¼¼°èÀÇ À¯¸® ´Ü¿­ ½ÃÀå
Glass Insulation
»óǰÄÚµå : 1650920
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 02¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 279 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,239,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,719,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

À¯¸® ´Ü¿­ ¼¼°è ½ÃÀåÀº 2030³â±îÁö 1,135¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 786¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â À¯¸® ´Ü¿­ ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö ¿¬Æò±Õ 6.3%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 1,135¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ´Ü¿­ À¯¸® À¯´ÖÀº CAGR 7.1%¸¦ ±â·ÏÇÏ¿© ºÐ¼® ±â°£ Á¾·á ½ÃÁ¡¿¡ 509¾ï ´Þ·¯¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À¯¸®¼Ø ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 6.0%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀå 204¾ï ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 9.5%·Î ¼ºÀå Àü¸Á

¹Ì±¹ÀÇ À¯¸® ´Ü¿­ ½ÃÀåÀº 2024³â 204¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 268¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, 2024-2030³â ºÐ¼® ±â°£ µ¿¾È 9.5% CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ´Ù¸¥ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ª ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ µ¿¾È °¢°¢ 3.2% ¹× 5.8%ÀÇ CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 3.9%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¼¼°è À¯¸® ´Ü¿­ ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ ¿ä¾à

À¯¸® ´Ü¿­ÀÌ ¿¡³ÊÁö È¿À²°ú Áö¼Ó°¡´ÉÇÑ °ÇÃà °üÇà¿¡ Çõ¸íÀ» ÀÏÀ¸Å³ ¼ö ÀÖ´Â ÀÌÀ¯´Â ¹«¾ùÀϱî?

À¯¸® ´Ü¿­Àº Çö´ë °ÇÃàÀÇ Ãʼ®ÀÌ µÇ¾î ¿¡³ÊÁö È¿À²À» ³ôÀ̰í Áö¼Ó°¡´É¼ºÀ» ÃËÁøÇϱâ À§ÇØ °ÇÃ๰ÀÇ ¼³°è ¹æ½ÄÀ» º¯È­½Ã۰í ÀÖ½À´Ï´Ù. ±×·¸´Ù¸é ¿Ö ¿À´Ã³¯ À¯¸® ´Ü¿­ÀÌ ÇʼöÀûÀÎ °ÍÀϱî? À¯¸® ´Ü¿­Àº ÁÖ·Î À¯¸®¼¶À¯¿Í Ư¼ö °¡°øµÈ À¯¸® ¼ÒÀç·Î ¸¸µé¾îÁö¸ç, °Ç¹°ÀÇ ¿­Àüµµ¸¦ ÁÙÀÌ°í ¿­ ¼º´ÉÀ» Çâ»ó½ÃŰ¸ç ¿¡³ÊÁö ¼Òºñ¸¦ ÁÙÀ̱â À§ÇØ »ç¿ëµË´Ï´Ù. Ãß¿î Áö¿ª¿¡¼­´Â ¿­ ¼Õ½ÇÀ» ¹æÁöÇÏ°í ´õ¿î ȯ°æ¿¡¼­´Â ½Ç³»¸¦ ½Ã¿øÇÏ°Ô À¯ÁöÇϱâ À§ÇØ ÀϹÝÀûÀ¸·Î º®, ÁöºØ, â¹®¿¡ ¼³Ä¡µÇ¸ç, ÁÖ°Å ¹× »ó¾÷¿ë °ÇÃà ¸ðµÎ¿¡¼­ Áß¿äÇÑ ¿ä¼Ò·Î »ç¿ëµÇ°í ÀÖ½À´Ï´Ù.

À¯¸® ´Ü¿­ÀÇ ÁÖ¿ä ÀåÁ¡Àº ³Ã³­¹æ ½Ã½ºÅÛ¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÃÖ¼ÒÈ­ÇÏ¿© ÄèÀûÇÑ ½Ç³» ¿Âµµ¸¦ À¯ÁöÇÏ°í ¿¡³ÊÁö ºñ¿ëÀ» Å©°Ô Àý°¨ÇÒ ¼ö ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. °í¼º´É °Ç¹°¿¡¼­ À¯¸® ´Ü¿­Àº Àüü ±¸Á¶¹°ÀÇ Åº¼Ò ¹èÃâ·®À» ÁÙ¿© Áö¼Ó°¡´É¼º¿¡ ±â¿©ÇÕ´Ï´Ù. ¶ÇÇÑ, À¯¸® ´Ü¿­Àº ³»È­¼º, ³»±¸¼º, °õÆÎÀÌ ¹× ½À±â¿¡ °­ÇØ ´Ù¾çÇÑ À¯ÇüÀÇ °Ç¹°¿¡¼­ Àå±âÀûÀ¸·Î »ç¿ëÇϱ⿡ ÀûÇÕÇÕ´Ï´Ù. ±âÈĺ¯È­¿Í ¿¡³ÊÁö ¼Òºñ¿¡ ´ëÇÑ ¿ì·Á°¡ ³ô¾ÆÁö´Â °¡¿îµ¥, À¯¸® ´Ü¿­Àº º¸´Ù ģȯ°æÀûÀ̰í È¿À²ÀûÀÎ °ÇÃà ¹æ½ÄÀ» ÃËÁøÇÏ¿© °ÇÃà ±âÁØÀ» À籸¼ºÇÏ´Â µ¥ ±â¿©Çϰí ÀÖ½À´Ï´Ù.

