¼¼°èÀÇ ¿ªÇÐ ºÐ¾ß ÀΰøÁö´É ½ÃÀå
Artificial Intelligence in Epidemiology
»óǰÄÚµå : 1644167
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 01¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 172 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,020,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,062,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¿ªÇÐ ºÐ¾ß ÀΰøÁö´É ¼¼°è ½ÃÀå, 2030³â±îÁö 26¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â 6¾ï 8,560¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â ¿ªÇÐ ºÐ¾ßÀÇ ¼¼°è ÀΰøÁö´É ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö ¿¬Æò±Õ 25.2%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 26¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀΠŬ¶ó¿ìµå ±â¹Ý ¹èÆ÷ ºÎ¹®Àº CAGR 24.7%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ µ¿¾È 21¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À¥ ±â¹Ý ¹èÆ÷ ºÎ¹®Àº ºÐ¼® ±â°£ µ¿¾È CAGR 27.1%ÀÇ ¼ºÀå·üÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¹Ì±¹ ½ÃÀå 1¾ï 8,020¸¸ ´Þ·¯, Áß±¹Àº CAGR 23.9%·Î ¼ºÀå Àü¸Á

¹Ì±¹ÀÇ ¿ªÇÐ ºÐ¾ß ÀΰøÁö´É ½ÃÀå ±Ô¸ð´Â 2024³â 1¾ï 8,020¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 4¾ï 1,300¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, 2024-2030³â ºÐ¼® ±â°£ µ¿¾È 23.9%ÀÇ CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ´Ù¸¥ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ª ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ºÐ¼® ±â°£ µ¿¾È °¢°¢ 22.9%¿Í 21.8%ÀÇ CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ ¾à 17.4%ÀÇ CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¼¼°è ¿ªÇÐ ºÐ¾ß ÀΰøÁö´É ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ ¿ä¾à

AI´Â ¾î¶»°Ô ¿ªÇаú °øÁߺ¸°ÇÀ» º¯È­½Ãų °ÍÀΰ¡?

ÀΰøÁö´É(AI)Àº Áúº´ ¹ß»ýÀ» ¿¹Ãø, ŽÁö, °ü¸®ÇÒ ¼ö ÀÖ´Â ´É·ÂÀ» °­È­ÇÔÀ¸·Î½á ¿ªÇÐ ºÐ¾ß¿¡ Çõ¸íÀ» ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù. ±âÁ¸ÀÇ ¿ªÇÐ ¹æ¹ýÀº È¿°úÀûÀÌÁö¸¸, AI´Â °í±Þ ±â°è ÇнÀ ¾Ë°í¸®Áò, ÀÚ¿¬¾î ó¸®(NLP) ¹× ¿¹Ãø ºÐ¼®À» »ç¿ëÇÏ¿© ¹æ´ëÇÑ µ¥ÀÌÅͼ¼Æ®¸¦ ½Ç½Ã°£À¸·Î ºÐ¼®ÇÔÀ¸·Î½á ºü¸£°Ô ¹ßÀüÇÏ´Â °Ç°­ À§±â¿¡ ´ëÀÀÇϱâ À§ÇØ ´ë·®ÀÇ µ¥ÀÌÅ͸¦ ½Å¼ÓÇÏ°Ô Ã³¸®ÇÏ´Â µ¥ ¾î·Á¿òÀ» °Þ´Â °æ¿ì°¡ ¸¹´Ù, ÀÌ ¹®Á¦¸¦ ÇØ°áÇÕ´Ï´Ù.

