ ¾Ï¿¡ ÀåÂøÇÏ¿© ¿¬¼Ó ¸ð´ÏÅ͸µÀÌ °¡´ÉÇÏ¿© ½Å¼ÓÇÑ Ç°Áú Æò°¡°¡ Áß¿äÇÑ ½Äǰ °¡°ø°ú °°Àº ¿ëµµ¿¡ Àû¿ë ¹üÀ§°¡ ³Ð¾îÁö°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¼¾¼­ÀÇ °¨µµ¿Í ½ºÆåÆ®·³ ºÐÇØ´ÉÀÇ ¹ßÀüÀ¸·Î ÃøÁ¤ÀÇ Á¤È®¼º°ú ½Å·Ú¼ºÀÌ Çâ»óµÇ¾î Àç·á Ư¼ºÀÇ ¹Ì¼¼ÇÑ º¯È­µµ °¨ÁöÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. Á¦¾à ¹× »ý¸í°øÇÐ µî ǰÁúÀÌ ±î´Ù·Î¿î ºÐ¾ß¿¡¼­´Â ÀÌ·¯ÇÑ ¼öÁØÀÇ »ó¼¼ÇÑ Á¤º¸°¡ ƯÈ÷ À¯¿ëÇÕ´Ï´Ù.

°øÁ¤ ºÐ±¤ÇÐÀº »ê¾÷¿ë »ç¹°ÀÎÅͳÝ(IIoT) ¹× ºòµ¥ÀÌÅÍ ºÐ¼®°ú ÅëÇÕµÇ¾î ½Ç½Ã°£ µ¥ÀÌÅÍ ¼öÁý, ÀúÀå ¹× ºÐ¼®ÀÌ °¡´ÉÇØÁ® ±× À¯¿ë¼ºÀÌ ´õ¿í ³ô¾ÆÁ³À¸¸ç, IIoT ¿¬°áÀ» ÅëÇØ ½Ã½ºÅÛ °£¿¡ ºÐ±¤ µ¥ÀÌÅ͸¦ °øÀ¯ÇÏ¿© »ý»ê °øÁ¤ÀÇ Àüü»óÀ» ÆÄ¾ÇÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÆÄ¾ÇÇÏ¿© ¿¹Áöº¸Àü ¹× ǰÁú°ü¸®°¡ °¡´ÉÇØÁý´Ï´Ù. ¶ÇÇÑ ¸Ó½Å·¯´× ¾Ë°í¸®ÁòÀ» ºÐ±¤ µ¥ÀÌÅÍ¿¡ Àû¿ëÇÏ¿© ÆÐÅÏÀ» °¨ÁöÇϰí ǰÁú ÆíÂ÷°¡ ¹ß»ýÇϱâ Àü¿¡ ¿¹ÃøÇÒ ¼ö ÀÖ°Ô µÊÀ¸·Î½á ±â¾÷Àº »çÀü¿¡ ¹®Á¦¸¦ ÇØ°áÇÏ°í ´Ù¿îŸÀÓÀ» ÁÙÀÏ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀº °øÁ¤ ºÐ±¤ÇÐÀÇ Á¤È®¼º°ú °ü·Ã¼ºÀ» ³ôÀÏ »Ó¸¸ ¾Æ´Ï¶ó, µ¥ÀÌÅͺ£À̽º ÀλçÀÌÆ®°¡ ¿î¿µ È¿À²¼º°ú Áö¼ÓÀûÀÎ °³¼±À» À§ÇØ Á¡Á¡ ´õ Áß¿äÇØÁö°í ÀÖ´Â ½º¸¶Æ® Á¦Á¶ ½Ã½ºÅÛ¿¡¼­ äÅÃÀ» °£¼ÒÈ­ÇÕ´Ï´Ù.

