¼¼°èÀÇ ÀΰøÁö´É Ȱ¿ë Å×½ºÆ® ½ÃÀå
Artificial Intelligence-enabled Testing
»óǰÄÚµå : 1643498
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 01¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 208 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,464,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 25,393,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

ÀΰøÁö´É Ȱ¿ë Å×½ºÆ® ¼¼°è ½ÃÀå, 2030³â±îÁö 17¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â 6¾ï 2,550¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â ÀΰøÁö´É ±â¹Ý Å×½ºÆ® ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö ¿¬Æò±Õ 18.4%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 17¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ AI Áö¿ø Å×½ºÆ® ¼ÒÇÁÆ®¿þ¾î´Â CAGR 16.3%À» ±â·ÏÇÏ¿© ºÐ¼® ±â°£ Á¾·á ½ÃÁ¡¿¡ 12¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, AI Áö¿ø Å×½ºÆ® ¼­ºñ½º ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 24.4%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀå 1¾ï 6,440¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 17.5%·Î ¼ºÀå Àü¸Á

¹Ì±¹ÀÇ ÀΰøÁö´É Ȱ¿ë Å×½ºÆ® ½ÃÀåÀº 2024³â 1¾ï 6,440¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2024-2030³â ºÐ¼® ±â°£ µ¿¾È 17.5%ÀÇ CAGR·Î 2030³â±îÁö 2¾ï 6,650¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ´Ù¸¥ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ª ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ºÐ¼® ±â°£ µ¿¾È °¢°¢ 16.6%, 16.1%ÀÇ CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ ¾à 13.7%ÀÇ CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¼¼°è ÀΰøÁö´É Ȱ¿ë Å×½ºÆ® ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ Á¤¸®

AI´Â ¼ÒÇÁÆ®¿þ¾î Å×½ºÆ®ÀÇ °üÇàÀ» ¾î¶»°Ô º¯È­½Ã۰í Àִ°¡?

ÀΰøÁö´É(AI)Àº Å×½ºÆ® ÇÁ·Î¼¼½º¿¡ ÀÚµ¿È­, Á¤È®¼º, È¿À²¼ºÀ» µµÀÔÇÔÀ¸·Î½á ¼ÒÇÁÆ®¿þ¾î Å×½ºÆ®¿¡ Çõ¸íÀ» ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù. ±âÁ¸ÀÇ Å×½ºÆ® ¹æ¹ýÀº ´ëºÎºÐ ¼öµ¿ ÀԷ°ú »çÀü Á¤ÀÇµÈ ½ºÅ©¸³Æ®¿¡ ÀÇÁ¸ÇÏ¿© ½Ã°£ÀÌ ¿À·¡ °É¸®°í ¿À·ù°¡ ¹ß»ýÇϱ⠽±½À´Ï´Ù. ¹Ý¸é, AI¸¦ Ȱ¿ëÇÑ Å×½ºÆ®´Â ¸Ó½Å·¯´× ¾Ë°í¸®Áò°ú ¿¹Ãø ºÐ¼®À» Ȱ¿ëÇÏ¿© Å×½ºÆ® ÄÉÀ̽º¸¦ ½Äº°ÇÏ°í ¿ì¼±¼øÀ§¸¦ ÁöÁ¤ÇÏ¿© ½ÇÇàÇÕ´Ï´Ù. ÀÌ·¯ÇÑ µµ±¸´Â ¾ÖÇø®ÄÉÀ̼ÇÀÇ º¯È­¿¡ µ¿ÀûÀ¸·Î ÀûÀÀÇϱ⠶§¹®¿¡ ¼öÀÛ¾÷ÀÌ Áö¼ÓÀûÀ¸·Î °³ÀÔÇÒ Çʿ伺À» ÁÙ¿©ÁÝ´Ï´Ù.