±â¼úÀÇ ¹ßÀüÀº À¯¸® ´Ü¿­ÀÇ ¼º´ÉÀ» ¾î¶»°Ô Çâ»ó½Ã۰í Àִ°¡?

±â¼úÀÇ ¹ßÀüÀº À¯¸® ´Ü¿­ÀÇ ¼º´É, È¿À²¼º ¹× ´Ù¿ëµµ¼ºÀ» Å©°Ô Çâ»ó½ÃÄÑ Çö´ë ¿¡³ÊÁö È¿À²ÀûÀÎ °ÇÃàÀÇ Áß¿äÇÑ Àç·á°¡ µÇ¾ú½À´Ï´Ù. °¡Àå ¿µÇâ·Â ÀÖ´Â °³¹ßÀº °í¼º´É Àú¹æ»çÀ²(Low-E) À¯¸® ´Ü¿­ÀÇ Åº»ýÀ¸·Î, Low-E À¯¸®´Â ¾ãÀº ±Ý¼ÓÃþÀ¸·Î ÄÚÆÃµÇ¾î ÀÚ¿¬±¤À» Åõ°ú½ÃŰ¸é¼­ ¿­À» ¹Ý»çÇÏ¿© âÀ¯¸®¿¡ °¡Àå ÀûÇÕÇÑ À¯¸®ÀÔ´Ï´Ù. ÀÌ ±â¼úÀº À¯¸®¸¦ ÅëÇÑ ¿­ Àüµµ¸¦ ¾ïÁ¦ÇÏ¿© ½Ã¾ß¿Í ¹Ì°üÀ» ÇØÄ¡Áö ¾Ê°í °Ü¿ï¿¡´Â µû¶æÇϰÔ, ¿©¸§¿¡´Â ½Ã¿øÇÏ°Ô °Ç¹°À» À¯ÁöÇϸç, ÇöÀç Low-E À¯¸®´Â ¿¡³ÊÁö Àý¾àÇü âȣ ½Ã½ºÅÛÀÇ ÀϺηΠ»ó¾÷¿ë °Ç¹°°ú ÁÖ°Å¿ë °Ç¹° ¸ðµÎ¿¡¼­ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù.

¶Ç ´Ù¸¥ Å« ¹ßÀüÀº Áø°ø ´Ü¿­ À¯¸®(VIG)ÀÇ °³¹ß·Î, VIG´Â µÎ ÀåÀÇ À¯¸® »çÀÌ¿¡ Áø°ø ÃþÀ» Çü¼ºÇÏ¿© ¿ì¼öÇÑ ´Ü¿­ È¿°ú¸¦ Á¦°øÇÕ´Ï´Ù. Áø°øÀº °ÅÀÇ ¿Ïº®ÇÑ ´Ü¿­Àç ¿ªÇÒÀ» ÇÏ¿© À¯¸®ÆÇ »çÀÌÀÇ ¿­Àüµµ ¹× ´ë·ù¸¦ ±ØÀûÀ¸·Î °¨¼Ò½Ã۸ç, VIG ½Ã½ºÅÛÀº ³î¶øµµ·Ï ¾ãÀº µÎ²²¿¡µµ ºÒ±¸ÇÏ°í ¸î ÀÎÄ¡ÀÇ ±âÁ¸ ´Ü¿­Àç¿Í µ¿µîÇÑ ¿­ ¼º´ÉÀ» Á¦°øÇϹǷΠ°ø°£ÀÌ Á¦ÇÑµÈ ÀÀ¿ë ºÐ¾ß¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. ÀÌ ±â¼úÀº °Ç¹°ÀÇ ¿Ü°ü°ú ±¸Á¶¸¦ º¯°æÇÏÁö ¾Ê°í ¿À·¡µÈ °Ç¹°À» ¿¡³ÊÁö È¿À²ÀÌ ³ôÀº âȣ·Î °³Á¶ÇÒ ¶§ ƯÈ÷ È¿°úÀûÀÔ´Ï´Ù.

À¯¸® ´Ü¿­¿¡¼­´Â ¿¡¾î·Î°Ö°ú °°Àº ÷´Ü ¼ÒÀçÀÇ »ç¿ëµµ È¿À²À» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ¿¡¾î·Î°ÖÀº ¸Å¿ì ´Ù°ø¼ºÀÌ°í °¡º­¿î ¼ÒÀçÀ̸ç, ´Ü¿­¼ºÀÌ ¿ì¼öÇÕ´Ï´Ù. ¿¡¾î·Î°ÖÀ» À¯¸® ´Ü¿­ ½Ã½ºÅÛ¿¡ ÅëÇÕÇÏ¸é ½½¸²ÇÑ ÇüŸ¦ À¯ÁöÇϸ鼭 ´Ü¿­ ¼º´ÉÀ» ³ôÀÏ ¼ö ÀÖ¾î â¹®¿¡¼­ Ŀư¿ù¿¡ À̸£±â±îÁö ´Ù¾çÇÑ °ÇÃà ¿ëµµ¿¡ ÀûÇÕÇÕ´Ï´Ù. ¿¡¾î·Î°ÖÀÌ ÇÔÀ¯µÈ À¯¸® ´Ü¿­Àº ±âÁ¸ÀÇ ´Ü¿­Àç·Î´Â ÃæºÐÇÑ º¸È£°¡ ºÒ°¡´ÉÇÑ ±ØÇÑÀÇ ¿Âµµ ȯ°æ¿¡¼­ ƯÈ÷ È¿°ú¸¦ ¹ßÈÖÇÕ´Ï´Ù.

