¼¼°èÀÇ Ç×°ø±â¿ë ¿¬·áÀüÁö ½ÃÀå
Aircraft Fuel Cells
»óǰÄÚµå : 1648905
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 02¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 191 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,260,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,780,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Ç×°ø±â¿ë ¿¬·áÀüÁö ¼¼°è ½ÃÀå, 2030³â±îÁö 31¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â 6¾ï 7,070¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â Ç×°ø±â¿ë ¿¬·áÀüÁö ¼¼°è ½ÃÀåÀº 2024-2030³â°£ ¿¬Æò±Õ 28.7%ÀÇ ¼ºÀå·üÀ» ±â·ÏÇϸç 2030³â¿¡´Â 31¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ¼ö¼Ò ¿¬·áÀüÁö´Â CAGR 29.5%¸¦ ±â·ÏÇÏ¿© ºÐ¼® ±â°£ µ¿¾È 23¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±âŸ ¿¬·áÀüÁö À¯Çü ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 26.6%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 2¾ï 2,510¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 25.3%·Î ¼ºÀå Àü¸Á

¹Ì±¹ÀÇ Ç×°ø±â¿ë ¿¬·áÀüÁö ½ÃÀå ±Ô¸ð´Â 2024³â 2¾ï 2,510¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2024-2030³â°£ 25.3%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³»°í, 2030³â±îÁö 2¾ï 7,730¸¸ ´Þ·¯ ±Ô¸ð¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ´Ù¸¥ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ª ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ºÐ¼® ±â°£ µ¿¾È °¢°¢ 21.5%¿Í 24.5%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ ¾à 33.3%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù.

¼¼°è Ç×°ø±â¿ë ¿¬·áÀüÁö ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ ¿ä¾à

Ç×°ø±â¿ë ¿¬·áÀüÁö´Â ±âÁ¸ ¿¬¼Ò ¿£Áø¿¡ ºñÇØ ´õ È¿À²ÀûÀ̰í ģȯ°æÀûÀÎ µ¿·Â¿øÀ» Á¦°øÇÔÀ¸·Î½á Ç×°ø¿¡ Çõ¸íÀ» ÀÏÀ¸Å³ ż¼¸¦ °®Ãá ÃÖ÷´Ü ±â¼úÀÔ´Ï´Ù. ÀÌ ¿¬·áÀüÁö´Â ¼ö¼Ò¿Í »ê¼ÒÀÇ Àü±âÈ­ÇйÝÀÀÀ» ÅëÇØ Àü±â¸¦ »ý»êÇϸç, »ý¼º¹°·Î´Â ¹°°ú ¿­¸¸À» »ý»êÇÕ´Ï´Ù. ÀÌ Ã»Á¤ ¿¡³ÊÁö »ý»ê ¹æ½ÄÀº ¿Â½Ç °¡½º ¹èÃâÀ» Å©°Ô ÁÙÀ̰í ź¼Ò ¹èÃâ·®À» ÁÙÀÌ·Á´Â Ç×°ø »ê¾÷ÀÇ ¸ñÇ¥¿¡ ºÎÇÕÇÕ´Ï´Ù. ¶ÇÇÑ ¿¬·áÀüÁö´Â ¿òÁ÷ÀÌ´Â ºÎǰÀÌ Àû°í ±â°èÀû °íÀåÀÌ Àû±â ¶§¹®¿¡ ¿¡³ÊÁö È¿À²ÀÌ ³ô°í ½Å·Ú¼ºÀÌ ³ô½À´Ï´Ù. Ç×°ø±â¿¡ ¿¬·áÀüÁö¸¦ µµÀÔÇÏ¸é ´õ Á¶¿ëÇÑ ¿îÇ×°ú À¯Áöº¸¼ö ºñ¿ë Àý°¨À¸·Î À̾îÁú ¼ö ÀÖ¾î ±× ¸Å·ÂÀº ´õ¿í Ä¿Áú °ÍÀÔ´Ï´Ù.