AI ½Ã½ºÅÛÀº ÀüÀڰǰ­±â·Ï(EHR), ¼Ò¼È ¹Ìµð¾î, ȯ°æ µ¥ÀÌÅÍ µî ´Ù¾çÇÑ µ¥ÀÌÅÍ ¼Ò½º¸¦ ¸ð´ÏÅ͸µÇÏ¿© Áúº´ ¹ß»ýÀÇ Ãʱâ ¡Èĸ¦ ÆÄ¾ÇÇÕ´Ï´Ù. ÀÌ·¯ÇÑ µµ±¸´Â »õ·Î¿î °Ç°­ À§ÇùÀ» ³ªÅ¸³»´Â ÆÐÅÏÀ̳ª ÀÌ»ó ¡Èĸ¦ °¨ÁöÇÏ¿© º¸´Ù ½Å¼ÓÇÑ °³ÀÔÀ» °¡´ÉÇÏ°Ô Çϸç, COVID-19 ÆÒµ¥¹Í »óȲ¿¡¼­ AI´Â ¹ÙÀÌ·¯½º ÀüÆÄ¸¦ ÃßÀûÇϰí, °¨¿° Ãß¼¼¸¦ ¸ðµ¨¸µÇϰí, ¹é½Å °³¹ßÀ» Áö¿øÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ¼öÇàÇß½À´Ï´Ù.

AI´Â Áúº´ ¹ß»ýÀ» °¨ÁöÇÏ´Â °Í»Ó¸¸ ¾Æ´Ï¶ó, ´Ù¾çÇÑ °³ÀÔÀÌ °øÁߺ¸°Ç °á°ú¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ½Ã¹Ä·¹À̼ÇÇÔÀ¸·Î½á Áúº´ ¸ðµ¨¸µ¿¡ º¯È­¸¦ °¡Á®¿À°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã¹Ä·¹À̼ÇÀº Á¤Ã¥ ÀÔ¾ÈÀÚµéÀÌ Àü¿°º´À» °ü¸®Çϰí, ÀÚ¿øÀ» ¹èºÐÇϸç, Áúº´ÀÇ »çȸÀû ¿µÇâÀ» ÃÖ¼ÒÈ­Çϱâ À§ÇÑ È¿°úÀûÀÎ Àü·«À» ¼³°èÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. AI´Â µ¥ÀÌÅÍ ±â¹Ý ÀÇ»ç°áÁ¤À» °¡´ÉÇϰÔÇÔÀ¸·Î½á ¿ªÇÐÀÇ °üÇàÀ» ±Ùº»ÀûÀ¸·Î À籸¼ºÇϰí ÀÖ½À´Ï´Ù.

¿ªÇп¡¼­ AIÀÇ µµÀÔÀ» ÃËÁøÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

¿ªÇÐ ºÐ¾ß¿¡¼­ AI µµÀÔÀÇ Áß¿äÇÑ ¿øµ¿·ÂÀº Áúº´ ¹ß»ýÀÇ ºóµµ¿Í º¹À⼺ÀÌ Áõ°¡Çϰí ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ¼¼°èÈ­, µµ½ÃÈ­, ±âÈĺ¯È­´Â Àü¿°º´ÀÇ È®»êÀ» ÃËÁøÇϰí ÀÖÀ¸¸ç, AI ±â¹Ý Ç÷§ÆûÀº ½Ç½Ã°£ ¸ð´ÏÅ͸µ ±â´ÉÀ» Á¦°øÇÏ¿© °øÁߺ¸°Ç ±â°üÀÌ Àü¿°º´ ¹ß»ýÀ» ¸·±â À§ÇØ ½Å¼ÓÇÏ°Ô ´ëÀÀÇÒ ¼ö ÀÖ´Â °í±Þ µµ±¸°¡ Àý½ÇÈ÷ ÇÊ¿äÇÕ´Ï´Ù.

