¼¼°èÀÇ ±â³» ÀÚµ¿ Á¶Á¾ ½Ã½ºÅÛ ½ÃÀå
In-flight Autopilot Systems
»óǰÄÚµå : 1655517
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 02¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 233 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,056,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,169,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ±â³» ÀÚµ¿ Á¶Á¾ ½Ã½ºÅÛ ½ÃÀåÀº 2030³â±îÁö 128¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 97¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ ±â³» ÀÚµ¿ Á¶Á¾ ½Ã½ºÅÛ ½ÃÀåÀº 2024-2030³â¿¡ CAGR 4.6%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 128¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ ÇöóÀÌÆ® µð·ºÅÍ ½Ã½ºÅÛÀº CAGR 5.3%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á±îÁö 45¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. °íµµ¡¤¹æÀ§ ±âÁØ ½Ã½ºÅÛ ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ Áß CAGR 4.0%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 27¾ï ´Þ·¯, Áß±¹Àº CAGR 4.3%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ±â³» ÀÚµ¿ Á¶Á¾ ½Ã½ºÅÛ ½ÃÀåÀº 2024³â¿¡ 27¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2024-2030³âÀÇ ºÐ¼® ±â°£¿¡ CAGR 4.3%·Î ÃßÀÌÇϸç, 2030³â±îÁö 20¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 4.4%¿Í 3.9%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 4.5%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ±â³» ÀÚµ¿ Á¶Á¾ ½Ã½ºÅÛ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

±â³» ÀÚµ¿ Á¶Á¾ ½Ã½ºÅÛÀº Çö´ë Ç×°øÀ» ¾î¶»°Ô ÁøÈ­½Ã۰í Àִ°¡?

Ç×°ø±â³» ÀÚµ¿ Á¶Á¾ ½Ã½ºÅÛÀº Ç×¹ý, °íµµ Á¦¾î, Âø·ú µî ºñÇàÀÇ Áß¿äÇÑ Ãø¸éÀ» ÀÚµ¿È­ÇÏ¿© Çö´ë Ç×°ø¿¡ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ¾Ò½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº Á¶Á¾»çÀÇ ²÷ÀÓ¾ø´Â ¼öµ¿ Á¶ÀÛ¿¡¼­ ¹þ¾î³¯ ¼ö ÀÖÀ» »Ó¸¸ ¾Æ´Ï¶ó º¹ÀâÇÑ Á¶Á¾¿¡¼­µµ Á¤È®¼ºÀ» À¯ÁöÇÏ¿© ¾ÈÀü¼ºÀ» ³ô¿©ÁÝ´Ï´Ù. Ç×°ø±â ÀÌ¿ëÀÌ Áö¼ÓÀûÀ¸·Î Áõ°¡ÇÔ¿¡ µû¶ó ƯÈ÷ Àå°Å¸® ³ë¼±°ú ¹Î°£ Ç×°ø±âÀÇ °æ¿ì ÷´Ü ÀÚµ¿Á¶Á¾½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÃֽŠÀÚµ¿Á¶Á¾½Ã½ºÅÛÀº GPS, °ü¼ºÇ×¹ý, ¸Ó½Å·¯´× ¾Ë°í¸®Áò°ú °°Àº ÷´Ü ±â¼úÀ» ÅëÇÕÇÏ¿© ¾ÇõÈÄ¿¡¼­µµ Á¤È®ÇÑ °æ·Î¸¦ Á¶Á¤ÇÏ°í ¼º´ÉÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. È¿À²¼º°ú ¾ÈÀü¼ºÀ» ¸ðµÎ Çâ»ó½ÃŰ´Â ÀÚµ¿Á¶Á¾ ±â¼úÀº Çö´ë ºñÇàÀÇ ÁøÈ­¿¡ ÀÖÀ¸¸ç, ÇÙ½ÉÀûÀÎ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù.

¿ÀÅäÆÄÀÏ·µ ½ÃÀå¿¡¼­ ¾ÈÀü ±ÔÁ¦ÀÇ ¿ªÇÒÀº ¹«¾ùÀΰ¡?