Ç×°ø±â¿ë ¿¬·áÀüÁöÀÇ Ã¤ÅÃÀº ¿¬·áÀüÁö ±â¼úÀÇ ¹ßÀü°ú ½ÇÇà °¡´ÉÇÑ ¿¬·á °ø±Þ¿øÀ¸·Î¼­ ¼ö¼ÒÀÇ °¡¿ë¼º Áõ°¡·Î ÀÎÇØ ÃßÁøµÇ°í ÀÖ½À´Ï´Ù. ±â¼úÀÇ ¹ßÀüÀ¸·Î ¿¬·áÀüÁö´Â ¼ÒÇüÈ­, °æ·®È­, °íÈ¿À²È­µÇ¾î ¼ÒÇü µå·ÐºÎÅÍ ´ëÇü ¹Î°£ Á¦Æ®±â±îÁö ´Ù¾çÇÑ À¯ÇüÀÇ Ç×°ø±â¿¡ žÀçÇϱ⿡ ÀûÇÕÇØÁ³½À´Ï´Ù. Ç×°ø±â ¿¬·áÀüÁö º¸±ÞÀ» À§Çؼ­´Â źźÇÑ ¼ö¼Ò ÀúÀå ¹× °ø±Þ ÀÎÇÁ¶óÀÇ °³¹ßµµ ÇʼöÀûÀÔ´Ï´Ù. ±â¾÷ ¹× ¿¬±¸±â°üµéÀº ¼ö¼Ò ÀúÀå ¹× ¿¬·áÀüÁöÀÇ ³»±¸¼º ¹®Á¦¸¦ ±Øº¹Çϱâ À§ÇÑ Çõ½ÅÀûÀÎ ¼Ö·ç¼Ç °³¹ß¿¡ Àû±ØÀûÀ¸·Î ³ª¼­°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ³ë·ÂÀº ¿¬·áÀüÁö¸¦ ÁÖ µ¿·Â ¶Ç´Â º¸Á¶ µ¿·ÂÀ¸·Î »ç¿ëÇÒ ¼ö ÀÖ´Â Â÷¼¼´ë Ç×°ø±âÀÇ ±æÀ» ¿­¾î Ç×°ø±â ÀüüÀÇ ¼º´É°ú Áö¼Ó°¡´É¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ´Â ±æÀ» ¿­°í ÀÖ½À´Ï´Ù.

Ç×°ø±â¿ë ¿¬·áÀüÁö ½ÃÀåÀÇ ¼ºÀåÀº ¾ö°ÝÇÑ È¯°æ ±ÔÁ¦, Áö¼Ó °¡´ÉÇÑ Ç×°ø¿¡ ´ëÇÑ °ü½É Áõ°¡, ¼ö¼Ò ¿¬·á ±â¼úÀÇ ¹ßÀü µî ¿©·¯ °¡Áö ¿äÀο¡ ±âÀÎÇÕ´Ï´Ù. ¼¼°è Á¤ºÎ ¹× ±ÔÁ¦ ±â°üÀº Ç×°ø »ê¾÷¿¡ ´õ ¾ö°ÝÇÑ ¹èÃâ ±âÁØÀ» Àû¿ëÇϰí ÀÖÀ¸¸ç, Ç×°ø»ç¿Í Á¦Á¶¾÷ü°¡ ¿¬·áÀüÁö¿Í °°Àº ´ëü ÃßÁø ½Ã½ºÅÛÀ» ¸ð»öÇϵµ·Ï À¯µµÇϰí ÀÖÀ¸¸ç, 2050³â±îÁö ¼ø¹èÃâ·® Á¦·Î¸¦ ´Þ¼ºÇϰڴٴ Ç×°ø ºÎ¹®ÀÇ ¾à¼ÓÀº ¿¬·áÀüÁö ±â¼úÀÇ ¿¬±¸ °³¹ßÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¼ö¼Ò »ý»ê ¹× À¯Åë ÀÎÇÁ¶ó¿¡ ´ëÇÑ ´ë±Ô¸ð ÅõÀÚ·Î ÀÎÇØ ¼ö¼ÒÀÇ Á¢±Ù¼ºÀÌ Çâ»óµÇ°í ºñ¿ë È¿À²¼ºÀÌ ³ô¾ÆÁö¸é¼­ ¼ö¼ÒÀÇ ¿¬·á °ø±Þ¿øÀ¸·Î¼­ÀÇ Ã¤ÅÃÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. Ç×°ø¿ìÁÖ ±â¾÷, ¿¬±¸±â°ü, Á¤ºÎ °£ÀÇ Çù·ÂÀº Çõ½ÅÀ» ÃËÁøÇÏ°í ºñ¿ëÀ» ³·Ã߸鼭 ¿¬·áÀüÁö ±¸µ¿ Ç×°ø±â°¡ ´õ¿í Çö½ÇÀûÀÎ ¼±ÅÃÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¾÷°è°¡ Áö¼Ó°¡´É¼º°ú È¿À²¼ºÀ» ÃÖ¿ì¼±½ÃÇÏ´Â °¡¿îµ¥, Ç×°ø±â¿ë ¿¬·áÀüÁö¿¡ ´ëÇÑ ¼ö¿ä´Â °è¼Ó Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ¿¬·áÀüÁö´Â Ç×°ø »ê¾÷ÀÇ ¹Ì·¡¿¡ Áß¿äÇÑ ±¸¼º ¿ä¼Ò·Î ÀÚ¸®¸Å±èÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