ºòµ¥ÀÌÅÍÀÇ °¡¿ë¼ºÀÌ ³ô¾ÆÁø °Íµµ Áß¿äÇÑ ¿äÀÎÀÔ´Ï´Ù. ÀÇ·á ±â°üÀº ÇöÀç EHR, ¿þ¾î·¯ºí ±â±â, À¯Àüü ¿¬±¸, ¼Ò¼È ¹Ìµð¾î¸¦ ÅëÇØ ¹æ´ëÇÑ ¾çÀÇ µ¥ÀÌÅÍ¿¡ Á¢±ÙÇÒ ¼ö ÀÖÀ¸¸ç, AI ½Ã½ºÅÛÀº ÀÌ µ¥ÀÌÅ͸¦ ºÐ¼®ÇÏ¿© °øÁß º¸°Ç Àü·«¿¡ µµ¿òÀÌ µÇ´Â Æ®·»µå¿Í »ó°ü°ü°è¸¦ ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ´É·ÂÀº ½ÅÈï Áúº´ÀÇ µ¿ÇâÀ» ÀÌÇØÇϰí Ãë¾àÇÑ Áý´ÜÀ» ½Äº°ÇÏ´Â µ¥ ƯÈ÷ À¯¿ëÇÕ´Ï´Ù.

¶ÇÇÑ, µö·¯´× ¹× µ¥ÀÌÅÍ ½Ã°¢È­¿Í °°Àº AI ±â¼úÀÇ ¹ßÀüÀ¸·Î ¿ªÇÐ ÀλçÀÌÆ®ÀÇ Á¢±Ù¼º°ú À¯¿ë¼ºÀÌ Çâ»óµÇ°í ÀÖÀ¸¸ç, AI µµ±¸´Â Áö¿ª º¸°ÇºÎ¿¡¼­ WHO¿Í °°Àº ±¹Á¦±â±¸¿¡ À̸£±â±îÁö ¸ðµç ¼öÁØÀÇ ÀÇ»ç°áÁ¤±ÇÀÚ¿¡°Ô ±ÇÇÑÀ» ºÎ¿©ÇÏ´Â »ç¿ëÀÚ Ä£È­ÀûÀÎ º¸°í¼­¿Í ½Ã°¢È­¸¦ »ý¼ºÇϰí ÀÖ½À´Ï´Ù. ½Ã°¢È­¸¦ »ý¼ºÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀº Çö´ëÀÇ ¿ªÇÐ ¹®Á¦¸¦ ÇØ°áÇÏ´Â µ¥ ÀÖ¾î AIÀÇ Á߿伺ÀÌ Á¡Á¡ ´õ Ä¿Áö°í ÀÖÀ½À» °­Á¶ÇÕ´Ï´Ù.

AI°¡ Áúº´ ¿¹Ãø°ú ÀÚ¿ø ¹èºÐÀ» °³¼±ÇÒ ¼ö ÀÖÀ»±î?

AI´Â ¿ªÇÐÀÇ µÎ °¡Áö Áß¿äÇÑ Ãø¸éÀÎ Áúº´ ¿¹Ãø°ú ÀÚ¿ø ¹èºÐ¿¡¼­ °ÔÀÓ Ã¼ÀÎÀú·Î ÀÔÁõµÇ°í ÀÖÀ¸¸ç, AI ¸ðµ¨À» ÅëÇÑ ¿¹Ãø ºÐ¼®Àº °ú°Å µ¥ÀÌÅÍ¿Í ½Ç½Ã°£ µ¥ÀÌÅ͸¦ ºÐ¼®ÇÏ¿© Áúº´ ¹ß»ýÀ» ¿¹ÃøÇÒ ¼ö ÀÖ½À´Ï´Ù. À̸¦ ÅëÇØ º¸°Ç ´ç±¹Àº Áúº´ÀÇ È®»êÀ» ¿¹ÃøÇϰí, ¿¹¹æÁ¢Á¾ Ä·ÆäÀÎ, ´ëÁß È«º¸ µî ¿¹¹æ Á¶Ä¡¸¦ ÃëÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÚ¿ø ¹èºÐ¿¡¼­ AI´Â ¿¹ÃøµÈ Áúº´ ºÎ´ã¿¡ µû¶ó ÀǾàǰ, Àη ¹× ÀÚ±Ý ¹èºÐÀ» ÃÖÀûÈ­ÇÕ´Ï´Ù. ¿¹¸¦ µé¾î, ÆÒµ¥¹Í »óȲ¿¡¼­ AI µµ±¸´Â ÀÇ·á ÀÚ¿øÀÌ °¡Àå ÇÊ¿äÇÑ ÇÖ½ºÆÌÀ» ÆÄ¾ÇÇÏ¿© È¿À²ÀûÀÌ°í °øÆòÇÑ ´ëÀÀÀ» º¸ÀåÇÕ´Ï´Ù. À̸¦ ÅëÇØ ³¶ºñ¸¦ ÃÖ¼ÒÈ­ÇÏ°í °¡Àå ÇÊ¿äÇÑ °÷¿¡ ÀÚ¿øÀÌ ÁýÁߵǵµ·Ï ÇÒ ¼ö ÀÖ½À´Ï´Ù.