¶ÇÇÑ, À¯¸®¼¶À¯ ±â¼úÀÇ ¹ßÀüÀ¸·Î °¡Àå ÀϹÝÀûÀÎ À¯¸® ´Ü¿­ Áß ÇϳªÀÎ À¯¸®¼¶À¯ ´Ü¿­ÀçÀÇ ¼º´ÉÀÌ Çâ»óµÇ¾ú½À´Ï´Ù. ÃֽŠÀ¯¸®¼¶À¯ ´Ü¿­Àç´Â ´õ ³ªÀº ÇǺ¹¼º°ú ³»¿­¼ºÀ» Á¦°øÇϵµ·Ï ¼³°èµÇ¾î Æ´»õ¸¦ ÁÙÀÌ°í ´õ ÀϰüµÈ ´Ü¿­ÃþÀ» º¸ÀåÇÕ´Ï´Ù. ÀÌ·¯ÇÑ °³¼±Àº ¿¡³ÊÁö È¿À²À» ³ôÀÏ »Ó¸¸ ¾Æ´Ï¶ó À¯¸®ÀÇ Â÷À½¼ºÀ» Çâ»ó½ÃÄÑ °Ç¹°À» ´õ Á¶¿ëÇϰí ÄèÀûÇÏ°Ô ¸¸µé¾î ÁÝ´Ï´Ù. Àü¹ÝÀûÀ¸·Î, ±â¼ú Çõ½ÅÀº À¯¸® ´Ü¿­ÀÇ ¿ë·®À» È®ÀåÇÏ¿© º¸´Ù È¿°úÀûÀÌ°í ³»±¸¼ºÀÌ ¶Ù¾î³ª¸ç ´Ù¾çÇÑ °ÇÃà ¿ä±¸¿¡ ÀûÀÀÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù.

¿¡³ÊÁö Àý¾à°ú ÄèÀûÇÑ Áö¼Ó°¡´ÉÇÑ °Ç¹°À» À§ÇØ À¯¸® ´Ü¿­ÀÌ ÇʼöÀûÀÎ ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

À¯¸® ´Ü¿­Àº ½Ç³» ¿Âµµ Á¶Àý, ¿¡³ÊÁö ¼Òºñ °¨¼Ò, °ÅÁÖÀÚÀÇ ÄèÀû¼º Çâ»ó¿¡ µµ¿òÀÌ µÇ±â ¶§¹®¿¡ ¿¡³ÊÁö È¿À²ÀûÀ̰í ÄèÀûÇϸç Áö¼Ó°¡´ÉÇÑ °Ç¹°À» ¸¸µå´Â µ¥ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. À¯¸® ´Ü¿­ÀÇ °¡Àå Å« ÀåÁ¡ Áß Çϳª´Â ¿­Àüµµ¸¦ Å©°Ô ÁÙÀÏ ¼ö Àֱ⠶§¹®¿¡ ³­¹æÀ̳ª °øÁ¶ ½Ã½ºÅÛ¿¡ °úµµÇÏ°Ô ÀÇÁ¸ÇÏÁö ¾Ê°í ¾ÈÁ¤ÀûÀÎ ½Ç³» ȯ°æÀ» À¯ÁöÇÏ´Â µ¥ ÇʼöÀûÀ̶ó´Â Á¡ÀÔ´Ï´Ù. Ãß¿î Áö¿ª¿¡¼­´Â À¯¸® ´Ü¿­ÀÌ ¿­ ¼Õ½ÇÀ» ¸·¾Æ ½Ç³»¸¦ µû¶æÇÏ°Ô À¯ÁöÇϰí, ´õ¿î Áö¿ª¿¡¼­´Â ½Ç¿ÜÀÇ ¿­À» ¹Ý»çÇÏ°í ´Ü¿­ÇÏ¿© ½Ç³»¸¦ ½Ã¿øÇÏ°Ô À¯ÁöÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·Î ÀÎÇØ ¿¡³ÊÁö ºñ¿ëÀÌ Àý°¨µÇ°í, °øÁ¶ ½Ã½ºÅÛÀÇ ¼ö¿ä°¡ ÁÙ¾îµé¾î Àå±âÀûÀ¸·Î »ó´çÇÑ ¿¡³ÊÁö Àý°¨ È¿°ú¸¦ ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