AI ±â¹Ý ÅøÀº Å×½ºÆ® Ä¿¹ö¸®Áö¸¦ °­È­ÇÏ°í °³¹ß ¶óÀÌÇÁ»çÀÌŬ Ãʱ⿡ °áÇÔÀ» ½Äº°ÇÏ´Â µ¥ ƯÈ÷ È¿°úÀûÀÔ´Ï´Ù. AI ½Ã½ºÅÛÀº °ú°Å Å×½ºÆ® µ¥ÀÌÅÍ, »ç¿ëÀÚ Çൿ, ¾ÖÇø®ÄÉÀÌ¼Ç ·Î±×¸¦ ºÐ¼®ÇÏ¿© À§Çèµµ°¡ ³ôÀº ¿µ¿ªÀ» ¿¹ÃøÇÒ ¼ö ÀÖÀ¸¸ç, Å×½ºÆ® ´ã´çÀÚ´Â °¡Àå Áß¿äÇÑ ±¸¼º¿ä¼Ò¿¡ ³ë·ÂÀ» ÁýÁßÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, AI ±â¹Ý µµ±¸´Â Å×½ºÆ® ½ºÅ©¸³Æ®¸¦ ÀÚµ¿À¸·Î »ý¼ºÇϰí À¯Áö °ü¸®ÇÏ¿© ¸®±×·¹¼Ç Å×½ºÆ®¸¦ ¿ëÀÌÇÏ°Ô Çϰí, »õ·Î¿î ¾÷µ¥ÀÌÆ®°¡ ±âÁ¸ ±â´ÉÀ» ºÎÁÖÀÇÇÏ°Ô Áß´ÜÇÏÁö ¾Êµµ·Ï ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±â´ÉÀ» ÅëÇØ AI´Â ÃֽмÒÇÁÆ®¿þ¾î Å×½ºÆ® ¹æ¹ý·ÐÀÇ ÇÙ½ÉÀÌ µÇ°í ÀÖ½À´Ï´Ù.

Å×½ºÆ®¿¡¼­ AI µµÀÔÀ» ÃËÁøÇÏ´Â ¿äÀÎÀº ¹«¾ùÀϱî?

¼ÒÇÁÆ®¿þ¾î ¾ÖÇø®ÄÉÀ̼ÇÀÇ º¹À⼺°ú °³¹ß Áֱ⠴ÜÃà¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡Çϸ鼭 Å×½ºÆ®¿¡ AI¸¦ µµÀÔÇÏ´Â ÁÖ¿ä ÃËÁø¿äÀÎÀÌ µÇ°í ÀÖ½À´Ï´Ù. AI ±â¹Ý Å×½ºÆ® ÅøÀº Å×½ºÆ® ÇÁ·Î¼¼½º¸¦ °¡¼ÓÈ­Çϰí, °áÇÔÀ» Á¶±â¿¡ ¹ß°ßÇϸç, ´Ù¾çÇÑ Á¶°Ç¿¡¼­ ½Å·ÚÇÒ ¼ö ÀÖ´Â ¼º´ÉÀ» º¸ÀåÇÔÀ¸·Î½á ÀÌ·¯ÇÑ °úÁ¦¸¦ ÇØ°áÇÒ ¼ö ÀÖ½À´Ï´Ù. ´ëóÇÕ´Ï´Ù. ÀÌ´Â ¼ÒÇÁÆ®¿þ¾î ǰÁúÀÌ »ç¿ëÀÚÀÇ ½Å·Ú¿Í ¸¸Á·µµ¿¡ Á÷Á¢ÀûÀÎ ¿µÇâÀ» ¹ÌÄ¡´Â ÀºÇà, ÇコÄɾî, ÀÌÄ¿¸Ó½º µîÀÇ »ê¾÷¿¡¼­ ƯÈ÷ Áß¿äÇÕ´Ï´Ù.