AI´Â ¶ÇÇÑ ´Ù¾çÇÑ °øÁߺ¸°Ç Á¶Ä¡ÀÇ È¿°ú¿¡ ´ëÇÑ ÀλçÀÌÆ®¸¦ Á¦°øÇÔÀ¸·Î½á °³ÀÔ Àü·«ÀÇ Á¤È®¼ºÀ» ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù. AI´Â ´Ù¾çÇÑ ½Ã³ª¸®¿À¸¦ ½Ã¹Ä·¹À̼ÇÇÔÀ¸·Î½á Á¤Ã¥ ÀÔ¾ÈÀÚµéÀÌ ¿©Çà Á¦ÇÑ ¹× °Ë¿ª Á¶Ä¡¿Í °°Àº °³ÀÔÀÇ ÀáÀçÀû °á°ú¸¦ Æò°¡ÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀº °øÁߺ¸°Ç ¹®Á¦¸¦ °ü¸®Çϱâ À§ÇÑ º¸´Ù Àû±ØÀûÀÌ°í ¸ñÇ¥ ÁöÇâÀûÀÎ Á¢±Ù ¹æ½ÄÀ» °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù.

¿ªÇÐÀÇ AI ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎÀº ¹«¾ùÀϱî?

¿ªÇÐ ºÐ¾ß ÀΰøÁö´É ½ÃÀåÀÇ ¼ºÀåÀº °øÁߺ¸°ÇÀ» °ü¸®Çϱâ À§ÇÑ ±â¼ú ÀÇÁ¸µµ°¡ ³ô¾ÆÁü¿¡ µû¶ó ¸î °¡Áö ÁÖ¿ä ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. Àü¿°º´ÀÇ À¯º´·ü Áõ°¡¿Í °­·ÂÇÑ ¸ð´ÏÅ͸µ ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼¼°è ¼ö¿ä´Â ÁÖ¿ä ¼ºÀå µ¿·ÂÀ̸ç, AI ±â¹Ý Ç÷§ÆûÀº ½Ç½Ã°£ ¸ð´ÏÅ͸µ°ú ºÐ¼®À» ÅëÇØ ¹ßº´ ´ëÀÀ°ú Áúº´ °ü¸®¸¦ °³¼±ÇÒ ¼ö ÀÖ´Â ½ÃÀÇÀûÀýÇÑ ÀλçÀÌÆ®¸¦ Á¦°øÇÕ´Ï´Ù.

ÀÚ¿¬¾î ó¸®¿Í µö·¯´×À» Æ÷ÇÔÇÑ AIÀÇ ±â¼úÀû ¹ßÀüÀº ¿ªÇÐ µµ±¸ÀÇ ¿ª·®À» ´õ¿í È®ÀåÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº º¹ÀâÇÑ µ¥ÀÌÅͼ¼Æ®¸¦ ºÐ¼®ÇÏ°í ½ÇÇà °¡´ÉÇÑ ÀλçÀÌÆ®¸¦ »ý¼ºÇÒ ¼ö ÀÖ°Ô ÇÏ¿© ÀÇ·á ±â°ü¿¡¼­ÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