¾ÈÀüÀº Ç×°ø »ê¾÷¿¡¼­ °¡Àå Áß¿äÇÑ °ü½É»çÀ̸ç, ÀÚµ¿ Á¶Á¾ ±â¼úÀ» Æ÷ÇÔÇÑ ºñÇà ½Ã½ºÅÛÀÇ ¸ðµç Ãø¸é¿¡ ¾ö°ÝÇÑ ±ÔÁ¦°¡ Àû¿ëµÇ°í ÀÖÀ¸¸ç, FAA ¹× EASA¿Í °°Àº ±ÔÁ¦±â°üÀº ƯÈ÷ ¹Î°£ Ç×°øÀÇ ¾ÈÀü°ú ½Å·Ú¼ºÀ» º¸ÀåÇϱâ À§ÇØ ÀÚµ¿ Á¶Á¾ ½Ã½ºÅÛ¿¡ ´ëÇØ ³ôÀº ±âÁØÀ» ¿ä±¸Çϰí ÀÖ½À´Ï´Ù. Àǹ«È­Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¾ö°ÝÇÑ ±âÁØÀ» ÁؼöÇϱâ À§Çؼ­´Â Å×½ºÆ®, ÀÎÁõ ¹× ǰÁú º¸Áõ¿¡ ¸¹Àº ÅõÀÚ¸¦ ÇØ¾ß ÇÕ´Ï´Ù. »õ·Î¿î ¾ÈÀü ±ÔÁ¤ÀÌ µîÀåÇÔ¿¡ µû¶ó Á¦Á¶¾÷ü´Â ÀÌ·¯ÇÑ ¿ä±¸ »çÇ×À» ÃæÁ·Çϱâ À§ÇØ Áö¼ÓÀûÀ¸·Î Çõ½ÅÇØ¾ß Çϸç, ÃֽоÈÀü ¿ä±¸ »çÇ×À» ÁؼöÇÏ´Â º¸´Ù Áøº¸µÈ ÀÚµ¿Á¶Á¾ ½Ã½ºÅÛÀ» °³¹ßÇØ¾ß ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±ÔÁ¦ ȯ°æÀº ±â¼ú Çõ½ÅÀ» ÃËÁøÇÒ »Ó¸¸ ¾Æ´Ï¶ó ÀÚµ¿Á¶Á¾½Ã½ºÅÛÀ» Ç×°ø±â ¼³°èÀÇ Áß¿äÇÑ ¾ÈÀü ±â´ÉÀ¸·Î È®°íÈ÷ ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

±â¼ú Çõ½ÅÀº ¿ÀÅäÆÄÀÏ·µÀÇ ¹Ì·¡¸¦ ¾î¶»°Ô Çü¼ºÇϰí Àִ°¡?

±â¼úÀÇ ¹ßÀüÀº ±â³» ÀÚµ¿ Á¶Á¾ ½Ã½ºÅÛÀÇ ±â´ÉÀ» ÀçÁ¤ÀÇÇϰí, ½Ç½Ã°£ ºñÇà »óȲ¿¡ ´ëÇÑ ÀûÀÀ¼º°ú ¹ÝÀÀ¼ºÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù. ÀΰøÁö´É(AI)À» ÅëÇÕÇÔÀ¸·Î½á ÀÚµ¿Á¶Á¾½Ã½ºÅÛÀº ¹æ´ëÇÑ ¾çÀÇ µ¥ÀÌÅ͸¦ ó¸®ÇÏ°í °ú°Å ºñÇà ÆÐÅÏÀ¸·ÎºÎÅÍ ÇнÀÇÏ¿© ¿¬·á È¿À²À» ÃÖÀûÈ­ÇÏ°í ¿î¿µ ºñ¿ëÀ» Àý°¨Çϱâ À§ÇØ Á¤º¸¿¡ ÀÔ°¢ÇÑ °áÁ¤À» ³»¸± ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¼¾¼­ ±â¼ú°ú ·¹ÀÌ´õ ÅëÇÕÀÇ ¹ßÀüÀ¸·Î ÀÚµ¿Á¶Á¾½Ã½ºÅÛÀº Àå¾Ö¹°À» °¨ÁöÇÏ°í ´ëÀÀÇÒ ¼ö ÀÖ°Ô µÇ¾î À§ÇèÀ» ÁÙÀ̰í Àüü ºñÇàÀÇ ¾ÈÀü¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀ¸·Î ÀÚµ¿Á¶Á¾½Ã½ºÅÛÀÇ ¹Ì·¡´Â ¿ÏÀüÇÑ ÀÚÀ²ºñÇàÀ¸·Î ÇâÇϰí ÀÖÀ¸¸ç, ¹Î°£Ç×°ø°ú È­¹°Ç×°ø ¸ðµÎ¿¡ Å« º¯È­¸¦ °¡Á®¿À°í ÀÖ½À´Ï´Ù.