DevOps¿Í CI/CD(Continuous Integration/Continuous Delivery) ÆÄÀÌÇÁ¶óÀÎÀ¸·ÎÀÇ Àüȯµµ AI Áö¿ø Å×½ºÆ®¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °üÇàÀº ¿øÈ°ÇÑ ¹èÆ÷¸¦ º¸ÀåÇϱâ À§ÇØ °³¹ßÀÇ °¢ ´Ü°è¿¡¼­ ºó¹øÇÑ Å×½ºÆ®¸¦ ¼öÇàÇØ¾ß Çϸç, AI ±â¹Ý µµ±¸´Â CI/CD ¿öÅ©Ç÷ο쿡 ¿øÈ°ÇÏ°Ô ÅëÇÕµÇ¾î ¹Ýº¹ÀûÀÎ ÀÛ¾÷À» ÀÚµ¿È­ÇÏ°í ½Ç½Ã°£ Å×½ºÆ® ¹× Çǵå¹éÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ¶ÇÇÑ, »ç¿ëÀÚ ÇൿÀ» ½Ã¹Ä·¹À̼ÇÇϰí Ž»öÀû Å×½ºÆ®¸¦ ¼öÇàÇÏ´Â AIÀÇ ´É·ÂÀº Å×½ºÆ® Àü·«ÀÇ Àü¹ÝÀûÀÎ È¿À²¼ºÀ» ³ôÀÌ°í ¾ÖÀÚÀÏ ¹æ½ÄÀ» äÅÃÇÏ´Â Á¶Á÷¿¡ ÇʼöÀûÀÎ ¿ä¼Ò°¡ µÇ°í ÀÖ½À´Ï´Ù.

AI Å×½ºÆ® µµ±¸°¡ ¼ÒÇÁÆ®¿þ¾î ǰÁúÀ» Çâ»ó½ÃŰ°í ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖÀ»±î?

AI ±â¹Ý Å×½ºÆ® µµ±¸´Â ºñ¿ëÀ» Å©°Ô Àý°¨Çϸ鼭 ¼ÒÇÁÆ®¿þ¾î ǰÁúÀ» Çâ»ó½ÃŰ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. Å×½ºÆ® ÄÉÀ̽º »ý¼º, ½ÇÇà, º¸°í¼­ ÀÛ¼º µî ¹Ýº¹ÀûÀÎ ÀÛ¾÷À» ÀÚµ¿È­ÇÔÀ¸·Î½á AI´Â ´ë±Ô¸ð ¼öÀÛ¾÷ÀÇ Çʿ伺À» ÃÖ¼ÒÈ­ÇÏ¿© ½Ã°£°ú ¸®¼Ò½º ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, AI¸¦ Ȱ¿ëÇÑ ºÐ¼®Àº °áÇÔ Å½Áö ¹× ¿¹ÃøÀ» °­È­ÇÏ¿© Ãâ½Ã ÈÄ ºñ¿ëÀÌ ¸¹ÀÌ µå´Â ¹®Á¦ ¹ß»ý °¡´É¼ºÀ» ÁÙ¿©ÁÝ´Ï´Ù. ÀÌ·¯ÇÑ Ç°Áú º¸Áõ¿¡ ´ëÇÑ Àû±ØÀûÀÎ Á¢±Ù ¹æ½ÄÀº ¼ÒÇÁÆ®¿þ¾î Á¦Ç°ÀÌ ÃÖÁ¾»ç¿ëÀÚ¿¡°Ô Àü´ÞµÇ±â Àü¿¡ ÃÖ°í ¼öÁØÀÇ Ç°ÁúÀ» º¸ÀåÇÕ´Ï´Ù.