ÇÁ·Î¼¼½º ºÐ±¤ÇÐÀ» äÅÃÇÏ´Â ÀÌÀ¯

°øÁ¤ ºÐ±¤ÇÐÀº ǰÁú°ü¸®, ±ÔÁ¦ Áؼö, Áö¼Ó°¡´É¼º µîÀÇ ¿ä±¸¸¦ ÃæÁ·½Ã۱â À§ÇØ ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼­ äÅõǰí ÀÖ½À´Ï´Ù. Á¦¾à ¹× ½Äǰ°ú °°ÀÌ ±ÔÁ¦°¡ ÀÖ´Â ºÐ¾ß¿¡¼­´Â ½Ç½Ã°£ ºÐ±¤ºÐ¼®À» ÅëÇØ Á¦Ç°ÀÌ ¿ä±¸µÇ´Â »ç¾çÀ» ÃæÁ·ÇÏ´ÂÁö È®ÀÎÇÏ¿© ºñ¿ëÀÌ ¸¹ÀÌ µå´Â ¸®ÄÝ ¹× ±ÔÁ¦ ¹®Á¦ÀÇ °¡´É¼ºÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. °øÁ¤ÀÇ Áö¼ÓÀûÀÎ ¸ð´ÏÅ͸µ°ú Á¦Ç°ÀÇ Àϰü¼ºÀ» º¸ÀåÇÒ ¼ö ÀÖ´Ù´Â °ÍÀº ÀÛÀº ÆíÂ÷µµ À¯È¿¼º, ¾ÈÀü¼º ¹× ¼ÒºñÀÚ ½Å·Ú¿¡ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ´Â ÀÌ·¯ÇÑ »ê¾÷¿¡¼­ ¸Å¿ì Áß¿äÇÑ ÀÌÁ¡ÀÔ´Ï´Ù. ¶ÇÇÑ °øÁ¤ ºÐ±¤ÇÐÀº °íǰÁúÀÇ ¾ÈÀüÇϰí Áö¼Ó°¡´ÉÇÑ Á¦Ç°¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ±â´ëÄ¡°¡ ³ô¾ÆÁü¿¡ µû¶ó º¸´Ù ³ôÀº Á¤È®µµ·Î ±â¾÷À» ¿î¿µÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ºÐ±¤ÇÐÀº »ý»ê Áß ºñÈ¿À²°ú º¯µ¿À» ½Äº°ÇÔÀ¸·Î½á ±â¾÷ÀÌ ³¶ºñ¸¦ ÃÖ¼ÒÈ­ÇÏ°í ¿øÀÚÀç »ç¿ë·®À» ÃÖÀûÈ­Çϸç Áö¼Ó°¡´ÉÇÑ Á¦Á¶ ¹æ½ÄÀ» Áö¿øÇÒ ¼ö ÀÖ½À´Ï´Ù.

¶Ç ´Ù¸¥ ¿øµ¿·ÂÀº °øÁ¤ ½ºÆåÆ®·Î½ºÄÚÇÇ¿Í °ü·ÃµÈ ºñ¿ë Àý°¨ÀÔ´Ï´Ù. ½Ç½Ã°£ ¸ð´ÏÅ͸µÀº ³ëµ¿ Áý¾àÀûÀÌ°í ½Ã°£ÀÌ ¸¹ÀÌ ¼Ò¿äµÇ´Â ¹èÄ¡ »ùÇøµ°ú ¿ÀÇÁ¶óÀÎ ½ÇÇè½Ç Å×½ºÆ®ÀÇ Çʿ伺À» ÁÙ¿©ÁÝ´Ï´Ù. ºÐ±¤±â¸¦ »ý»ê ¶óÀο¡ ÅëÇÕÇÔÀ¸·Î½á ±â¾÷Àº ¿î¿µ ºñ¿ëÀ» Àý°¨Çϰí, 󸮷®À» ´Ã¸®¸ç, Á¦Ç° ºÒÇÕ°Ý·üÀ» ³·Ãç º¸´Ù È¿À²ÀûÀÎ Á¦Á¶ °øÁ¤¿¡ ±â¿©ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀǾàǰ ¹× Ư¼ö È­ÇÐÁ¦Ç°°ú °°Àº °³ÀÎÈ­µÈ Á¦Ç°À¸·ÎÀÇ Àüȯ Ãß¼¼¿¡ µû¶ó °øÁ¤ ºÐ±¤ÇÐÀº 󹿰ú ±¸¼ºÀ» Á¤¹ÐÇÏ°Ô Á¦¾îÇÒ ¼ö ÀÖÀ¸¸ç, ¸ÂÃãÇü ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃæÁ·½Ãų ¼ö ÀÖ½À´Ï´Ù. ¾÷°è°¡ ¹ÎøÇÏ°í ¼ö¿ä Áß½ÉÀÇ Á¦Á¶·Î ÀüȯÇÔ¿¡ µû¶ó À¯¿¬ÇÏ°í ½Ç½Ã°£ ǰÁú°ü¸®¸¦ Á¦°øÇÏ´Â ºÐ±¤ÇÐÀÇ ¿ªÇÒÀÌ Á¡Á¡ ´õ Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù.