ÄèÀûÇÔµµ À¯¸® ´Ü¿­ÀÇ Å« ÀåÁ¡ÀÔ´Ï´Ù. À¯¸® ´Ü¿­Àº ½Ç³» ¿Âµµ¸¦ Á¶ÀýÇÏ¿© °úµµÇÑ ³Ã³­¹æÀÌ ÇÊ¿ä ¾øÀÌ Àϳ⠳»³» ÄèÀûÇÏ°Ô Áö³¾ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, À¯¸® ´Ü¿­Àº ¿Â¿­ ȯ°æ»Ó¸¸ ¾Æ´Ï¶ó ¹æÀ½ È¿°úµµ ÀÖ¾î ±³Åë ¼ÒÀ½, °ø»ç ¼ÒÀ½ µî ¿ÜºÎ ¼ÒÀ½À» ÁÙ¿©ÁÝ´Ï´Ù. ÀÌ´Â ¼ÒÀ½ ´ëÃ¥ÀÌ ÄèÀûÇÑ ÁְŰø°£°ú ÀÛ¾÷°ø°£À» ¸¸µå´Â Áß¿äÇÑ ¿ä¼ÒÀÎ µµ½Ãȯ°æ¿¡¼­ ƯÈ÷ °¡Ä¡°¡ ÀÖ½À´Ï´Ù. À¯¸® ¼ÒÀç°¡ Á¦°øÇÏ´Â ´Ü¿­¼º°ú Â÷À½¼ºÀÇ Á¶ÇÕÀº ½Ç³» °ø±â ȯ°æÀ» °³¼±ÇÏ°í °Ç¹° ÀüüÀÇ ÄèÀû¼ºÀ» Çâ»ó½ÃŰ´Â ÀÌ»óÀûÀÎ ¼Ö·ç¼ÇÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù.

À¯¸® ´Ü¿­Àº Áö¼Ó°¡´É¼º°ú ȯ°æ º¸È£¿¡ À־µµ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. À¯¸® ´Ü¿­Àº °Ç¹°ÀÇ ¿¡³ÊÁö È¿À²À» ³ô¿© ³Ã³­¹æÀ» À§ÇÑ Àü·Â »ý»ê¿¡ µû¸¥ ÀÌ»êȭź¼Ò ¹èÃâ·®À» ÁÙÀÌ´Â µ¥ ±â¿©ÇÕ´Ï´Ù. ½ÇÁ¦·Î ´Ü¿­¼ºÀÌ ³ôÀº °Ç¹°Àº ¿¡³ÊÁö ¼Òºñ¸¦ ÃÖ´ë 30%±îÁö ÁÙÀÏ ¼ö ÀÖÀ¸¸ç, À¯¸® ´Ü¿­Àº ģȯ°æ °ÇÃà¿¡ ÀÖ¾î ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¸¹Àº À¯¸® ´Ü¿­ Á¦Ç°Àº ÀçȰ¿ë Àç·á¸¦ »ç¿ëÇÏ¿© »ý»ê¿¡ µû¸¥ ȯ°æ ¿µÇâÀ» ´õ¿í ÁÙ¿© °Ç¼³ »ê¾÷¿¡¼­ ¼øÈ¯ °æÁ¦¸¦ ½ÇõÇÏ´Â µ¥ ±â¿©Çϰí ÀÖ½À´Ï´Ù.

°ÇÃà°¡¿Í °Ç¼³¾÷ü¿¡°Ô À¯¸® ´Ü¿­Àº LEED(Leadership in Energy and Environmental Design) ÀÎÁõ°ú °°Àº ¾ö°ÝÇÑ ¿¡³ÊÁö ±ÔÁ¦¿Í Áö¼Ó°¡´É¼º ±âÁØÀ» ÃæÁ·½ÃŰ¸é¼­ À¯¿¬ÇÑ ¼³°è°¡ °¡´ÉÇÕ´Ï´Ù. ¹Ì°üÀ̳ª ¿¡³ÊÁö ¼º´É¿¡ ´ëÇÑ Å¸Çù ¾øÀÌ Å« À¯¸®Ã¢°ú ¿Ü°üÀ» °¡Áø ¿¡³ÊÁö È¿À²ÀÌ ³ôÀº °Ç¹°À» °Ç¼³ÇÒ ¼ö ÀÖ½À´Ï´Ù. Çö´ëÀûÀÌ°í ¼¼·ÃµÈ °ÇÃà ¼³°è¿¡ À¯¸® ´Ü¿­À» ÅëÇÕÇÏ´Â µ¿½Ã¿¡ °Ç¹° ÀüüÀÇ ¿¡³ÊÁö È¿À²À» Çâ»ó½ÃŰ´Â ´É·ÂÀº ÁÖ°Å ¹× »ó¾÷ ÇÁ·ÎÁ§Æ® ¸ðµÎ¿¡¼­ ³Î¸® äÅõǴ ¿øµ¿·ÂÀÌ µÇ´Â Áß¿äÇÑ ¿ä¼ÒÀÔ´Ï´Ù.