¶ÇÇÑ, AI ÅøÀº Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ, IoT, AI ÀÚü¿¡ ÀÇÇØ ±¸µ¿µÇ´Â °ÍÀ» Æ÷ÇÔÇÑ ÃֽмÒÇÁÆ®¿þ¾î ¾ÖÇø®ÄÉÀ̼ÇÀÇ º¹À⼺¿¡ ´ëÀÀÇÏ¿© Å×½ºÆ®ÀÇ È®À强À» Áö¿øÇϸç, AI ÅøÀº ´ë±Ô¸ð Å×½ºÆ® ȯ°æ°ú ¿©·¯ ½Ã³ª¸®¿À¸¦ µ¿½Ã¿¡ ó¸®ÇÒ ¼ö ÀÖ¾î Á¾ÇÕÀûÀÎ Å×½ºÆ® Ä¿¹ö¸®Áö¸¦ º¸ÀåÇÕ´Ï´Ù. Á¾ÇÕÀûÀÎ Å×½ºÆ® Ä¿¹ö¸®Áö¸¦ º¸ÀåÇÕ´Ï´Ù. ÀÌ·¯ÇÑ È®À强°ú ÁøÈ­ÇÏ´Â ¾ÖÇø®ÄÉÀÌ¼Ç ¿ä±¸»çÇ׿¡ ÀûÀÀÇÒ ¼ö ÀÖ´Â AIÀÇ ´É·ÂÀ» °áÇÕÇÏ¿© AI¸¦ Ȱ¿ëÇÑ Å×½ºÆ®´Â ¸ðµç ±Ô¸ðÀÇ ±â¾÷¿¡°Ô ºñ¿ë È¿À²ÀûÀÌ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â ¼Ö·ç¼ÇÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù.

AI Áö¿ø Å×½ºÆ® ½ÃÀåÀÇ ¼ºÀåÀ» ÃËÁøÇÏ´Â ¿äÀÎÀº ¹«¾ùÀϱî?

ÀΰøÁö´É ±â¹Ý Å×½ºÆ® ½ÃÀåÀÇ ¼ºÀåÀº È¿À²ÀûÀÌ°í ½Å·ÚÇÒ ¼ö ÀÖÀ¸¸ç È®Àå °¡´ÉÇÑ Å×½ºÆ® ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó AI, IoT, Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ°ú °°Àº ±â¼úÀÇ ±Þ¼ÓÇÑ ¹ßÀüÀ¸·Î ÀÎÇØ ´õ¿í º¹ÀâÇÑ ¼ÒÇÁÆ®¿þ¾î »ýŰ谡 Çü¼ºµÇ°í ÀÖÀ¸¸ç, AI Áö¿ø Å×½ºÆ® ¼Ö·ç¼ÇÀº ÀÌ·¯ÇÑ ÁøÈ­¿¡ ´ëÀÀÇÏ´Â µ¥ ÇÊ¿äÇÑ ÀûÀÀ·Â°ú ¼Óµµ¸¦ Á¦°øÇÕ´Ï´Ù. AI Áö¿ø Å×½ºÆ® ¼Ö·ç¼ÇÀº ÀÌ·¯ÇÑ ÁøÈ­¿¡ ´ëÀÀÇϱâ À§ÇØ ÇÊ¿äÇÑ ÀûÀÀ·Â°ú ¼Óµµ¸¦ Á¦°øÇϸç, AI Áö¿ø Å×½ºÆ® ¼Ö·ç¼ÇÀº ¿ªµ¿ÀûÀÌ°í »óÈ£¿¬°áµÈ ȯ°æ¿¡ ´ëÀÀÇÒ ¼ö ÀÖ´Â °í±Þ Å×½ºÆ® ÅøÀ» Á¦°øÇÕ´Ï´Ù.