ÇÁ·Î¼¼½º ºÐ±¤ÇÐ ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

ÇÁ·Î¼¼½º ºÐ±¤¹ý ½ÃÀåÀÇ ¼ºÀåÀº ±ÔÁ¦ Áؼö ÃËÁø, ±â¼ú ¹ßÀü, È¿À²ÀûÀ̰í Áö¼Ó°¡´ÉÇÑ Á¦Á¶ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡ µî ¸î °¡Áö Áß¿äÇÑ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. Àü ¼¼°è ±ÔÁ¦±â°üÀÌ Ç°Áú ¹× ¾ÈÀü ±âÁØÀ» °­È­ÇÔ¿¡ µû¶ó Á¦¾à, ½Äǰ ¹× À½·á, È­ÇÐ µîÀÇ »ê¾÷ ºÐ¾ßÀÇ ±â¾÷Àº ÀÌ·¯ÇÑ ¾ö°ÝÇÑ ¿ä±¸ »çÇ×À» ÃæÁ·Çϱâ À§ÇØ ºÐ±¤ÇÐÀ» äÅÃÇϰí ÀÖ½À´Ï´Ù. ºÐ±¤ÇÐÀÌ Á¦°øÇÏ´Â ½Ç½Ã°£ ºÐ¼®Àº ±ÔÁ¤ Áؼö¸¦ À¯ÁöÇϰí, ǰÁú ºÒ·®°ú °ü·ÃµÈ À§ÇèÀ» ÁÙÀ̸ç, Á¦Ç°ÀÌ ÀϰüµÇ°Ô »ç¾çÀ» ÃæÁ·Çϵµ·Ï º¸ÀåÇÏ´Â °­·ÂÇÑ ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ »ê¾÷ÀÌ ¼ºÀåÇÔ¿¡ µû¶ó Ç¥ÁØ Ç°Áú°ü¸® Åø·Î¼­ °øÁ¤ ºÐ±¤Çп¡ ´ëÇÑ ¼ö¿ä´Â °è¼Ó Áõ°¡ÇÏ¿© ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù.

¶ÇÇÑ ´õ ÀÛ°í Àú·ÅÇÑ °í¼º´É ºÐ±¤°èÀÇ °³¹ß µî ±â¼ú ¹ßÀüÀ¸·Î ÀÎÇØ °øÁ¤ ºÐ±¤ÇÐÀº ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼­ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº ÁøÀÔÀ庮À» ³·Ãß°í, ÀÌÀü¿¡´Â ÁÖ·Î ´ë±â¾÷ÀÌ ÁÖ·Î »ç¿ëÇÏ´ø ºÐ±¤ ¼Ö·ç¼ÇÀ» Áß¼Ò±â¾÷ÀÌ Ã¤ÅÃÇÒ ¼ö ÀÖµµ·Ï Çß½À´Ï´Ù. ¶ÇÇÑ IIoT ¹× ÀΰøÁö´É°ú °°Àº µðÁöÅÐ Á¦Á¶ ±â¼ú°ú ºÐ±¤¹ýÀ» ÅëÇÕÇÔÀ¸·Î½á ±â¾÷Àº ½Ç½Ã°£ µ¥ÀÌÅ͸¦ Ȱ¿ëÇÏ¿© ¿¹ÃøÀû ǰÁú°ü¸®¸¦ ÅëÇØ ³¶ºñ ¾ø´Â È¿À²ÀûÀÎ »ý»ê Ȱµ¿À» Áö¿øÇÒ ¼ö ÀÖ½À´Ï´Ù. ¸¶Áö¸·À¸·Î Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö´Â °Íµµ °­·ÂÇÑ ÃËÁø¿äÀÎÀÔ´Ï´Ù. ±â¾÷ÀÌ ³¶ºñ¸¦ ÁÙÀ̰í ÀÚ¿ø Ȱ¿ëÀ» ÃÖÀûÈ­Çϱâ À§ÇØ ³ë·ÂÇÏ´Â °¡¿îµ¥, ºÐ±¤ÇÐÀº °øÁ¤ ÃÖÀûÈ­¸¦ À§ÇÑ ±ÍÁßÇÑ ÅøÀ» Á¦°øÇÏ¿© Á¦Á¶ °øÁ¤ÀÌ °¡´ÉÇÑ ÇÑ È¿À²ÀûÀ̰í ȯ°æ ģȭÀûÀÏ ¼ö ÀÖµµ·Ï º¸ÀåÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀÌ °áÇյǾî ÇÁ·Î¼¼½º ºÐ±¤ÇÐ ½ÃÀåÀº ¸ðµç »ê¾÷ ºÐ¾ß¿¡¼­ ǰÁú, È¿À²¼º ¹× ±ÔÁ¤ Áؼö¸¦ °­È­ÇÏ´Â °¡Ä¡¸¦ ÀÎÁ¤¹ÞÀ¸¸ç Áö¼ÓÀûÀÎ ¼ºÀåÀ» ±â´ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