À¯¸® ´Ü¿­ ½ÃÀåÀÇ ¼ºÀåÀ» ÃËÁøÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

¿¡³ÊÁö È¿À²ÀÌ ³ôÀº °Ç¹°¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, ȯ°æ ±ÔÁ¦ °­È­, ´Ü¿­ ±â¼ú ¹ßÀü, µµ½ÃÈ­ ÁøÇà µî ¸î °¡Áö Áß¿äÇÑ ¿äÀÎÀÌ À¯¸® ´Ü¿­ ½ÃÀåÀÇ ±Þ°ÝÇÑ ¼ºÀå¿¡ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. ù°, Àü ¼¼°èÀûÀ¸·Î ¿¡³ÊÁö È¿À²¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ À¯¸® ´Ü¿­ ½ÃÀåÀÇ ÁÖ¿ä ÃËÁø¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ¿¡³ÊÁö ºñ¿ëÀÌ »ó½ÂÇÏ°í ±âÈÄ º¯È­¿¡ ´ëÇÑ ¿ì·Á°¡ Ä¿Áö¸é¼­ ÁÖÅà ¼ÒÀ¯ÀÚ, ±â¾÷ ¹× Á¤ºÎ´Â ¿¡³ÊÁö Àý¾à Á¶Ä¡¸¦ ¿ì¼±½ÃÇϰí ÀÖ½À´Ï´Ù. À¯¸® ´Ü¿­Àº ƯÈ÷ â¹®°ú °Ç¹° ¿Üº®¿¡ »ç¿ëµÇ¾î ¿­ Àüµµ¸¦ ÁÙÀ̰í ÀΰøÀûÀÎ ³Ã³­¹æÀÇ Çʿ伺À» ÃÖ¼ÒÈ­ÇÕ´Ï´Ù. ¿¡³ÊÁö È¿À²ÀÌ °Ç¼³ ¹× °³Á¶ ÇÁ·ÎÁ§Æ®ÀÇ ÃÖ¿ì¼± ¼øÀ§°¡ µÇ¸é¼­ À¯¸® ´Ü¿­¿Í °°Àº °í¼º´É ´Ü¿­Àç¿¡ ´ëÇÑ ¼ö¿ä´Â °è¼Ó Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

µÑ°, ȯ°æ ±ÔÁ¦¿Í ģȯ°æ °ÇÃà ±âÁØÀº À¯¸® ´Ü¿­ÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¼¼°è °¢±¹ Á¤ºÎ´Â °Ç¹°¿¡ ´õ ³ôÀº ¿¡³ÊÁö È¿À² ±âÁØÀ» ÃæÁ·Çϵµ·Ï ¿ä±¸ÇÏ´Â ´õ ¾ö°ÝÇÑ ¿¡³ÊÁö ±âÁذú Áö¼Ó°¡´É¼º ±âÁØÀ» µµÀÔÇϰí ÀÖ½À´Ï´Ù. ÀÌ¿¡ ´ëÀÀÇϱâ À§ÇØ °ÇÃà°¡¿Í °Ç¼³¾÷üµéÀº Low-E À¯¸®³ª Áø°ø ´Ü¿­ À¯¸®¿Í °°Àº °í±Þ ´Ü¿­À縦 »ç¿ëÇÏ¿© ÀÌ·¯ÇÑ ±ÔÁ¦¸¦ ÁؼöÇÒ ¼ö ÀÖµµ·Ï Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, LEED ¹× BREEAM°ú °°Àº ģȯ°æ ÀÎÁõ ÇÁ·Î±×·¥Àº Áö¼Ó°¡´ÉÇÑ Àç·áÀÇ »ç¿ëÀ» Àå·ÁÇϰí ģȯ°æ ´Ü¿­ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä¸¦ ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ³ôÀº ´Ü¿­ ¼º´É°ú ÀçȰ¿ë¼ºÀ» °®Ãá À¯¸® ´Ü¿­Àº ÀÌ·¯ÇÑ ¸ñÇ¥¿¡ ºÎÇÕÇϸç, ģȯ°æ °ÇÃà ÇÁ·ÎÁ§Æ®¿¡ ¼±È£µÇ´Â ¼±ÅÃÀÌ µÇ°í ÀÖ½À´Ï´Ù.

¼Â°, ´Ü¿­ ±â¼úÀÇ ¹ßÀüÀÌ ½ÃÀå ¼ºÀåÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. À¯¸® ´Ü¿­¿¡¼­´Â ´õ ¾ã°í È¿À²ÀûÀÎ ´Ü¿­ À¯¸® À¯´Ö(IGU)ÀÇ °³¹ß°ú ¿¡¾î·Î°Ö°ú °°Àº ³ª³ë ¼ÒÀçÀÇ ÅëÇÕ°ú °°Àº ±â¼ú Çõ½ÅÀ¸·Î ÀÎÇØ Àû¿ë ¹üÀ§°¡ È®´ëµÇ°í À¯¸® ´Ü¿­ ½Ã½ºÅÛÀÇ ¼º´ÉÀÌ Çâ»óµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀÇ ¹ßÀüÀ¸·Î À¯¸® ´Ü¿­Àº º¸´Ù Àú·ÅÇÏ°í ½±°Ô ±¸ÇÒ ¼ö ÀÖ°Ô µÇ¾úÀ¸¸ç, °íÃþ ºôµùÀ̳ª »ê¾÷½Ã¼³¿¡¼­ ÁÖÅÿ¡ À̸£±â±îÁö ¸ðµç °÷¿¡¼­ »ç¿ëÇÒ ¼ö ÀÖ´Â ´Ù¿ëµµ¼ºÀ» °®Ãß°Ô µÇ¾ú½À´Ï´Ù. ÄÞÆÑÆ®ÇÏ°í °¡º­¿î ÇüÅ¿¡ ¶Ù¾î³­ ´Ü¿­ ¼º´ÉÀ» ¹ßÈÖÇÏ´Â À¯¸® ´Ü¿­Àº ±âÁ¸ ´Ü¿­Àç·Î´Â È¿°ú¿Í ½Ç¿ë¼ºÀÌ ³·¾Ò´ø ºÐ¾ß¿¡µµ »õ·Î¿î ½ÃÀåÀ» °³Ã´Çϰí ÀÖ½À´Ï´Ù.