ÇâÈÄ Ç×°ø ½Â°´ Áõ°¡·Î ÀÎÇØ ´õ ¸¹Àº Ç×°øÆíÀÌ ¿îÇ׵ǰí, ÀÌ»êȭź¼Ò ¹èÃâ·® °¨¼Ò¿¡ ´ëÇÑ ¾Ð¹ÚÀÌ Ç×°ø±â¿ë ¿¬·áÀüÁöÀÇ Ã¤ÅÃÀ» ÃËÁøÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. Àç»ý¿¡³ÊÁö·Î »ý»êµÇ´Â ¼ö¼Ò´Â Ç×°ø»ç¿¡°Ô ±ú²ýÇÑ ¼±ÅÃÀ̸ç, µû¶ó¼­ Ç×°ø±â¿ë ¿¬·áÀüÁö¿¡ ÀÌ»óÀûÀÎ ¼±ÅÃÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ÇöÀç ¼ÒÇü Ç×°ø±â(20Àν ÀÌÇÏ)¿¡ ¼ö¼Ò¿¬·áÀüÁö°¡ »ç¿ëµÇ°í ÀÖÁö¸¸, ¿©·¯ Ç×°ø±â Á¦Á¶¾÷üµéÀÌ ´ëÇü ¹Î°£ Ç×°ø±â¿¡ ¼ö¼Ò¿¬·áÀüÁö¸¦ žÀçÇϱâ À§ÇÑ ³ë·ÂÀ» °è¼ÓÇϰí ÀÖ½À´Ï´Ù. ¹Ì±¹À» ºñ·ÔÇÑ ¿©·¯ ¾÷üµéµµ ȸÀüÀÍ Ç×°ø±â¿¡ Àû¿ëÇÒ ¿¬·áÀüÁö ºÎǰ °³¹ß¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ȯ°æ À§±â¿¡ ´ëÇÑ ¼¼°èÀûÀÎ ÀνÄÀÌ ³ô¾ÆÁö¸é¼­ Ç×°ø¿ìÁÖ »ê¾÷À» À§ÇÑ ¿¬·áÀüÁö ¿¬±¸°³¹ß°ú ±â¼ú Çõ½Å¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù.

ºÎ¹®

¿¬·áÀüÁö À¯Çü(¼ö¼Ò, ±âŸ ¿¬·áÀüÁö À¯Çü);&±â¼ú(°íºÐÀÚ °íºÐÀÚ ¿¬·áÀüÁö(PEMFC), ±âŸ ±â¼ú)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê(ÃÑ 27°Ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Aircraft Fuel Cells Market to Reach US$3.1 Billion by 2030

The global market for Aircraft Fuel Cells estimated at US$670.7 Million in the year 2024, is expected to reach US$3.1 Billion by 2030, growing at a CAGR of 28.7% over the analysis period 2024-2030. Hydrogen Fuel Cells, one of the segments analyzed in the report, is expected to record a 29.5% CAGR and reach US$2.3 Billion by the end of the analysis period. Growth in the Other Fuel Cell Types segment is estimated at 26.6% CAGR over the analysis period.