ºÎ¹®

ÄÄÆ÷³ÍÆ®(Çϵå¿þ¾î, ¼ÒÇÁÆ®¿þ¾î);±â¼ú(ºÐÀںб¤¹ý, Áú·®ºÐ¼®¹ý, ¿øÀںб¤¹ý);¿ëµµ(Á¦¾à, ½Äǰ/³ó¾÷, °íºÐÀÚ, È­ÇÐ, ±Ý¼Ó/±¤¾÷, ¼®À¯/°¡½º, ±âŸ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹(ÇÕ°è 34 ÁÖ¸ñ)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Process Spectroscopy Market to Reach US$40.7 Billion by 2030

The global market for Process Spectroscopy estimated at US$27.7 Billion in the year 2024, is expected to reach US$40.7 Billion by 2030, growing at a CAGR of 6.6% over the analysis period 2024-2030. Process Spectroscopy Hardware, one of the segments analyzed in the report, is expected to record a 6.0% CAGR and reach US$26.2 Billion by the end of the analysis period. Growth in the Process Spectroscopy Software segment is estimated at 7.8% CAGR over the analysis period.

The U.S. Market is Estimated at US$7.2 Billion While China is Forecast to Grow at 10.0% CAGR

The Process Spectroscopy market in the U.S. is estimated at US$7.2 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$9.6 Billion by the year 2030 trailing a CAGR of 10.0% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 3.2% and 5.9% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 3.9% CAGR.

Global Process Spectroscopy Market - Key Trends & Drivers Summarized

What is Process Spectroscopy, and How Does it Revolutionize Industry?

Process spectroscopy is a critical technology used to analyze the chemical composition and physical properties of materials during manufacturing processes in real-time. By using spectroscopic techniques, such as Near-Infrared (NIR), Fourier-Transform Infrared (FTIR), Raman, and Ultraviolet-Visible (UV-Vis) spectroscopy, industries can obtain detailed insights into material characteristics without disrupting the process flow. This in-line or at-line testing capability allows for immediate quality control, ensuring that production remains within desired specifications and helping to avoid costly waste or rework. Process spectroscopy is particularly valuable in industries where precision and purity are critical, such as pharmaceuticals, chemicals, food and beverage, and oil and gas. As these industries face increasing regulatory scrutiny for quality and safety standards, spectroscopy enables compliance by ensuring consistent, high-quality output while reducing the need for time-consuming laboratory analyses.

In addition to quality assurance, process spectroscopy improves efficiency by facilitating faster decision-making in production. Since the technology provides real-time data on material composition, operators can adjust process parameters immediately in response to fluctuations, ensuring optimal conditions are maintained. For example, in the pharmaceutical industry, spectroscopy allows for real-time monitoring of active ingredients and excipients, ensuring that dosages remain accurate throughout production. This rapid feedback loop minimizes production downtime, improves yields, and allows companies to scale up their operations without compromising quality. As industries prioritize precision, speed, and efficiency, the adoption of process spectroscopy is becoming a core component of advanced manufacturing environments worldwide.

How Are Technological Innovations Shaping the Process Spectroscopy Market?