½ÅÈï±¹À» Áß½ÉÀ¸·Î ÇÑ µµ½ÃÈ­ÀÇ ±Þ¼ÓÇÑ ¹ßÀüµµ À¯¸® ´Ü¿­ ½ÃÀåÀ» °ßÀÎÇÏ´Â Áß¿äÇÑ ¿äÀÎÀÔ´Ï´Ù. µµ½Ã°¡ È®ÀåµÇ°í ÁÖ°Å ¹× »ó¾÷ °ø°£¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó µµ½Ã °³¹ß·Î ÀÎÇÑ È¯°æ ¿µÇâÀ» ÁÙÀÏ ¼ö ÀÖ´Â ¿¡³ÊÁö È¿À²ÀÌ ³ôÀº °ÇÃàÀÚÀç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. À¯¸® ´Ü¿­Àº °í¹Ðµµ µµ½Ã Áö¿ªÀÇ ¿¡³ÊÁö ¼Òºñ¸¦ ÁÙÀÌ´Â Áö¼Ó°¡´ÉÇÑ ¼Ö·ç¼ÇÀ» Á¦°øÇÔÀ¸·Î½á ÀÌ·¯ÇÑ °úÁ¦¿¡ ´ëÀÀÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. µµ½ÃÈ­ Ãß¼¼´Â °í¼º´É °Ç¹° ¿Üº®ÀÇ °³¹ß¿¡µµ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. À¯¸® ´Ü¿­Àº ¹Ì°ü°ú ±â´É¼ºÀ» ÇØÄ¡Áö ¾ÊÀ¸¸é¼­µµ °Ç¹°ÀÇ ¿¡³ÊÁö È¿À²À» ±Ø´ëÈ­ÇÏ´Â µ¥ ±â¿©Çϰí ÀÖ½À´Ï´Ù.

¸¶Áö¸·À¸·Î, °ÅÁÖÀÚÀÇ Æí¾ÈÇÔ°ú ½Ç³» ȯ°æÀÇ Áú¿¡ ´ëÇÑ Á߿伺¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁö¸é¼­ À¯¸® ´Ü¿­ ½ÃÀåÀÇ ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. °Ç¹° ¼ÒÀ¯ÁÖ¿Í °³¹ßÀÚµéÀº ¿¡³ÊÁö È¿À² ±âÁØÀ» ÃæÁ·ÇÏ´Â °Í»Ó¸¸ ¾Æ´Ï¶ó °ÅÁÖÀÚÀÇ Æí¾ÈÇÔ°ú Çູ°¨À» ³ôÀÌ´Â °ø°£À» ¸¸µå´Â µ¥ Á¡Á¡ ´õ ¸¹Àº ³ë·ÂÀ» ±â¿ïÀ̰í ÀÖ½À´Ï´Ù. À¯¸® ´Ü¿­Àº ¿­ ¼Õ½ÇÀ» ÁÙÀ̰í, Æ´»õ ¹Ù¶÷À» ¸·°í, ¿ÜºÎ ¼ÒÀ½À» ÃÖ¼ÒÈ­ÇÏ´Â ±â´ÉÀ» °®Ãß°í ÀÖ¾î º¸´Ù ÄèÀûÇÏ°í °Ç°­ÇÑ ½Ç³» ȯ°æÀ» Á¶¼ºÇÏ´Â µ¥ ±â¿©ÇÕ´Ï´Ù. °ÅÁÖÀÚÀÇ °Ç°­¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁü¿¡ µû¶ó À¯¸® ´Ü¿­¿Í °°Àº °í¼º´É ´Ü¿­Àç¿¡ ´ëÇÑ ¼ö¿ä´Â Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

°á·ÐÀûÀ¸·Î, À¯¸® ´Ü¿­ ½ÃÀåÀÇ ¼ºÀåÀº ¿¡³ÊÁö È¿À²ÀûÀÎ °Ç¹°¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, ȯ°æ ±ÔÁ¦ °­È­, ´Ü¿­Àç ±â¼ú ¹ßÀü, µµ½ÃÈ­ È®´ë·Î ÀÎÇØ ¹ß»ýÇÕ´Ï´Ù. »ê¾÷°è°¡ Áö¼Ó°¡´É¼º, ¿¡³ÊÁö Àý¾à, °ÅÁÖÀÚÀÇ Æí¾ÈÇÔÀ» ¿ì¼±½ÃÇÏ´Â °¡¿îµ¥, À¯¸® ´Ü¿­Àº °Ç¹°À» º¸´Ù È¿À²ÀûÀ̰í ÄèÀûÇϸç ȯ°æ ģȭÀûÀ¸·Î ¸¸µé¾î Çö´ë °ÇÃàÀÇ ¹Ì·¡¸¦ Çü¼ºÇÏ´Â µ¥ Á¡Á¡ ´õ Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