¿øÈ°ÇÑ µðÁöÅÐ °æÇè¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ±â´ë´Â Á¶Á÷ÀÌ ¼ÒÇÁÆ®¿þ¾î ǰÁúÀ» ¿ì¼±¼øÀ§¿¡ µÎ°í AI¸¦ Ȱ¿ëÇÑ Å×½ºÆ®¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¾ÖÀÚÀϰú µ¥ºê¿É½º(DevOps) °üÇàÀÇ Ã¤ÅÃÀº °³¹ß ¶óÀÌÇÁ»çÀÌŬ Àü¹Ý¿¡ °ÉÃÄ Áö¼ÓÀûÀ̰í ÀÚµ¿È­µÈ Å×½ºÆ®ÀÇ Á߿伺À» ´õ¿í °­Á¶Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ¹× º¸¾È¿¡ ´ëÇÑ ±ÔÁ¦ ¿ä°ÇÀº ÇÁ·Î¼¼½º Ãʱ⿡ Ãë¾àÁ¡À» ½Äº°ÇÏ¿© ÄÄÇöóÀ̾𽺸¦ º¸ÀåÇÒ ¼ö ÀÖ´Â AI ÅøÀÇ »ç¿ëÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀº AI ¾Ë°í¸®Áò°ú Å×½ºÆ® ÇÁ·¹ÀÓ¿öÅ©ÀÇ Áö¼ÓÀûÀÎ Çõ½Å°ú ÇÔ²² ½ÃÀåÀÇ ±Þ¼ÓÇÑ ¼ºÀå¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖÀ¸¸ç, AI Áö¿ø Å×½ºÆ®°¡ Çö´ë ¼ÒÇÁÆ®¿þ¾î °³¹ß »ýŰèÀÇ Áß¿äÇÑ ±¸¼º¿ä¼ÒÀÓÀ» È®°íÈ÷ Çϰí ÀÖ½À´Ï´Ù.

ºÎ¹®

ÄÄÆ÷³ÍÆ®(¼ÒÇÁÆ®¿þ¾î ÄÄÆ÷³ÍÆ®, ¼­ºñ½º ÄÄÆ÷³ÍÆ®), ±â¼ú(¸Ó½Å·¯´× ¹× ÆÐÅÏ ÀÎ½Ä ±â¼ú, ÀÚ¿¬¾î ó¸®(NLP) ±â¼ú, ÄÄÇ»ÅÍ ºñÀü ¹× À̹ÌÁö ó¸® ±â¼ú), ¿ëµµ(Å×½ºÆ® ÀÚµ¿È­ ¿ëµµ, ÀÎÇÁ¶ó ÃÖÀûÈ­ ¿ëµµ, ±âŸ ¿ëµµ), ÃÖÁ¾ ¿ëµµ(IT ¹× Åë½Å ÃÖÁ¾ ¿ëµµ, BFSI ÃÖÁ¾ ¿ëµµ, ÇコÄɾî ÃÖÁ¾ ¿ëµµ, ¿¡³ÊÁö ¹× À¯Æ¿¸®Æ¼ ÃÖÁ¾ ¿ëµµ, ±âŸ ÃÖÁ¾ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê(ÁÖ¸ñ 42°³»ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Artificial Intelligence-enabled Testing Market to Reach US$1.7 Billion by 2030

The global market for Artificial Intelligence-enabled Testing estimated at US$625.5 Million in the year 2024, is expected to reach US$1.7 Billion by 2030, growing at a CAGR of 18.4% over the analysis period 2024-2030. AI-enabled Testing Software, one of the segments analyzed in the report, is expected to record a 16.3% CAGR and reach US$1.2 Billion by the end of the analysis period. Growth in the AI-enabled Testing Services segment is estimated at 24.4% CAGR over the analysis period.

The U.S. Market is Estimated at US$164.4 Million While China is Forecast to Grow at 17.5% CAGR

The Artificial Intelligence-enabled Testing market in the U.S. is estimated at US$164.4 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$266.5 Million by the year 2030 trailing a CAGR of 17.5% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 16.6% and 16.1% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 13.7% CAGR.

Global Artificial Intelligence-Enabled Testing Market - Key Trends & Drivers Summarized

How Is AI Transforming Software Testing Practices?

Artificial Intelligence (AI) is revolutionizing software testing by introducing automation, precision, and efficiency into testing processes. Traditional testing methods often rely on manual input and predefined scripts, which can be time-intensive and error-prone. AI-enabled testing, on the other hand, leverages machine learning algorithms and predictive analytics to identify, prioritize, and execute test cases. These tools adapt dynamically to application changes, reducing the need for constant manual intervention.