¿þ¾î·¯ºí ±â±â ¹× °Ç°­ ¾Û »ç¿ë Áõ°¡¿Í °°Àº ¼ÒºñÀÚ Çൿ Æ®·»µå´Â AI ±â¹Ý ¿ªÇÐÀ» Áö¿øÇÏ´Â ±ÍÁßÇÑ ½Ç½Ã°£ °Ç°­ µ¥ÀÌÅ͸¦ »ý¼ºÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, AI ±â¹Ý °Ç°­ ÀÌ´Ï¼ÅÆ¼ºê¿¡ ´ëÇÑ Á¤ºÎ ¹× ±¹Á¦ÀûÀÎ ÀÚ±Ý Áö¿øÀº °øÁß º¸°Ç ±â°üÀÌ ¿ª·®À» °­È­Çϱâ À§ÇØ Ã·´Ü µµ±¸¿¡ ÅõÀÚÇϸ鼭 ½ÃÀå ¼ºÀåÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀÎÀº AI ±â¼úÀÇ Áö¼ÓÀûÀÎ ¹ßÀü°ú ÇÔ²² ¿ªÇÐ ºÐ¾ßÀÇ AI ½ÃÀåÀÇ ±Þ¼ÓÇÑ È®ÀåÀ» ÃËÁøÇϰí Çö´ë °øÁß º¸°Ç Àü·«ÀÇ ÇÙ½ÉÀ¸·Î ÀÚ¸® ¸Å±èÇϰí ÀÖ½À´Ï´Ù.

ºÎ¹®

È®»ê(Ŭ¶ó¿ìµå ±â¹Ý È®»ê, À¥ ±â¹Ý È®»ê), ¿ëµµ(°¨¿° ¿¹Ãø ¹× ¿¹Ãø ¿ëµµ, Áúº´ ¹× ÁõÈıº °¨½Ã ¿ëµµ), ÃÖÁ¾ ¿ëµµ(Á¦¾à ¹× »ý¸í°øÇÐ ±â¾÷ ÃÖÁ¾ ¿ëµµ, ¿¬±¸±â°ü ÃÖÁ¾ ¿ëµµ, Á¤ºÎ ¹× ±¹°¡±â°ü ÃÖÁ¾ ¿ëµµ, ±âŸ ÃÖÁ¾ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê(ÁÖ¸ñ¹Þ´Â 42°³ ±â¾÷)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSM
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Artificial Intelligence in Epidemiology Market to Reach US$2.6 Billion by 2030

The global market for Artificial Intelligence in Epidemiology estimated at US$685.6 Million in the year 2024, is expected to reach US$2.6 Billion by 2030, growing at a CAGR of 25.2% over the analysis period 2024-2030. Cloud-based Deployment, one of the segments analyzed in the report, is expected to record a 24.7% CAGR and reach US$2.1 Billion by the end of the analysis period. Growth in the Web-based Deployment segment is estimated at 27.1% CAGR over the analysis period.

The U.S. Market is Estimated at US$180.2 Million While China is Forecast to Grow at 23.9% CAGR

The Artificial Intelligence in Epidemiology market in the U.S. is estimated at US$180.2 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$401.3 Million by the year 2030 trailing a CAGR of 23.9% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 22.9% and 21.8% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 17.4% CAGR.

Global Artificial Intelligence in Epidemiology Market - Key Trends & Drivers Summarized

How Is AI Transforming Epidemiology and Public Health?

Artificial Intelligence (AI) is revolutionizing the field of epidemiology by enhancing the ability to predict, detect, and manage disease outbreaks. Traditional epidemiological methods, while effective, often struggle to process large volumes of data quickly enough to respond to rapidly evolving health crises. AI addresses this challenge by using advanced machine learning algorithms, natural language processing (NLP), and predictive analytics to analyze vast datasets in real time.