ºÎ¹®

À¯Çü(´Ü¿­À¯¸® À¯´Ö, À¯¸®¼Ø, ¼¿·ê·¯ À¯¸®), ¿ëµµ(ºñÁÖ°Å¿ë, ÁÖ°Å¿ë, »ê¾÷¿ë, ±âŸ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê(ÁÖ¸ñ 11°³»ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Glass Insulation Market to Reach US$113.5 Billion by 2030

The global market for Glass Insulation estimated at US$78.6 Billion in the year 2024, is expected to reach US$113.5 Billion by 2030, growing at a CAGR of 6.3% over the analysis period 2024-2030. Insulating Glass Unit, one of the segments analyzed in the report, is expected to record a 7.1% CAGR and reach US$50.9 Billion by the end of the analysis period. Growth in the Glass Wool segment is estimated at 6.0% CAGR over the analysis period.

The U.S. Market is Estimated at US$20.4 Billion While China is Forecast to Grow at 9.5% CAGR

The Glass Insulation market in the U.S. is estimated at US$20.4 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$26.8 Billion by the year 2030 trailing a CAGR of 9.5% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 3.2% and 5.8% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 3.9% CAGR.

Global Glass Insulation Market - Key Trends and Drivers Summarized

Why Is Glass Insulation Revolutionizing Energy Efficiency and Sustainable Building Practices?

Glass insulation has become a cornerstone of modern construction, transforming how buildings are designed to improve energy efficiency and promote sustainability. But why is glass insulation so essential today? Glass insulation, made primarily from fiberglass or specially treated glass materials, is used to reduce heat transfer in buildings, enhancing thermal performance and lowering energy consumption. It is commonly installed in walls, roofs, and windows to prevent heat loss in cold climates and to keep interiors cool in hot environments, making it a critical element in both residential and commercial construction.

The primary benefit of glass insulation is its ability to maintain comfortable indoor temperatures with minimal reliance on heating or cooling systems, significantly reducing energy costs. In high-performance buildings, glass insulation contributes to sustainability by lowering the overall carbon footprint of the structure. Additionally, glass insulation is fire-resistant, durable, and highly resistant to mold and moisture, making it ideal for long-term use in various building types. With growing concerns about climate change and energy consumption, glass insulation is helping to reshape construction standards by promoting greener, more efficient building practices.

How Are Technological Advancements Improving the Performance of Glass Insulation?

Technological advancements are driving significant improvements in the performance, efficiency, and versatility of glass insulation, making it a key material for modern energy-efficient construction. One of the most impactful developments is the creation of high-performance, low-emissivity (low-E) glass insulation. Low-E glass is coated with a thin metallic layer that reflects heat while allowing natural light to pass through, making it ideal for windows. This technology reduces heat transfer through the glass, ensuring that buildings stay warmer in the winter and cooler in the summer, without compromising visibility or aesthetics. Low-E glass is now widely used in both commercial and residential buildings as part of energy-saving window systems.

Another major advancement is the development of vacuum-insulated glass (VIG), which uses a vacuum layer between two panes of glass to provide superior thermal insulation. The vacuum acts as a nearly perfect insulator, drastically reducing heat conduction and convection between the glass panes. VIG systems are incredibly thin yet offer the thermal performance equivalent to several inches of traditional insulation, making them ideal for applications where space is limited. This technology is particularly useful in retrofitting older buildings with energy-efficient windows without changing the appearance or structure of the building.

The use of advanced materials like aerogels in glass insulation is also improving its efficiency. Aerogels are highly porous, lightweight materials with excellent thermal insulation properties. When integrated with glass insulation systems, aerogels enhance thermal performance while maintaining a slim profile, making them suitable for a wide range of building applications, from windows to curtain walls. Aerogel-infused glass insulation is especially effective in extreme temperature environments, where traditional insulation might struggle to provide adequate protection.

Additionally, advancements in glass fiber technology have improved the performance of fiberglass insulation, which remains one of the most common forms of glass insulation. Modern fiberglass insulation has been engineered to provide better coverage and thermal resistance, reducing gaps and ensuring a more consistent layer of insulation. These improvements not only increase energy efficiency but also enhance the acoustic insulation properties of glass, making buildings quieter and more comfortable. Overall, technological innovations are expanding the capabilities of glass insulation, making it more effective, durable, and adaptable to various construction needs.

Why Is Glass Insulation Critical for Energy-Efficient, Comfortable, and Sustainable Buildings?