AI-powered tools are particularly effective in enhancing test coverage and identifying defects early in the development lifecycle. By analyzing historical test data, user behavior, and application logs, AI systems can predict high-risk areas, enabling testers to focus their efforts on the most critical components. Furthermore, AI-driven tools facilitate regression testing by automatically generating and maintaining test scripts, ensuring that new updates do not inadvertently disrupt existing functionality. These capabilities are making AI a cornerstone of modern software testing practices.

What Drives the Adoption of AI in Testing?

The growing complexity of software applications and the increasing demand for faster development cycles are key drivers of AI adoption in testing. In today’s competitive landscape, businesses are under pressure to deliver high-quality software quickly while minimizing costs. AI-enabled testing tools address this challenge by accelerating testing processes, identifying defects earlier, and ensuring reliable performance under varying conditions. This is especially important in industries like banking, healthcare, and e-commerce, where software quality directly impacts user trust and satisfaction.

The shift toward DevOps and continuous integration/continuous delivery (CI/CD) pipelines is also fueling demand for AI-enabled testing. These practices require frequent testing at every stage of development to ensure seamless deployment. AI-powered tools integrate seamlessly into CI/CD workflows, automating repetitive tasks and enabling real-time testing and feedback. Additionally, the ability of AI to simulate user behavior and execute exploratory testing is enhancing the overall effectiveness of testing strategies, making it indispensable for organizations embracing agile methodologies.

Can AI Testing Tools Improve Software Quality and Reduce Costs?

AI-enabled testing tools are playing a crucial role in improving software quality while significantly reducing costs. By automating repetitive tasks such as test case generation, execution, and reporting, AI minimizes the need for extensive manual labor, leading to cost savings in terms of time and resources. AI-driven analytics also enhance defect detection and prediction, reducing the likelihood of costly post-release issues. This proactive approach to quality assurance ensures that software products meet the highest standards before they reach end-users.

Moreover, AI tools support scalability in testing by accommodating the growing complexity of modern software applications, including those powered by cloud computing, IoT, and AI itself. They can handle large-scale test environments and multiple scenarios simultaneously, ensuring comprehensive test coverage. This scalability, combined with AI’s ability to adapt to evolving application requirements, makes AI-enabled testing a cost-effective and reliable solution for businesses of all sizes.

What’s Driving the Growth of the AI-Enabled Testing Market?

The growth in the Artificial Intelligence-Enabled Testing market is driven by several critical factors, reflecting the increasing need for efficient, reliable, and scalable testing solutions. The rapid evolution of technologies like AI, IoT, and cloud computing is creating more complex software ecosystems, necessitating advanced testing tools capable of handling dynamic and interconnected environments. AI-enabled testing solutions provide the adaptability and speed required to keep pace with these advancements.

Consumer expectations for seamless digital experiences are also pushing organizations to prioritize software quality, driving investments in AI-powered testing. The adoption of agile and DevOps practices further emphasizes the importance of continuous and automated testing throughout the development lifecycle. Additionally, regulatory requirements for data privacy and security are encouraging the use of AI tools that can ensure compliance by identifying vulnerabilities early in the process. These factors, combined with ongoing innovations in AI algorithms and testing frameworks, are fueling the rapid expansion of the market, solidifying AI-enabled testing as a vital component of the modern software development ecosystem.

SCOPE OF STUDY:

The report analyzes the Artificial Intelligence-enabled Testing market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Component (Software Component, Services Component); Technology (Machine Learning and Pattern Recognition Technology, Natural Language Processing (NLP) Technology, Computer Vision and Image Processing Technology); Application (Test Automation Application, Infrastructure Optimization Application, Other Applications); End-Use (IT & Telecom End-Use, BFSI End-Use, Healthcare End-Use, Energy & Utilities End-Use, Other End-Uses)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 42 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â