The U.S. Market is Estimated at US$225.1 Million While China is Forecast to Grow at 25.3% CAGR

The Aircraft Fuel Cells market in the U.S. is estimated at US$225.1 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$277.3 Million by the year 2030 trailing a CAGR of 25.3% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 21.5% and 24.5% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 33.3% CAGR.

Global Aircraft Fuel Cells Market - Key Trends & Drivers Summarized

Aircraft fuel cells represent a cutting-edge technology poised to revolutionize aviation by providing a more efficient and environmentally friendly power source compared to traditional combustion engines. These fuel cells generate electricity through an electrochemical reaction between hydrogen and oxygen, producing only water and heat as byproducts. This clean energy generation method significantly reduces greenhouse gas emissions, aligning with the aviation industry's goals to lower its carbon footprint. Additionally, fuel cells offer higher energy efficiency and reliability, as they contain fewer moving parts and are less prone to mechanical failures. The implementation of fuel cells in aircraft can potentially lead to quieter operations and reduced maintenance costs, further enhancing their appeal.

The adoption of aircraft fuel cells is being driven by advancements in fuel cell technology and the increasing availability of hydrogen as a viable fuel source. Technological improvements have led to more compact, lightweight, and efficient fuel cells, making them suitable for integration into various types of aircraft, from small drones to large commercial jets. The development of robust hydrogen storage and distribution infrastructure is also crucial in facilitating the widespread use of fuel cells in aviation. Companies and research institutions are actively working on innovative solutions to overcome challenges related to hydrogen storage and fuel cell durability. These efforts are paving the way for the next generation of aircraft that can leverage fuel cells for primary or auxiliary power, enhancing overall aircraft performance and sustainability.

The growth in the aircraft fuel cells market is driven by several factors, including stringent environmental regulations, the increasing focus on sustainable aviation, and advancements in hydrogen fuel technology. Governments and regulatory bodies worldwide are imposing stricter emission standards on the aviation industry, prompting airlines and manufacturers to explore alternative propulsion systems like fuel cells. The aviation sector's commitment to achieving net-zero emissions by 2050 has accelerated the research and development of fuel cell technology. Furthermore, significant investments in hydrogen production and distribution infrastructure are making hydrogen more accessible and cost-effective, bolstering its adoption as a fuel source. Collaborations between aerospace companies, research institutions, and governments are fostering innovation and driving down costs, making fuel cell-powered aircraft a more viable option. As the industry continues to prioritize sustainability and efficiency, the demand for aircraft fuel cells is expected to grow, positioning them as a critical component in the future of aviation.

Going ahead, higher air passenger traffic would bring more flights in operation, while the pressure to reduce carbon emissions would encourage adoption of aircraft fuel cells. Hydrogen, produced from renewables, is a clean option for carriers and therefore an ideal choice for aircraft fuel cells. While smaller aircrafts (up to 20 passenger seats capacity) are currently using hydrogen-powered fuel cells, efforts are ongoing from several aircraft makers to power larger commercial aircraft with hydrogen fuel cells. Even vendors, such as in the US, are also contributing by developing fuel cell components that find application in rotorcrafts. Growing global awareness of the impending environmental crisis has worked as a catalyst for heightened interest in research and development and innovation of fuel cells for aerospace industry.

SCOPE OF STUDY:

The report analyzes the Aircraft Fuel Cells market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Fuel Cell Type (Hydrogen, Other Fuel Cell Types); Technology (Proton Exchange Member Fuel Cell (PEMFC), Other Technologies)

Geographic Regions/Countries:

World; USA; Canada; Japan; China; Europe; France; Germany; Italy; UK; Rest of Europe; Asia-Pacific; Rest of World.

Select Competitors (Total 27 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â