±â³» ÀÚµ¿ Á¶Á¾ ½Ã½ºÅÛ ½ÃÀåÀÇ ¼ºÀåÀº ¸î °¡Áö ¿äÀο¡ ÀÇÇØ ÃËÁø

±â³» ÀÚµ¿ Á¶Á¾ ½Ã½ºÅÛ ½ÃÀåÀÇ ¼ºÀåÀº Ç×°ø ±³Åë·® Áõ°¡, ¾ö°ÝÇÑ ¾ÈÀü ±ÔÁ¦, AI ¹× ¼¾¼­ ±â¼úÀÇ ±Þ¼ÓÇÑ ¹ßÀü µî ¿©·¯ °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. È¿À²ÀûÀÌ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â ºñÇà¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ÀÚµ¿Á¶Á¾½Ã½ºÅÛÀº ¹Î°£ Ç×°ø¿¡ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù. ¾ÈÀü°ú ±ÔÁ¤ Áؼö¸¦ Áß½ÃÇÏ´Â ±ÔÁ¦ ±âÁصµ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖÀ¸¸ç, Ç×°ø±â Á¦Á¶¾÷ü´Â ÀÎÁõµÈ ÀÚµ¿Á¶Á¾ ½Ã½ºÅÛÀ» ÅëÇÕÇØ¾ß ÇÕ´Ï´Ù. ¶ÇÇÑ AI Áö¿ø ¹× ¼¾¼­ ±â¹Ý ÀÚµ¿Á¶Á¾ ¼Ö·ç¼ÇÀÇ °³¹ß·Î ¿ÏÀü ÀÚÀ²ºñÇàÀÇ »õ·Î¿î ±âȸ°¡ ¿­¸®°í ÀÖÀ¸¸ç, ÀÌ´Â ºñ¿ë È¿À²ÀûÀÎ ¼Ö·ç¼ÇÀ» ¿øÇÏ´Â Ç×°ø»ç¿Í È­¹° ¿î¼Û¾÷ü ¸ðµÎ¿¡°Ô ¸Å·ÂÀûÀÎ ¿ä¼Ò·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀÌ Á¾ÇÕÀûÀ¸·Î ÀÛ¿ëÇÏ¿© Ç×°ø »ê¾÷ÀÇ ¹Ì·¡¿¡¼­ ÀÚµ¿Á¶Á¾½Ã½ºÅÛÀÇ Áß¿äÇÑ ¿ªÇÒÀÌ ºÎ°¢µÇ°í ÀÖ½À´Ï´Ù.

ºÎ¹®

Ç×°ø±â À¯Çü(ȸÀüÀÍ Ç×°ø±â, °íÁ¤ÀÍ Ç×°ø±â), ¿ëµµ(¹Î°£ Ç×°ø±â, ±º¿ë Ç×°ø±â, ¹Î°£ Ç×°ø±â), ½Ã½ºÅÛ À¯Çü(ºñÇà °¨µ¶ ½Ã½ºÅÛ, °íµµ ¹× ¹æÀ§°¢ ±âÁØ ½Ã½ºÅÛ, Ç×°ø ÀüÀÚ ½Ã½ºÅÛ, ºñÇà Á¦¾î ½Ã½ºÅÛ, ±âŸ ½Ã½ºÅÛ À¯Çü)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹(ÃÑ 23 ÁÖ¸ñ)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global In-flight Autopilot Systems Market to Reach US$12.8 Billion by 2030