AI systems monitor diverse data sources, such as electronic health records (EHRs), social media, and environmental data, to identify early signs of disease outbreaks. These tools detect patterns and anomalies that may indicate emerging health threats, enabling faster interventions. During the COVID-19 pandemic, AI played a critical role in tracking virus transmission, modeling infection trends, and supporting vaccine development efforts.

Beyond outbreak detection, AI is transforming disease modeling by simulating the impact of various interventions on public health outcomes. These simulations help policymakers design effective strategies for managing epidemics, allocating resources, and minimizing the societal impact of diseases. By enabling data-driven decision-making, AI is fundamentally reshaping the practice of epidemiology.

What Drives the Adoption of AI in Epidemiology?

The increasing frequency and complexity of disease outbreaks are significant drivers of AI adoption in epidemiology. Globalization, urbanization, and climate change are contributing to the spread of infectious diseases, creating an urgent need for advanced tools to monitor and respond to health threats. AI-powered platforms provide real-time surveillance capabilities, ensuring that public health agencies can act swiftly to contain outbreaks.

The growing availability of big data is another critical factor. Health organizations now have access to vast amounts of data from EHRs, wearable devices, genomic studies, and social media. AI systems analyze this data to uncover trends and correlations that inform public health strategies. This capability is particularly valuable in understanding the dynamics of emerging diseases and identifying vulnerable populations.

Additionally, advancements in AI technologies, such as deep learning and data visualization, are enhancing the accessibility and usability of epidemiological insights. AI tools generate user-friendly reports and visualizations that empower decision-makers at all levels, from local health departments to international organizations like the WHO. These factors highlight the growing importance of AI in addressing the challenges of modern epidemiology.

Can AI Improve Disease Prediction and Resource Allocation?

AI is proving to be a game-changer in disease prediction and resource allocation, two critical aspects of epidemiology. Predictive analytics powered by AI models forecast disease outbreaks by analyzing historical and real-time data. These forecasts enable health authorities to anticipate the spread of diseases and implement preventive measures, such as vaccination campaigns and public awareness initiatives.

In resource allocation, AI optimizes the distribution of medical supplies, personnel, and funding based on predicted disease burdens. For example, during pandemics, AI tools identify hotspots where healthcare resources are needed most, ensuring an efficient and equitable response. This capability minimizes waste and ensures that resources are directed to areas of greatest need.

AI also enhances the precision of intervention strategies by providing insights into the effectiveness of various public health measures. By simulating different scenarios, AI helps policymakers evaluate the potential outcomes of interventions, such as travel restrictions or quarantine measures. These advancements are enabling a more proactive and targeted approach to managing public health challenges.

What’s Driving the Growth of the AI in Epidemiology Market?

The growth in the Artificial Intelligence in Epidemiology market is driven by several key factors, reflecting the increasing reliance on technology to manage public health. The rising prevalence of infectious diseases and the global need for robust surveillance systems are major growth drivers. AI-powered platforms enable real-time monitoring and analysis, providing timely insights that improve outbreak response and disease control.

Technological advancements in AI, including natural language processing and deep learning, are further expanding the capabilities of epidemiological tools. These innovations enable the analysis of complex datasets and the generation of actionable insights, driving adoption among health organizations.

Consumer behavior trends, such as increased use of wearable devices and health apps, are generating valuable real-time health data that supports AI-driven epidemiology. Additionally, government and international funding for AI-based health initiatives are boosting market growth, as public health agencies invest in advanced tools to enhance their capabilities. These factors, coupled with the continuous evolution of AI technologies, are propelling the rapid expansion of the AI in Epidemiology market, positioning it as a cornerstone of modern public health strategy.

SCOPE OF STUDY:

The report analyzes the Artificial Intelligence in Epidemiology market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Deployment (Cloud-based Deployment, Web-based Deployment); Application (Infection Prediction & Forecasting Application, Disease & Syndromic Surveillance Application); End-Use (Pharma & Biotech Companies End-Use, Research Labs End-Use, Government & State Agencies End-Use, Other End-Uses)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 42 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â