Glass insulation is critical for creating energy-efficient, comfortable, and sustainable buildings because it helps regulate indoor temperatures, reduce energy consumption, and improve occupant comfort. One of the most significant benefits of glass insulation is its ability to drastically reduce heat transfer, making it essential for maintaining stable indoor environments without over-reliance on heating or air conditioning systems. In colder climates, glass insulation prevents heat loss, keeping interiors warmer, while in hotter climates, it helps keep interiors cool by reflecting and insulating against outdoor heat. This leads to lower energy bills and reduced demand on HVAC systems, translating to significant energy savings over time.

Comfort is another major advantage of glass insulation. By regulating indoor temperatures, glass insulation ensures that building occupants remain comfortable year-round, without the need for excessive heating or cooling. In addition to thermal comfort, glass insulation also offers soundproofing benefits, reducing noise pollution from external sources like traffic or construction. This is especially valuable in urban environments, where noise control is a key factor in creating comfortable living and working spaces. The combination of thermal and acoustic insulation provided by glass materials makes them an ideal solution for improving indoor air quality and overall comfort in buildings.

Glass insulation also plays a vital role in sustainability and environmental protection. By improving the energy efficiency of buildings, glass insulation helps reduce carbon emissions associated with electricity generation for heating and cooling. In fact, well-insulated buildings can reduce energy consumption by up to 30%, making glass insulation an essential component of green building initiatives. Additionally, many glass insulation products are made from recycled materials, further reducing the environmental impact of their production and contributing to circular economy practices in the construction industry.

For architects and builders, glass insulation offers flexibility in design while meeting stringent energy codes and sustainability standards, such as LEED (Leadership in Energy and Environmental Design) certification. It allows for the construction of energy-efficient buildings with expansive glass windows and facades, without compromising on aesthetics or energy performance. The ability to integrate glass insulation into modern, sleek architectural designs while improving the building’s overall energy efficiency is a critical factor in driving its widespread adoption in both residential and commercial projects.

What Factors Are Driving the Growth of the Glass Insulation Market?

Several key factors are driving the rapid growth of the glass insulation market, including increasing demand for energy-efficient buildings, rising environmental regulations, advancements in insulation technology, and the growth of urbanization. First, the growing global emphasis on energy efficiency is a major driver of the glass insulation market. As energy costs rise and concerns about climate change intensify, homeowners, businesses, and governments are prioritizing energy-saving measures. Glass insulation, particularly in windows and building facades, helps reduce heat transfer, minimizing the need for artificial heating and cooling. As energy efficiency becomes a top priority in construction and renovation projects, the demand for high-performance insulation materials like glass insulation continues to grow.

Second, environmental regulations and green building standards are pushing the adoption of glass insulation. Governments worldwide are implementing stricter energy codes and sustainability standards that require buildings to meet higher energy efficiency thresholds. In response, architects and builders are turning to advanced insulation materials like low-E glass and vacuum-insulated glass to ensure compliance with these regulations. Additionally, green certification programs, such as LEED and BREEAM, incentivize the use of sustainable materials, further driving demand for eco-friendly insulation solutions. Glass insulation, with its high thermal performance and recyclability, aligns with these goals and is becoming a preferred choice for green building projects.

Third, advancements in insulation technology are fueling market growth. Innovations in glass insulation, such as the development of thinner, more efficient insulating glass units (IGUs) and the integration of nanomaterials like aerogels, have expanded the range of applications and improved the performance of glass insulation systems. These technological advancements have made glass insulation more affordable, accessible, and versatile, enabling its use in everything from skyscrapers and industrial facilities to residential homes. The ability to provide superior insulation in compact, lightweight forms is opening up new markets for glass insulation in areas where traditional insulation materials may be less effective or practical.

The rapid growth of urbanization, particularly in emerging economies, is another key factor driving the glass insulation market. As cities expand and demand for housing and commercial spaces increases, there is a growing need for energy-efficient construction materials that can reduce the environmental impact of urban development. Glass insulation is playing a crucial role in addressing this challenge by offering a sustainable solution for reducing energy consumption in high-density urban areas. The trend toward urbanization is also driving the development of high-performance building envelopes, where glass insulation helps maximize the energy efficiency of buildings without compromising on aesthetics or functionality.

Finally, the rising awareness of the importance of occupant comfort and indoor environmental quality is contributing to the growth of the glass insulation market. Building owners and developers are increasingly focusing on creating spaces that not only meet energy efficiency standards but also enhance the comfort and well-being of occupants. Glass insulation, with its ability to reduce heat loss, prevent drafts, and minimize external noise, contributes to creating more comfortable and healthier indoor environments. As the focus on occupant well-being grows, the demand for high-performance insulation materials like glass insulation is expected to increase.

In conclusion, the growth of the glass insulation market is driven by the increasing demand for energy-efficient buildings, stricter environmental regulations, technological advancements in insulation materials, and the expansion of urbanization. As industries continue to prioritize sustainability, energy savings, and occupant comfort, glass insulation will play an increasingly important role in shaping the future of modern construction, making buildings more efficient, comfortable, and environmentally responsible.

SCOPE OF STUDY:

The report analyzes the Glass Insulation market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Type (Insulating Glass Unit, Glass Wool, Cellular Glass); Application (Non-Residential, Residential, Industrial, Other Applications)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 11 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â