The global market for In-flight Autopilot Systems estimated at US$9.7 Billion in the year 2024, is expected to reach US$12.8 Billion by 2030, growing at a CAGR of 4.6% over the analysis period 2024-2030. Flight Director System, one of the segments analyzed in the report, is expected to record a 5.3% CAGR and reach US$4.5 Billion by the end of the analysis period. Growth in the Altitude and Heading Reference System segment is estimated at 4.0% CAGR over the analysis period.

The U.S. Market is Estimated at US$2.7 Billion While China is Forecast to Grow at 4.3% CAGR

The In-flight Autopilot Systems market in the U.S. is estimated at US$2.7 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$2.0 Billion by the year 2030 trailing a CAGR of 4.3% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 4.4% and 3.9% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 4.5% CAGR.

Global In-Flight Autopilot Systems Market - Key Trends & Drivers Summarized

How Are In-Flight Autopilot Systems Advancing Modern Aviation?

In-flight autopilot systems have become indispensable in modern aviation, automating critical aspects of flight such as navigation, altitude control, and landing. These systems not only relieve pilots from constant manual operation but also enhance safety by maintaining precision during complex maneuvers. As air travel continues to grow, demand for advanced autopilot systems is rising, particularly for long-haul and commercial aircraft. Modern autopilot systems integrate cutting-edge technologies such as GPS, inertial navigation, and machine learning algorithms, enabling accurate course adjustments and enhanced performance even in adverse weather conditions. By improving both efficiency and safety, autopilot technology is central to the evolution of modern flight.

What Role Do Safety Regulations Play in the Autopilot Market?

Safety is a paramount concern in aviation, with stringent regulations governing every aspect of flight systems, including autopilot technology. Regulatory bodies like the FAA and EASA mandate high standards for autopilot systems to ensure safety and reliability, particularly in commercial aviation. Compliance with these rigorous standards requires significant investment in testing, certification, and quality assurance. As new safety regulations emerge, manufacturers must continuously innovate to meet these demands, leading to more advanced autopilot systems that adhere to the latest safety requirements. This regulatory environment not only drives innovation but also solidifies autopilot systems as a critical safety feature in aircraft design.

How Are Technological Innovations Shaping the Future of Autopilot?

Technological advancements are redefining the capabilities of in-flight autopilot systems, making them more adaptable and responsive to real-time flight conditions. Integrating artificial intelligence (AI) allows autopilot systems to process vast amounts of data, learn from previous flight patterns, and make informed decisions to optimize fuel efficiency and reduce operational costs. Additionally, developments in sensor technology and radar integration enable autopilot systems to detect and respond to obstacles, reducing risks and improving overall flight safety. With these innovations, the future of autopilot systems is steering towards fully autonomous flights, bringing significant changes to both commercial and cargo aviation sectors.

The Growth in the In-Flight Autopilot Systems Market Is Driven by Several Factors

The growth in the in-flight autopilot systems market is driven by several factors, including increasing air traffic, stringent safety regulations, and rapid advancements in AI and sensor technology. The growing demand for efficient and reliable flight operations has made autopilot systems a necessity in commercial aviation. Regulatory standards that emphasize safety and compliance are also propelling demand, as aircraft manufacturers are required to integrate certified autopilot systems. Additionally, the development of AI-enabled and sensor-driven autopilot solutions is opening new opportunities for fully autonomous flight, appealing to both airlines and cargo operators seeking cost-effective solutions. These factors collectively underscore the critical role of autopilot systems in the future of aviation.

SCOPE OF STUDY:

The report analyzes the In-flight Autopilot Systems market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Aircraft Type (Rotary Wings Aircraft, Fixed-Wing Aircraft); Application (Commercial Aircrafts, Military Aircrafts, Civilian Aircrafts); System Type (Flight Director System, Altitude and Heading Reference System, Avionics System, Flight Control System, Other System Types)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 23 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â