Advances in spectroscopic technologies and data analytics have propelled the process spectroscopy market forward, making it more accessible and applicable across various industries. Miniaturization of spectroscopy equipment has enabled portable and even handheld devices, allowing for greater flexibility in monitoring and ensuring quality across different stages of production. For example, miniaturized NIR spectrometers can be integrated directly into production lines or mounted on robotic arms for continuous monitoring, which expands their use in applications like food processing, where rapid quality assessment is crucial. Furthermore, advancements in sensor sensitivity and spectral resolution have increased the accuracy and reliability of measurements, enabling companies to detect even minute variations in material properties. This level of detail is especially beneficial in sectors with stringent quality demands, such as pharmaceuticals and biotechnology.

The integration of process spectroscopy with the Industrial Internet of Things (IIoT) and big data analytics has further transformed its utility by enabling real-time data collection, storage, and analysis. IIoT connectivity allows spectroscopic data to be shared across systems, providing a holistic view of the production process and enabling predictive maintenance and quality control. Additionally, machine learning algorithms are now applied to spectroscopic data to detect patterns and predict quality deviations before they occur, empowering companies to proactively address issues and reduce downtime. These advancements not only enhance the accuracy and relevance of process spectroscopy but also streamline its adoption in smart manufacturing systems, where data-driven insights are increasingly valued for operational efficiency and continuous improvement.

Why Are Industries Embracing Process Spectroscopy?

Industries are increasingly adopting process spectroscopy to meet their needs for quality control, regulatory compliance, and sustainability. In regulated sectors like pharmaceuticals and food and beverage, real-time spectroscopic analysis ensures that products meet required specifications, reducing the likelihood of costly recalls and regulatory issues. The ability to monitor processes continuously and ensure product consistency is a critical advantage in these industries, where even minor deviations can impact efficacy, safety, and consumer trust. Additionally, process spectroscopy enables companies to operate with higher precision, which aligns with growing consumer expectations for high-quality, safe, and sustainable products. By identifying inefficiencies and variations during production, spectroscopy helps companies minimize waste and optimize raw material usage, supporting sustainable manufacturing practices.

Another driver of adoption is the cost savings associated with process spectroscopy. Real-time monitoring reduces the need for batch sampling and offline laboratory tests, which are often labor-intensive and time-consuming. By integrating spectroscopy into the production line, companies can lower operational costs, increase throughput, and reduce product rejections, all of which contribute to a more efficient manufacturing process. Furthermore, with the trend toward personalized products, such as in pharmaceuticals and specialty chemicals, process spectroscopy allows for precise control over formulation and composition, meeting the demand for customized solutions. As industries shift toward agile, demand-driven manufacturing, the role of spectroscopy in delivering flexible, real-time quality control becomes increasingly vital.

What Factors Drive Growth in the Process Spectroscopy Market?

The growth in the process spectroscopy market is driven by several key factors, including the push for regulatory compliance, technological advancements, and increasing demand for efficient and sustainable manufacturing solutions. With global regulatory bodies tightening quality and safety standards, companies in industries like pharmaceuticals, food and beverage, and chemicals are adopting spectroscopy to ensure they meet these rigorous requirements. Real-time analysis provided by spectroscopy offers a robust solution for maintaining compliance, reducing risks associated with quality failures, and ensuring that products consistently meet specifications. As these industries grow, the demand for process spectroscopy as a standard quality control tool continues to rise, propelling market growth.

In addition, advances in technology, such as the development of more compact, affordable, and high-performance spectrometers, have broadened the accessibility of process spectroscopy across various industries. These technological innovations reduce entry barriers, allowing small and medium-sized companies to adopt spectroscopy solutions previously available mainly to large enterprises. Furthermore, the integration of spectroscopy with digital manufacturing technologies, such as IIoT and artificial intelligence, allows companies to leverage real-time data for predictive quality control, supporting lean and efficient production practices. Finally, the increasing emphasis on sustainability is also a powerful growth driver. As companies seek to reduce waste and optimize resource use, spectroscopy provides a valuable tool for process optimization, ensuring that manufacturing processes are as efficient and environmentally friendly as possible. Together, these factors position the process spectroscopy market for continued growth as industries across the board recognize its value in enhancing quality, efficiency, and compliance.

SCOPE OF STUDY:

The report analyzes the Process Spectroscopy market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Component (Hardware, Software); Technology (Molecular Spectroscopy, Mass Spectroscopy, Atomic Spectroscopy); Application (Pharmaceuticals, Food & Agriculture, Polymer, Chemicals, Metal & Mining, Oil & Gas, Other Applications)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 34 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â